-
1
-
-
20444435873
-
FGF-21 as a novel metabolic regulator
-
Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005;115:1627-1635. doi: 10.1172/JCI23606.
-
(2005)
J Clin Invest.
, vol.115
, pp. 1627-1635
-
-
Kharitonenkov, A.1
Shiyanova, T.L.2
Koester, A.3
Ford, A.M.4
Micanovic, R.5
Galbreath, E.J.6
Sandusky, G.E.7
Hammond, L.J.8
Moyers, J.S.9
Owens, R.A.10
Gromada, J.11
Brozinick, J.T.12
Hawkins, E.D.13
Wroblewski, V.J.14
Li, D.S.15
Mehrbod, F.16
Jaskunas, S.R.17
Shanafelt, A.B.18
-
2
-
-
34249711964
-
Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states
-
Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007;5:426-437. doi: 10.1016/j.cmet.2007.05.002.
-
(2007)
Cell Metab.
, vol.5
, pp. 426-437
-
-
Badman, M.K.1
Pissios, P.2
Kennedy, A.R.3
Koukos, G.4
Flier, J.S.5
Maratos-Flier, E.6
-
3
-
-
67649823642
-
FGF21 induces PGC-1a and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response
-
Potthoff MJ, Inagaki T, Satapati S, Ding X, He T, Goetz R, Mohammadi M, Finck BN, Mangelsdorf DJ, Kliewer SA, Burgess SC. FGF21 induces PGC-1a and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A. 2009;106:10853-10858. doi: 10.1073/pnas.0904187106.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 10853-10858
-
-
Potthoff, M.J.1
Inagaki, T.2
Satapati, S.3
Ding, X.4
He, T.5
Goetz, R.6
Mohammadi, M.7
Finck, B.N.8
Mangelsdorf, D.J.9
Kliewer, S.A.10
Burgess, S.C.11
-
4
-
-
57349098220
-
Fibroblast growth factor 21 corrects obesity in mice
-
Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE, Kharitonenkov A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008;149:6018-6027. doi: 10.1210/en.2008-0816.
-
(2008)
Endocrinology.
, vol.149
, pp. 6018-6027
-
-
Coskun, T.1
Bina, H.A.2
Schneider, M.A.3
Dunbar, J.D.4
Hu, C.C.5
Chen, Y.6
Moller, D.E.7
Kharitonenkov, A.8
-
5
-
-
33846418834
-
The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21
-
Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT, Hansen BC, Shanafelt AB, Etgen GJ. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology. 2007;148:774-781. doi: 10.1210/en.2006-1168.
-
(2007)
Endocrinology.
, vol.148
, pp. 774-781
-
-
Kharitonenkov, A.1
Wroblewski, V.J.2
Koester, A.3
Chen, Y.F.4
Clutinger, C.K.5
Tigno, X.T.6
Hansen, B.C.7
Shanafelt, A.B.8
Etgen, G.J.9
-
6
-
-
84859529243
-
Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3
-
Li H, Gao Z, Zhang J, Ye X, Xu A, Ye J, Jia W. Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3. Diabetes. 2012;61:797-806. doi: 10.2337/db11-0846.
-
(2012)
Diabetes.
, vol.61
, pp. 797-806
-
-
Li, H.1
Gao, Z.2
Zhang, J.3
Ye, X.4
Xu, A.5
Ye, J.6
Jia, W.7
-
7
-
-
0034333526
-
Molecular cloning and expression analyses of mouse βklotho, which encodes a novel Klotho family protein
-
Ito S, Kinoshita S, Shiraishi N, Nakagawa S, Sekine S, Fujimori T, Nabeshima YI. Molecular cloning and expression analyses of mouse βklotho, which encodes a novel Klotho family protein. Mech Dev. 2000;98:115-119.
-
(2000)
Mech Dev.
, vol.98
, pp. 115-119
-
-
Ito, S.1
Kinoshita, S.2
Shiraishi, N.3
Nakagawa, S.4
Sekine, S.5
Fujimori, T.6
Nabeshima, Y.I.7
-
9
-
-
80053409251
-
Growth hormone induces hepatic production of fibroblast growth factor 21 through a mechanism dependent on lipolysis in adipocytes
-
Chen W, Hoo RL, Konishi M, Itoh N, Lee PC, Ye HY, Lam KS, Xu A. Growth hormone induces hepatic production of fibroblast growth factor 21 through a mechanism dependent on lipolysis in adipocytes. J Biol Chem. 2011;286:34559-34566. doi: 10.1074/jbc.M111.285965.
-
(2011)
J Biol Chem.
, vol.286
, pp. 34559-34566
-
-
Chen, W.1
Hoo, R.L.2
Konishi, M.3
Itoh, N.4
Lee, P.C.5
Ye, H.Y.6
Lam, K.S.7
Xu, A.8
-
10
-
-
80052033268
-
FGF21 as an endocrine regulator in lipid metabolism: From molecular evolution to physiology and pathophysiology
-
Murata Y, Konishi M, Itoh N. FGF21 as an endocrine regulator in lipid metabolism: from molecular evolution to physiology and pathophysiology. J Nutr Metab. 2011;2011:981315. doi: 10.1155/2011/981315.
-
(2011)
J Nutr Metab.
, vol.2011
-
-
Murata, Y.1
Konishi, M.2
Itoh, N.3
-
11
-
-
84863012022
-
Fgf21 regulates pgc-1a and browning of white adipose tissues in adaptive ther-mogenesis
-
Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E, Spiegelman BM. Fgf21 regulates pgc-1a and browning of white adipose tissues in adaptive ther-mogenesis. Genes Dev. 2012;26:271-281.
-
(2012)
Genes Dev.
, vol.26
, pp. 271-281
-
-
Fisher, F.M.1
Kleiner, S.2
Douris, N.3
Fox, E.C.4
Mepani, R.J.5
Verdeguer, F.6
Wu, J.7
Kharitonenkov, A.8
Flier, J.S.9
Maratos-Flier, E.10
Spiegelman, B.M.11
-
12
-
-
84877260638
-
Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice
-
Lin Z, Tian H, Lam KS, Lin S, Hoo RC, Konishi M, Itoh N, Wang Y Bornstein SR, Xu A, Li X. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013;17:779-789. doi: 10.1016/j.cmet.2013.04.005.
-
(2013)
Cell Metab.
, vol.17
, pp. 779-789
-
-
Lin, Z.1
Tian, H.2
Lam, K.S.3
Lin, S.4
Hoo, R.C.5
Konishi, M.6
Itoh, N.7
Wang, Y.8
Bornstein, S.R.9
Xu, A.10
Li, X.11
-
13
-
-
84877272187
-
An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice
-
Holland WL, Adams AC, Brozinick JT, Bui HH, Miyauchi Y, Kusminski CM, Bauer SM, Wade M, Singhal E, Cheng CC, Volk K, Kuo MS, Gordillo R, Kharitonenkov A, Scherer PE. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 2013;17:790-797. doi: 10.1016/j.cmet.2013.03.019.
-
(2013)
Cell Metab.
, vol.17
, pp. 790-797
-
-
Holland, W.L.1
Adams, A.C.2
Brozinick, J.T.3
Bui, H.H.4
Miyauchi, Y.5
Kusminski, C.M.6
Bauer, S.M.7
Wade, M.8
Singhal, E.9
Cheng, C.C.10
Volk, K.11
Kuo, M.S.12
Gordillo, R.13
Kharitonenkov, A.14
Scherer, P.E.15
-
14
-
-
61649127208
-
Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice
-
Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, Vonderfecht S, Hecht R, Li YS, Lindberg RA, Chen JL, Jung DY, Zhang Z, Ko HJ, Kim JK, Véniant MM. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes. 2009;58:250-259. doi: 10.2337/db08-0392.
-
(2009)
Diabetes.
, vol.58
, pp. 250-259
-
-
Xu, J.1
Lloyd, D.J.2
Hale, C.3
Stanislaus, S.4
Chen, M.5
Sivits, G.6
Vonderfecht, S.7
Hecht, R.8
Li, Y.S.9
Lindberg, R.A.10
Chen, J.L.11
Jung, D.Y.12
Zhang, Z.13
Ko, H.J.14
Kim, J.K.15
Véniant, M.M.16
-
15
-
-
70350093621
-
Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice
-
Johnson CL, Weston JY, Chadi SA, Fazio EN, Huff MW, Kharitonenkov A, Köester A, Pin CL. Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice. Gastroenterology. 2009;137:1795-1804. doi: 10.1053/j.gastro.2009.07.064.
-
(2009)
Gastroenterology.
, vol.137
, pp. 1795-1804
-
-
Johnson, C.L.1
Weston, J.Y.2
Chadi, S.A.3
Fazio, E.N.4
Huff, M.W.5
Kharitonenkov, A.6
Köester, A.7
Pin, C.L.8
-
16
-
-
84879666287
-
Fibroblast growth factor 21 protects against cardiac hypertrophy in mice
-
Planavila A, Redondo I, Hondares E, Vinciguerra M, Munts C, Iglesias R, Gabrielli LA, Sitges M, Giralt M, van Bilsen M, Villarroya F Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat Commun. 2013;4:2019. doi: 10.1038/ncomms3019.
-
(2013)
Nat Commun.
, vol.4
, pp. 2019
-
-
Planavila, A.1
Redondo, I.2
Hondares, E.3
Vinciguerra, M.4
Munts, C.5
Iglesias, R.6
Gabrielli, L.A.7
Sitges, M.8
Giralt, M.9
Van Bilsen, M.10
Villarroya, F.11
-
17
-
-
69249093921
-
Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity
-
Berglund ED, Li CY, Bina HA, Lynes SE, Michael MD, Shanafelt AB, Kharitonenkov A, Wasserman DH. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology. 2009;150:4084-4093. doi: 10.1210/en.2009-0221.
-
(2009)
Endocrinology.
, vol.150
, pp. 4084-4093
-
-
Berglund, E.D.1
Li, C.Y.2
Bina, H.A.3
Lynes, S.E.4
Michael, M.D.5
Shanafelt, A.B.6
Kharitonenkov, A.7
Wasserman, D.H.8
-
18
-
-
33750587755
-
Fibroblast growth factor-21 improves pancreatic β-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways
-
Wente W, Efanov AM, Brenner M, Kharitonenkov A, Köster A, Sandusky GE, Sewing S, Treinies I, Zitzer H, Gromada J. Fibroblast growth factor-21 improves pancreatic β-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes. 2006;55:2470-2478. doi: 10.2337/db05-1435.
-
(2006)
Diabetes.
, vol.55
, pp. 2470-2478
-
-
Wente, W.1
Efanov, A.M.2
Brenner, M.3
Kharitonenkov, A.4
Köster, A.5
Sandusky, G.E.6
Sewing, S.7
Treinies, I.8
Zitzer, H.9
Gromada, J.10
-
19
-
-
78650850911
-
Serum levels of FGF-21 are increased in coronary heart disease patients and are independently associated with adverse lipid profile
-
Lin Z, Wu Z, Yin X, Liu Y, Yan X, Lin S, Xiao J, Wang X, Feng W, Li X. Serum levels of FGF-21 are increased in coronary heart disease patients and are independently associated with adverse lipid profile. PLoS One. 2010;5:e15534. doi: 10.1371/journal.pone.0015534.
-
(2010)
PLoS One.
, vol.5
-
-
Lin, Z.1
Wu, Z.2
Yin, X.3
Liu, Y.4
Yan, X.5
Lin, S.6
Xiao, J.7
Wang, X.8
Feng, W.9
Li, X.10
-
20
-
-
84885039863
-
Serum fibroblast growth factor-21 levels are associated with carotid atherosclerosis independent of established cardiovascular risk factors
-
Chow WS, Xu A, Woo YC, Tso AW, Cheung SC, Fong CH, Tse HF, Chau MT, Cheung BM, Lam KS. Serum fibroblast growth factor-21 levels are associated with carotid atherosclerosis independent of established cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2013;33:2454-2459. doi: 10.1161/ATVBAHA.113.301599.
-
(2013)
Arterioscler Thromb Vasc Biol.
, vol.33
, pp. 2454-2459
-
-
Chow, W.S.1
Xu, A.2
Woo, Y.C.3
Tso, A.W.4
Cheung, S.C.5
Fong, C.H.6
Tse, H.F.7
Chau, M.T.8
Cheung, B.M.9
Lam, K.S.10
-
21
-
-
84879187565
-
LY2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys
-
Adams AC, Halstead CA, Hansen BC, Irizarry AR, Martin JA, Myers SR, Reynolds VL, Smith HW, Wroblewski VJ, Kharitonenkov A. LY2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys. PLoS One. 2013;8:e65763. doi: 10.1371/journal.pone.0065763.
-
(2013)
PLoS One.
, vol.8
-
-
Adams, A.C.1
Halstead, C.A.2
Hansen, B.C.3
Irizarry, A.R.4
Martin, J.A.5
Myers, S.R.6
Reynolds, V.L.7
Smith, H.W.8
Wroblewski, V.J.9
Kharitonenkov, A.10
-
22
-
-
84865442538
-
Long-acting FGF21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys
-
Véniant MM, Komorowski R, Chen P, Stanislaus S, Winters K, Hager T, Zhou L, Wada R, Hecht R, Xu J. Long-acting FGF21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys. Endocrinology. 2012;153:4192-4203. doi: 10.1210/en.2012-1211.
-
(2012)
Endocrinology.
, vol.153
, pp. 4192-4203
-
-
Véniant, M.M.1
Komorowski, R.2
Chen, P.3
Stanislaus, S.4
Winters, K.5
Hager, T.6
Zhou, L.7
Wada, R.8
Hecht, R.9
Xu, J.10
-
23
-
-
17944365228
-
The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoat-rophy and obesity
-
Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoat-rophy and obesity. Nat Med. 2001;7:941-946. doi: 10.1038/90984.
-
(2001)
Nat Med.
, vol.7
, pp. 941-946
-
-
Yamauchi, T.1
Kamon, J.2
Waki, H.3
Terauchi, Y.4
Kubota, N.5
Hara, K.6
Mori, Y.7
Ide, T.8
Murakami, K.9
Tsuboyama-Kasaoka, N.10
Ezaki, O.11
Akanuma, Y.12
Gavrilova, O.13
Vinson, C.14
Reitman, M.L.15
Kagechika, H.16
Shudo, K.17
Yoda, M.18
Nakano, Y.19
Tobe, K.20
Nagai, R.21
Kimura, S.22
Tomita, M.23
Froguel, P.24
Kadowaki, T.25
more..
-
24
-
-
0037180472
-
Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice
-
Okamoto Y, Kihara S, Ouchi N, Nishida M, Arita Y, Kumada M, Ohashi K, Sakai N, Shimomura I, Kobayashi H, Terasaka N, Inaba T, Funahashi T, Matsuzawa Y. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2002;106:2767-2770.
-
(2002)
Circulation
, vol.106
, pp. 2767-2770
-
-
Okamoto, Y.1
Kihara, S.2
Ouchi, N.3
Nishida, M.4
Arita, Y.5
Kumada, M.6
Ohashi, K.7
Sakai, N.8
Shimomura, I.9
Kobayashi, H.10
Terasaka, N.11
Inaba, T.12
Funahashi, T.13
Matsuzawa, Y.14
-
25
-
-
0041302377
-
The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice
-
Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest. 2003;112:91-100. doi: 10.1172/JCI17797.
-
(2003)
J Clin Invest.
, vol.112
, pp. 91-100
-
-
Xu, A.1
Wang, Y.2
Keshaw, H.3
Xu, L.Y.4
Lam, K.S.5
Cooper, G.J.6
-
26
-
-
24044538551
-
Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner
-
Wang Y, Lam KS, Xu JY, Lu G, Xu LY, Cooper GJ, Xu A. Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. J Biol Chem. 2005;280:18341-18347. doi: 10.1074/jbc.M501149200.
-
(2005)
J Biol Chem.
, vol.280
, pp. 18341-18347
-
-
Wang, Y.1
Lam, K.S.2
Xu, J.Y.3
Lu, G.4
Xu, L.Y.5
Cooper, G.J.6
Xu, A.7
-
27
-
-
0035957040
-
Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages
-
Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, Ishigami M, Kuriyama H, Kishida K, Nishizawa H, Hotta K, Muraguchi M, Ohmoto Y, Yamashita S, Funahashi T, Matsuzawa Y. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation. 2001;103:1057-1063.
-
(2001)
Circulation
, vol.103
, pp. 1057-1063
-
-
Ouchi, N.1
Kihara, S.2
Arita, Y.3
Nishida, M.4
Matsuyama, A.5
Okamoto, Y.6
Ishigami, M.7
Kuriyama, H.8
Kishida, K.9
Nishizawa, H.10
Hotta, K.11
Muraguchi, M.12
Ohmoto, Y.13
Yamashita, S.14
Funahashi, T.15
Matsuzawa, Y.16
-
28
-
-
0036733630
-
Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol
-
Yu L, Li-Hawkins J, Hammer RE, Berge KE, Horton JD, Cohen JC, Hobbs HH. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest. 2002;110:671-680. doi: 10.1172/JCI16001.
-
(2002)
J Clin Invest.
, vol.110
, pp. 671-680
-
-
Yu, L.1
Li-Hawkins, J.2
Hammer, R.E.3
Berge, K.E.4
Horton, J.D.5
Cohen, J.C.6
Hobbs, H.H.7
-
29
-
-
0030941803
-
The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
-
Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89:331-340.
-
(1997)
Cell.
, vol.89
, pp. 331-340
-
-
Brown, M.S.1
Goldstein, J.L.2
-
30
-
-
84858796689
-
Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR
-
Calkin AC, Tontonoz P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol. 2012;13:213-224. doi: 10.1038/nrm3312.
-
(2012)
Nat Rev Mol Cell Biol.
, vol.13
, pp. 213-224
-
-
Calkin, A.C.1
Tontonoz, P.2
-
31
-
-
79960726293
-
Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo
-
Fisher FM, Estall JL, Adams AC, Antonellis PJ, Bina HA, Flier JS, Kharitonenkov A, Spiegelman BM, Maratos-Flier E. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology. 2011;152:2996-3004. doi: 10.1210/en.2011-0281.
-
(2011)
Endocrinology.
, vol.152
, pp. 2996-3004
-
-
Fisher, F.M.1
Estall, J.L.2
Adams, A.C.3
Antonellis, P.J.4
Bina, H.A.5
Flier, J.S.6
Kharitonenkov, A.7
Spiegelman, B.M.8
Maratos-Flier, E.9
-
32
-
-
84861324386
-
FGF21 is increased by inflammatory stimuli and protects leptin-deficient ob/ob mice from the toxicity of sepsis
-
Feingold KR, Grunfeld C, Heuer JG, Gupta A, Cramer M, Zhang T, Shigenaga JK, Patzek SM, Chan ZW, Moser A, Bina H, Kharitonenkov A. FGF21 is increased by inflammatory stimuli and protects leptin-deficient ob/ob mice from the toxicity of sepsis. Endocrinology. 2012;153:2689-2700. doi: 10.1210/en.2011-1496.
-
(2012)
Endocrinology.
, vol.153
, pp. 2689-2700
-
-
Feingold, K.R.1
Grunfeld, C.2
Heuer, J.G.3
Gupta, A.4
Cramer, M.5
Zhang, T.6
Shigenaga, J.K.7
Patzek, S.M.8
Chan, Z.W.9
Moser, A.10
Bina, H.11
Kharitonenkov, A.12
-
33
-
-
84906487180
-
Fibroblast growth factor 21 protects against acetaminophen-induced hepatotoxicity by potentiating peroxisome proliferator-activated receptor coactivator protein-1α-mediated antioxidant capacity in mice
-
Ye D, Wang Y, Li H, Jia W, Man K, Lo CM, Wang Y, Lam KS, Xu A. Fibroblast growth factor 21 protects against acetaminophen-induced hepatotoxicity by potentiating peroxisome proliferator-activated receptor coactivator protein-1α-mediated antioxidant capacity in mice. Hepatology. 2014;60:977-989.
-
(2014)
Hepatology.
, vol.60
, pp. 977-989
-
-
Ye, D.1
Wang, Y.2
Li, H.3
Jia, W.4
Man, K.5
Lo, C.M.6
Wang, Y.7
Lam, K.S.8
Xu, A.9
-
34
-
-
0037180771
-
Inflammation in atherosclerosis
-
Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868-874. doi: 10.1038/nature01323.
-
(2002)
Nature.
, vol.420
, pp. 868-874
-
-
Libby, P.1
-
35
-
-
81855177709
-
Adiponectin and cardiovascular health: An update
-
Hui X, Lam KS, Vanhoutte PM, Xu A. Adiponectin and cardiovascular health: an update. Br J Pharmacol. 2012;165:574-590. doi: 10.1111/j.1476-5381.2011.01395.x.
-
(2012)
Br J Pharmacol.
, vol.165
, pp. 574-590
-
-
Hui, X.1
Lam, K.S.2
Vanhoutte, P.M.3
Xu, A.4
-
36
-
-
26644444077
-
Hypoadiponectinemia implies the development of atherosclerosis in carotid and coronary arteries [in Japanese]
-
Shioji K, Moriguchi A, Moriwaki S, Manabe K, Takeuchi Y, Uegaito T, Mutsuo S, Matsuda M. Hypoadiponectinemia implies the development of atherosclerosis in carotid and coronary arteries [in Japanese]. J Cardiol. 2005;46:105-112.
-
(2005)
J Cardiol.
, vol.46
, pp. 105-112
-
-
Shioji, K.1
Moriguchi, A.2
Moriwaki, S.3
Manabe, K.4
Takeuchi, Y.5
Uegaito, T.6
Mutsuo, S.7
Matsuda, M.8
-
37
-
-
34247340195
-
Local adiponectin treatment reduces atherosclerotic plaque size in rabbits
-
Li CJ, Sun HW, Zhu FL, Chen L, Rong YY, Zhang Y, Zhang M. Local adiponectin treatment reduces atherosclerotic plaque size in rabbits. J Endocrinol. 2007;193:137-145. doi: 10.1677/JOE-06-0173.
-
(2007)
J Endocrinol.
, vol.193
, pp. 137-145
-
-
Li, C.J.1
Sun, H.W.2
Zhu, F.L.3
Chen, L.4
Rong, Y.Y.5
Zhang, Y.6
Zhang, M.7
-
38
-
-
84883481988
-
The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes
-
Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, Kharitonenkov A, Bumol T, Schilske HK, Moller DE. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013;18:333-340. doi: 10.1016/j.cmet.2013.08.005.
-
(2013)
Cell Metab.
, vol.18
, pp. 333-340
-
-
Gaich, G.1
Chien, J.Y.2
Fu, H.3
Glass, L.C.4
Deeg, M.A.5
Holland, W.L.6
Kharitonenkov, A.7
Bumol, T.8
Schilske, H.K.9
Moller, D.E.10
-
39
-
-
0030907175
-
Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells
-
Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest. 1997;99:846-854. doi: 10.1172/JCI119248.
-
(1997)
J Clin Invest.
, vol.99
, pp. 846-854
-
-
Shimano, H.1
Horton, J.D.2
Shimomura, I.3
Hammer, R.E.4
Brown, M.S.5
Goldstein, J.L.6
-
40
-
-
0032104180
-
Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2
-
Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest. 1998;101:2331-2339. doi: 10.1172/JCI2961.
-
(1998)
J Clin Invest.
, vol.101
, pp. 2331-2339
-
-
Horton, J.D.1
Shimomura, I.2
Brown, M.S.3
Hammer, R.E.4
Goldstein, J.L.5
Shimano, H.6
-
41
-
-
0032568557
-
Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice
-
Horton JD, Bashmakov Y, Shimomura I, Shimano H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc Natl Acad Sci U S A. 1998;95:5987-5992.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 5987-5992
-
-
Horton, J.D.1
Bashmakov, Y.2
Shimomura, I.3
Shimano, H.4
-
42
-
-
0035907298
-
Regulation of sterol regulatory element-binding proteins in hamster intestine by changes in cholesterol flux
-
Field FJ, Born E, Murthy S, Mathur SN. Regulation of sterol regulatory element-binding proteins in hamster intestine by changes in cholesterol flux. J Biol Chem. 2001;276:17576-17583. doi: 10.1074/jbc.M010917200.
-
(2001)
J Biol Chem.
, vol.276
, pp. 17576-17583
-
-
Field, F.J.1
Born, E.2
Murthy, S.3
Mathur, S.N.4
-
43
-
-
84884134120
-
Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6
-
Tao R, Xiong X, DePinho RA, Deng CX, Dong XC. Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6. J Lipid Res. 2013;54:2745-2753. doi: 10.1194/jlr.M039339.
-
(2013)
J Lipid Res.
, vol.54
, pp. 2745-2753
-
-
Tao, R.1
Xiong, X.2
DePinho, R.A.3
Deng, C.X.4
Dong, X.C.5
-
44
-
-
84904399681
-
Exendin-4 regulates lipid metabolism and fibroblast growth factor 21 in hepatic steatosis
-
Lee J, Hong SW, Park SE, Rhee EJ, Park CY, Oh KW, Park SW, Lee WY. Exendin-4 regulates lipid metabolism and fibroblast growth factor 21 in hepatic steatosis. Metabolism. 2014;63:1041-1048. doi: 10.1016/j.metabol.2014.04.011.
-
(2014)
Metabolism.
, vol.63
, pp. 1041-1048
-
-
Lee, J.1
Hong, S.W.2
Park, S.E.3
Rhee, E.J.4
Park, C.Y.5
Oh, K.W.6
Park, S.W.7
Lee, W.Y.8
|