-
1
-
-
77951241819
-
Role of FGF19 induced FGFR4 activation in the regulation of glucose homeostasis
-
Wu, X., and Y. Li. 2009. Role of FGF19 induced FGFR4 activation in the regulation of glucose homeostasis. Aging (Albany NY). 1: 1023-1027.
-
(2009)
Aging (Albany NY)
, vol.1
, pp. 1023-1027
-
-
Wu, X.1
Li, Y.2
-
2
-
-
80054696665
-
Therapeutic utilities of fibroblast growth factor 19
-
Wu, X., and Y. Li. 2011. Therapeutic utilities of fibroblast growth factor 19. Expert Opin. Ther. Targets. 15: 1307-1316.
-
(2011)
Expert Opin. Ther. Targets
, vol.15
, pp. 1307-1316
-
-
Wu, X.1
Li, Y.2
-
3
-
-
56949092897
-
Glycosaminoglycan affinity of the complete fibroblast growth factor family
-
Asada, M., M. Shinomiya, M. Suzuki, E. Honda, R. Sugimoto, M. Ikekita, and T. Imamura. 2009. Glycosaminoglycan affinity of the complete fibroblast growth factor family. Biochim. Biophys. Acta. 1790: 40-48.
-
(2009)
Biochim. Biophys. Acta
, vol.1790
, pp. 40-48
-
-
Asada, M.1
Shinomiya, M.2
Suzuki, M.3
Honda, E.4
Sugimoto, R.5
Ikekita, M.6
Imamura, T.7
-
4
-
-
34848869695
-
Tissue-specific expression of betaklotho and Fibroblast Growth Factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21
-
DOI 10.1074/jbc.M704165200
-
Kurosu, H., M. Choi, Y. Ogawa, A. S. Dickson, R. Goetz, A. V. Eliseenkova, M. Mohammadi, K. P. Rosenblatt, S. A. Kliewer, and M. Kuro-o. 2007. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J. Biol. Chem. 282: 26687-26695. (Pubitemid 47501965)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.37
, pp. 26687-26695
-
-
Kurosu, H.1
Choi, M.2
Ogawa, Y.3
Dickson, A.S.4
Goetz, R.5
Eliseenkova, A.V.6
Mohammadi, M.7
Rosenblatt, K.P.8
Kliewer, S.A.9
Kuro-O, M.10
-
5
-
-
34848866633
-
Liver-specific activities of FGF19 require klotho beta
-
DOI 10.1074/jbc.M704244200
-
Lin, B. C., M. Wang, C. Blackmore, and L. R. Desnoyers. 2007. Liver-specific activities of FGF19 require Klotho beta. J. Biol. Chem. 282: 27277-27284. (Pubitemid 47501977)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.37
, pp. 27277-27284
-
-
Lin, B.C.1
Wang, M.2
Blackmore, C.3
Desnoyers, L.R.4
-
6
-
-
35748973876
-
Co-receptor requirements for fibroblast growth factor-19 signaling
-
DOI 10.1074/jbc.C700130200
-
Wu, X., H. Ge, J. Gupte, J. Weiszmann, G. Shimamoto, J. Stevens, N. Hawkins, B. Lemon, W. Shen, J. Xu, et al. 2007. Co-receptor requirements for fibroblast growth factor-19 signaling. J. Biol. Chem. 282: 29069-29072. (Pubitemid 350043330)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.40
, pp. 29069-29072
-
-
Wu, X.1
Ge, H.2
Gupte, J.3
Weiszmann, J.4
Shimamoto, G.5
Stevens, J.6
Hawkins, N.7
Lemon, B.8
Shen, W.9
Xu, J.10
Veniant, M.M.11
Li, Y.-S.12
Lindberg, R.13
Chen, J.-L.14
Tian, H.15
Li, Y.16
-
7
-
-
84863012459
-
Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones
-
Dutchak, P. A., T. Katafuchi, A. L. Bookout, J. H. Choi, R. T. Yu, D. J. Mangelsdorf, and S. A. Kliewer. 2012. Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell. 148: 556-567.
-
(2012)
Cell.
, vol.148
, pp. 556-567
-
-
Dutchak, P.A.1
Katafuchi, T.2
Bookout, A.L.3
Choi, J.H.4
Yu, R.T.5
Mangelsdorf, D.J.6
Kliewer, S.A.7
-
8
-
-
2542505481
-
Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes
-
DOI 10.1210/en.2003-1671
-
Fu, L., L. M. John, S. H. Adams, X. X. Yu, E. Tomlinson, M. Renz, P. M. Williams, R. Soriano, R. Corpuz, B. Moffat, et al. 2004. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology. 145: 2594-2603. (Pubitemid 38686202)
-
(2004)
Endocrinology
, vol.145
, Issue.6
, pp. 2594-2603
-
-
Fu, L.1
John, L.M.2
Adams, S.H.3
Yu, X.X.4
Tomlinson, E.5
Renz, M.6
Williams, P.M.7
Soriano, R.8
Corpuz, R.9
Moffat, B.10
Vandlen, R.11
Simmons, L.12
Foster, J.13
Stephan, J.-P.14
Tsai, S.P.15
Stewart, T.A.16
-
9
-
-
20444435873
-
FGF-21 as a novel metabolic regulator
-
DOI 10.1172/JCI23606
-
Kharitonenkov, A., T. L. Shiyanova, A. Koester, A. M. Ford, R. Micanovic, E. J. Galbreath, G. E. Sandusky, L. J. Hammond, J. S. Moyers, R. A. Owens, et al. 2005. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115: 1627-1635. (Pubitemid 40814671)
-
(2005)
Journal of Clinical Investigation
, vol.115
, Issue.6
, pp. 1627-1635
-
-
Kharitonenkov, A.1
Shiyanova, T.L.2
Koester, A.3
Ford, A.M.4
Micanovic, R.5
Galbreath, E.J.6
Sandusky, G.E.7
Hammond, L.J.8
Moyers, J.S.9
Owens, R.A.10
Gromada, J.11
Brozinick, J.T.12
Hawkins, E.D.13
Wroblewski, V.J.14
Li, D.-S.15
Mehrbod, F.16
Jaskunas, S.R.17
Shanafelt, A.B.18
-
10
-
-
0034333526
-
Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein
-
Ito, S., S. Kinoshita, N. Shiraishi, S. Nakagawa, S. Sekine, T. Fujimori, and Y. I. Nabeshima. 2000. Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. Mech. Dev. 98: 115-119.
-
(2000)
Mech. Dev.
, vol.98
, pp. 115-119
-
-
Ito, S.1
Kinoshita, S.2
Shiraishi, N.3
Nakagawa, S.4
Sekine, S.5
Fujimori, T.6
Nabeshima, Y.I.7
-
11
-
-
34249697012
-
BetaKlotho is required for metabolic activity of fibroblast growth factor 21
-
DOI 10.1073/pnas.0701600104
-
Ogawa, Y., H. Kurosu, M. Yamamoto, A. Nandi, K. P. Rosenblatt, R. Goetz, A. V. Eliseenkova, M. Mohammadi, and M. Kuro-o. 2007. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc. Natl. Acad. Sci. USA. 104: 7432-7437. (Pubitemid 47185923)
-
(2007)
Proceedings of the National Academy of Sciences of the United States of America
, vol.104
, Issue.18
, pp. 7432-7437
-
-
Ogawa, Y.1
Kurosu, H.2
Yamamoto, M.3
Nandi, A.4
Rosenblatt, K.P.5
Goetz, R.6
Eliseenkova, A.V.7
Mohammadi, M.8
Kuro-O, M.9
-
12
-
-
41649109108
-
betaklotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c
-
DOI 10.1210/me.2007-0313
-
Suzuki, M., Y. Uehara, K. Motomura-Matsuzaka, J. Oki, Y. Koyama, M. Kimura, M. Asada, A. Komi-Kuramochi, S. Oka, and T. Imamura. 2008. betaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol. Endocrinol. 22: 1006-1014. (Pubitemid 351482834)
-
(2008)
Molecular Endocrinology
, vol.22
, Issue.4
, pp. 1006-1014
-
-
Suzuki, M.1
Uehara, Y.2
Motomura-Matsuzaka, K.3
Oki, J.4
Koyama, Y.5
Kimura, M.6
Asada, M.7
Komi-Kuramochi, A.8
Oka, S.9
Imamura, T.10
-
13
-
-
77956293010
-
Separating mitogenic and metabolic activities of fibroblast growth factor 19 (FGF19)
-
Wu, X., H. Ge, B. Lemon, S. Vonderfecht, H. Baribault, J. Weiszmann, J. Gupte, J. Gardner, R. Lindberg, Z. Wang, et al. 2010. Separating mitogenic and metabolic activities of fibroblast growth factor 19 (FGF19). Proc. Natl. Acad. Sci. USA. 107: 14158-14163.
-
(2010)
Proc. Natl. Acad. Sci. USA.
, vol.107
, pp. 14158-14163
-
-
Wu, X.1
Ge, H.2
Lemon, B.3
Vonderfecht, S.4
Baribault, H.5
Weiszmann, J.6
Gupte, J.7
Gardner, J.8
Lindberg, R.9
Wang, Z.10
-
14
-
-
84863379532
-
Characterization of a FGF19 variant with altered receptor specificity revealed a central role for FGFR1c in the regulation of glucose metabolism
-
Ge, H., H. Baribault, S. Vonderfecht, B. Lemon, J. Weiszmann, J. Gardner, K. J. Lee, J. Gupte, P. Mookherjee, M. Wang, et al. 2012. Characterization of a FGF19 variant with altered receptor specificity revealed a central role for FGFR1c in the regulation of glucose metabolism. PLoS ONE. 7: e33603.
-
(2012)
PLoS ONE
, vol.7
-
-
Ge, H.1
Baribault, H.2
Vonderfecht, S.3
Lemon, B.4
Weiszmann, J.5
Gardner, J.6
Lee, K.J.7
Gupte, J.8
Mookherjee, P.9
Wang, M.10
-
15
-
-
70149120326
-
Selective activation of FGFR4 by an FGF19 variant does not improve glucose metabolism in ob/ob mice
-
Wu, X., H. Ge, B. Lemon, J. Weiszmann, J. Gupte, N. Hawkins, X. Li, J. Tang, R. Lindberg, and Y. Li. 2009. Selective activation of FGFR4 by an FGF19 variant does not improve glucose metabolism in ob/ob mice. Proc. Natl. Acad. Sci. USA. 106: 14379-14384.
-
(2009)
Proc. Natl. Acad. Sci. USA.
, vol.106
, pp. 14379-14384
-
-
Wu, X.1
Ge, H.2
Lemon, B.3
Weiszmann, J.4
Gupte, J.5
Hawkins, N.6
Li, X.7
Tang, J.8
Lindberg, R.9
Li, Y.10
-
16
-
-
0037663483
-
Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis
-
DOI 10.1101/gad.1083503
-
Holt, J. A., G. Luo, A. N. Billin, J. Bisi, Y. Y. McNeill, K. F. Kozarsky, M. Donahee, D. Y. Wang, T. A. Mansfield, S. A. Kliewer, et al. 2003. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev. 17: 1581-1591. (Pubitemid 36828786)
-
(2003)
Genes and Development
, vol.17
, Issue.13
, pp. 1581-1591
-
-
Holt, J.A.1
Luo, G.2
Billin, A.N.3
Bisi, J.4
McNeill, Y.Y.5
Kozarsky, K.F.6
Donahee, M.7
Wang, D.Y.8
Mansfield, T.A.9
Kliewer, S.A.10
Goodwin, B.11
Jones, S.A.12
-
17
-
-
79952803104
-
FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways
-
Wu, A. L., S. Coulter, C. Liddle, A. Wong, J. Eastham-Anderson, D. M. French, A. S. Peterson, and J. Sonoda. 2011. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways. PLoS ONE. 6: e17868.
-
(2011)
PLoS ONE
, vol.6
-
-
Wu, A.L.1
Coulter, S.2
Liddle, C.3
Wong, A.4
Eastham-Anderson, J.5
French, D.M.6
Peterson, A.S.7
Sonoda, J.8
-
18
-
-
0018132578
-
Effects of cholestyramine and chenodeoxycholic acid on the metabolism of endogenous triglyceride in hyperlipoproteinemia
-
Angelin, B., K. Einarsson, K. Hellstrom, and B. Leijd. 1978. Effects of cholestyramine and chenodeoxycholic acid on the metabolism of endogenous triglyceride in hyperlipoproteinemia. J. Lipid Res. 19: 1017-1024. (Pubitemid 9059813)
-
(1978)
Journal of Lipid Research
, vol.19
, Issue.8
, pp. 1017-1024
-
-
Angelin, B.1
Einarsson, K.2
Hellstrom, K.3
Leijd, B.4
-
19
-
-
0020074674
-
Effects of interruption of the enterohepatic circulation of bile acids on the transport of very low density-lipoprotein triglycerides
-
DOI 10.1016/0026-0495(82)90231-1
-
Beil, U., J. R. Crouse, K. Einarsson, and S. M. Grundy. 1982. Effects of interruption of the enterohepatic circulation of bile acids on the transport of very low density-lipoprotein triglycerides. Metabolism. 31: 438-444. (Pubitemid 12155449)
-
(1982)
Metabolism: Clinical and Experimental
, vol.31
, Issue.5
, pp. 438-444
-
-
Beil, U.1
Crouse, J.R.2
Einarsson, K.3
Grundy, S.M.4
-
20
-
-
0023624926
-
Hypertriglyceridemia: A contraindication to the use of bile acid binding resins
-
Crouse 3rd, J. R. 1987. Hypertriglyceridemia: a contraindication to the use of bile acid binding resins. Am. J. Med. 83: 243-248.
-
(1987)
Am. J. Med.
, vol.83
, pp. 243-248
-
-
Crouse III, J.R.1
-
21
-
-
85047684249
-
Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype
-
DOI 10.1172/JCI200215387
-
Pullinger, C. R., C. Eng, G. Salen, S. Shefer, A. K. Batta, S. K. Erickson, A. Verhagen, C. R. Rivera, S. J. Mulvihill, M. J. Malloy, et al. 2002. Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J. Clin. Invest. 110: 109-117. (Pubitemid 34743471)
-
(2002)
Journal of Clinical Investigation
, vol.110
, Issue.1
, pp. 109-117
-
-
Pullinger, C.R.1
Eng, C.2
Salen, G.3
Shefer, S.4
Batta, A.K.5
Erickson, S.K.6
Verhagen, A.7
Rivera, C.R.8
Mulvihill, S.J.9
Malloy, M.J.10
Kane, J.P.11
-
22
-
-
18344394556
-
Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity
-
DOI 10.1210/en.143.5.1741
-
Tomlinson, E., L. Fu, L. John, B. Hultgren, X. Huang, M. Renz, J. P. Stephan, S. P. Tsai, L. Powell-Braxton, D. French, et al. 2002. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology. 143: 1741-1747. (Pubitemid 34415889)
-
(2002)
Endocrinology
, vol.143
, Issue.5
, pp. 1741-1747
-
-
Tomlinson, E.1
Fu, L.2
John, L.3
Hultgren, B.4
Huang, X.5
Renz, M.6
Stephan, J.P.7
Tsai, S.P.8
Powell-Braxton, L.9
French, D.10
Stewart, T.A.11
-
23
-
-
85047694456
-
Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c
-
DOI 10.1172/JCI200421025
-
Watanabe, M., S. M. Houten, L. Wang, A. Moschetta, D. J. Mangelsdorf, R. A. Heyman, D. D. Moore, and J. Auwerx. 2004. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Invest. 113: 1408-1418. (Pubitemid 39071696)
-
(2004)
Journal of Clinical Investigation
, vol.113
, Issue.10
, pp. 1408-1418
-
-
Watanabe, M.1
Houten, S.M.2
Wang, L.3
Moschetta, A.4
Mangelsdorf, D.J.5
Heyman, R.A.6
Moore, D.D.7
Auwerx, J.8
-
24
-
-
0030046526
-
Bile acids suppress the secretion of very-low-density lipoprotein by human hepatocytes in primary culture
-
DOI 10.1053/jhep.1996.v23.pm0008591844
-
Lin, Y., R. Havinga, H. J. Verkade, H. Moshage, M. J. Slooff, R. J. Vonk, and F. Kuipers. 1996. Bile acids suppress the secretion of very-low-density lipoprotein by human hepatocytes in primary culture. Hepatology. 23: 218-228. (Pubitemid 26045937)
-
(1996)
Hepatology
, vol.23
, Issue.2
, pp. 218-228
-
-
Lin, Y.1
Havinga, R.2
Verkade, H.J.3
Moshage, H.4
Slooff, M.J.H.5
Vonk, R.J.6
Kuipers, F.7
-
25
-
-
27844546989
-
Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis
-
Inagaki, T., M. Choi, A. Moschetta, L. Peng, C. L. Cummins, J. G. McDonald, G. Luo, S. A. Jones, B. Goodwin, J. A. Richardson, et al. 2005. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2: 217-225.
-
(2005)
Cell Metab.
, vol.2
, pp. 217-225
-
-
Inagaki, T.1
Choi, M.2
Moschetta, A.3
Peng, L.4
Cummins, C.L.5
McDonald, J.G.6
Luo, G.7
Jones, S.A.8
Goodwin, B.9
Richardson, J.A.10
-
27
-
-
61649127208
-
Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice
-
Xu, J., D. J. Lloyd, C. Hale, S. Stanislaus, M. Chen, G. Sivits, S. Vonderfecht, R. Hecht, Y. S. Li, R. A. Lindberg, et al. 2009. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes. 58: 250-259.
-
(2009)
Diabetes
, vol.58
, pp. 250-259
-
-
Xu, J.1
Lloyd, D.J.2
Hale, C.3
Stanislaus, S.4
Chen, M.5
Sivits, G.6
Vonderfecht, S.7
Hecht, R.8
Li, Y.S.9
Lindberg, R.A.10
-
28
-
-
83655165300
-
Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1
-
Wu, A. L., G. Kolumam, S. Stawicki, Y. Chen, J. Li, J. Zavala-Solorio, K. Phamluong, B. Feng, L. Li, S. Marsters, L. Kates, N. van Bruggen, M. Leabman, A. Wong, D. West, H. Stern, E. Luis, H. S. Kim, D. Yansura, A. S. Peterson, E. Filvaroff, Y. Wu, and J. Sonoda. 2011. Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Sci. Transl. Med. 3: 113ra126.
-
(2011)
Sci. Transl. Med.
, vol.3
-
-
Wu, A.L.1
Kolumam, G.2
Stawicki, S.3
Chen, Y.4
Li, J.5
Zavala-Solorio, J.6
Phamluong, K.7
Feng, B.8
Li, L.9
Marsters, S.10
Kates, L.11
Van Bruggen, N.12
Leabman, M.13
Wong, A.14
West, D.15
Stern, H.16
Luis, E.17
Kim, H.S.18
Yansura, D.19
Peterson, A.S.20
Filvaroff, E.21
Wu, Y.22
Sonoda, J.23
more..
-
29
-
-
84859752249
-
Fibroblast growth factor-21 (FGF21) regulates low-density lipoprotein receptor (LDLR) levels in cells via the E3-ubiquitin ligase Mylip/Idol and the Canopy2 (Cnpy2)/Mylip-interacting Saposin-like protein (Msap)
-
Thi, H. D., T. V. Tselykh, J. Makela, T. H. Huu, V. M. Olkkonen, B. C. Bornhauser, L. Korhonen, N. Zelcer, and D. Lindholm. 2012. Fibroblast growth factor-21 (FGF21) regulates low-density lipoprotein receptor (LDLR) levels in cells via the E3-ubiquitin ligase Mylip/Idol and the Canopy2 (Cnpy2)/Mylip-interacting Saposin-like protein (Msap). J. Biol. Chem. 287: 12602-12611.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 12602-12611
-
-
Thi, H.D.1
Tselykh, T.V.2
Makela, J.3
Huu, T.H.4
Olkkonen, V.M.5
Bornhauser, B.C.6
Korhonen, L.7
Zelcer, N.8
Lindholm, D.9
-
30
-
-
84863637593
-
FGF21 promotes metabolic homeostasis via white adipose and leptin in mice
-
Veniant, M. M., C. Hale, J. Helmering, M. M. Chen, S. Stanislaus, J. Busby, S. Vonderfecht, J. Xu, and D. J. Lloyd. 2012. FGF21 promotes metabolic homeostasis via white adipose and leptin in mice. PLoS ONE. 7: e40164.
-
(2012)
PLoS ONE
, vol.7
-
-
Veniant, M.M.1
Hale, C.2
Helmering, J.3
Chen, M.M.4
Stanislaus, S.5
Busby, J.6
Vonderfecht, S.7
Xu, J.8
Lloyd, D.J.9
|