메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Constructing and Validating High-Performance MIEC-SVM Models in Virtual Screening for Kinases: A Better Way for Actives Discovery

Author keywords

[No Author keywords available]

Indexed keywords

ENZYME INHIBITOR; PHOSPHOTRANSFERASE;

EID: 84964225053     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep24817     Document Type: Article
Times cited : (64)

References (68)
  • 1
    • 1642350394 scopus 로고    scopus 로고
    • Recent development and application of virtual screening in drug discovery: An overview
    • Hou, T. & Xu, X. Recent development and application of virtual screening in drug discovery: an overview. Curr. Pharm. Des. 10, 1011-1033 (2004).
    • (2004) Curr. Pharm. des , vol.10 , pp. 1011-1033
    • Hou, T.1    Xu, X.2
  • 2
    • 84911479371 scopus 로고    scopus 로고
    • Discovery and characterization of small molecules that target the GTPase Ral
    • Yan, C. et al. Discovery and characterization of small molecules that target the GTPase Ral. Nature 515, 443-447 (2014).
    • (2014) Nature , vol.515 , pp. 443-447
    • Yan, C.1
  • 3
    • 61649109015 scopus 로고    scopus 로고
    • The influence of lead discovery strategies on the properties of drug candidates
    • Keserü, G. M. & Makara, G. M. The influence of lead discovery strategies on the properties of drug candidates. Nat. Rev. Drug Discov. 8, 203-212 (2009).
    • (2009) Nat. Rev. Drug Discov , vol.8 , pp. 203-212
    • Keserü, G.M.1    Makara, G.M.2
  • 4
    • 0036835460 scopus 로고    scopus 로고
    • Integration of virtual and high-throughput screening
    • Bajorath, J. Integration of virtual and high-throughput screening. Nat. Rev. Drug. Discov. 1, 882-894 (2002).
    • (2002) Nat. Rev. Drug. Discov , vol.1 , pp. 882-894
    • Bajorath, J.1
  • 5
    • 33745199815 scopus 로고    scopus 로고
    • Virtual ligand screening: Strategies, perspectives and limitations
    • Klebe, G. Virtual ligand screening: strategies, perspectives and limitations. Drug Discov. Today 11, 580-594 (2006).
    • (2006) Drug Discov. Today , vol.11 , pp. 580-594
    • Klebe, G.1
  • 6
    • 84887042090 scopus 로고    scopus 로고
    • Development and evaluation of an integrated virtual screening strategy by combining molecular docking and pharmacophore searching based on multiple protein structures
    • Tian, S. et al. Development and evaluation of an integrated virtual screening strategy by combining molecular docking and pharmacophore searching based on multiple protein structures. J. Chem. Inf. Model. 53, 2743-2756 (2013).
    • (2013) J. Chem. Inf. Model , vol.53 , pp. 2743-2756
    • Tian, S.1
  • 7
    • 84923786336 scopus 로고    scopus 로고
    • Identifying Novel Selective Non-Nucleoside DNA Methyltransferase 1 Inhibitors through Docking-Based Virtual Screening
    • Chen, S. et al. Identifying Novel Selective Non-Nucleoside DNA Methyltransferase 1 Inhibitors through Docking-Based Virtual Screening. J. Med. Chem. 57, 9028-9041 (2014).
    • (2014) J. Med. Chem , vol.57 , pp. 9028-9041
    • Chen, S.1
  • 8
    • 84900340562 scopus 로고    scopus 로고
    • Discovery of novel inhibitors targeting the macrophage migration inhibitory factor via structure-based virtual screening and bioassays
    • Xu, L. et al. Discovery of novel inhibitors targeting the macrophage migration inhibitory factor via structure-based virtual screening and bioassays. J. Med. Chem. 57, 3737-3745 (2014).
    • (2014) J. Med. Chem , vol.57 , pp. 3737-3745
    • Xu, L.1
  • 9
    • 84964314457 scopus 로고    scopus 로고
    • Virtual screening and optimization of Type II inhibitors of JAK2 from a natural product library
    • Ma, D.-L. et al. Virtual screening and optimization of Type II inhibitors of JAK2 from a natural product library. Chem. Commun. 50, 13885-13888 (2014).
    • (2014) Chem. Commun , vol.50 , pp. 13885-13888
    • Ma, D.-L.1
  • 10
    • 84877779750 scopus 로고    scopus 로고
    • Discovery of Rho-kinase inhibitors by docking-based virtual screening
    • Shen, M. et al. Discovery of Rho-kinase inhibitors by docking-based virtual screening. Mol. Biosyst. 9, 1511-1521 (2013).
    • (2013) Mol. Biosyst , vol.9 , pp. 1511-1521
    • Shen, M.1
  • 11
    • 84862018461 scopus 로고    scopus 로고
    • Application of support vector machine to three-dimensional shape-based virtual screening using comprehensive threedimensional molecular shape overlay with known inhibitors
    • Sato, T. et al. Application of support vector machine to three-dimensional shape-based virtual screening using comprehensive threedimensional molecular shape overlay with known inhibitors. J. Chem. Inf. Model. 52, 1015-1026 (2012).
    • (2012) J. Chem. Inf. Model , vol.52 , pp. 1015-1026
    • Sato, T.1
  • 12
    • 70350512845 scopus 로고    scopus 로고
    • Do biologically relevant compounds have more chance to be drugs? J
    • Kong, D.-X. et al. Do biologically relevant compounds have more chance to be drugs? J. Chem. Inf. Model. 49, 2376-2381 (2009).
    • (2009) Chem. Inf. Model , vol.49 , pp. 2376-2381
    • Kong, D.-X.1
  • 13
    • 84888631018 scopus 로고    scopus 로고
    • Exploring the biologically relevant chemical space for drug discovery
    • Deng, Z.-L. et al. Exploring the biologically relevant chemical space for drug discovery. J. Chem. Inf. Model. 53, 2820-2828 (2013).
    • (2013) J. Chem. Inf. Model , vol.53 , pp. 2820-2828
    • Deng, Z.-L.1
  • 14
    • 84908257532 scopus 로고    scopus 로고
    • Assessing an ensemble docking-based virtual screening strategy for kinase targets by considering protein flexibility
    • Tian, S. et al. Assessing an ensemble docking-based virtual screening strategy for kinase targets by considering protein flexibility. J. Chem. Inf. Model. 54, 2664-2679 (2014).
    • (2014) J. Chem. Inf. Model , vol.54 , pp. 2664-2679
    • Tian, S.1
  • 15
    • 39049111013 scopus 로고    scopus 로고
    • Characterization of domain-peptide interaction interface: A case study on the amphiphysin-1 SH3 domain
    • Hou, T. et al. Characterization of domain-peptide interaction interface: a case study on the amphiphysin-1 SH3 domain. J. Mol. Biol. 376, 1201-1214 (2008).
    • (2008) J. Mol. Biol , vol.376 , pp. 1201-1214
    • Hou, T.1
  • 16
    • 66149146342 scopus 로고    scopus 로고
    • Characterization of Domain-Peptide Interaction Interface A Generic Structure-based Model to Decipher the Binding Specificity of SH3 Domains
    • Hou, T. et al. Characterization of Domain-Peptide Interaction Interface A Generic Structure-based Model to Decipher the Binding Specificity of SH3 Domains. Mol. Cell Proteomics. 8, 639-649 (2009).
    • (2009) Mol. Cell Proteomics , vol.8 , pp. 639-649
    • Hou, T.1
  • 17
    • 84862908730 scopus 로고    scopus 로고
    • Proteome-wide detection of Abl1 SH3-binding peptides by integrating computational prediction and peptide microarray
    • Xu, Z. et al. Proteome-wide detection of Abl1 SH3-binding peptides by integrating computational prediction and peptide microarray. Mol. Cell Proteomics. 11, O111. 010389 (2012).
    • (2012) Mol. Cell Proteomics , vol.11
    • Xu, Z.1
  • 18
    • 84873041650 scopus 로고    scopus 로고
    • Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening
    • Ding, B. et al. Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening. J. Chem. Inf. Model. 53, 114-122 (2013).
    • (2013) J. Chem. Inf. Model , vol.53 , pp. 114-122
    • Ding, B.1
  • 19
    • 84878176071 scopus 로고    scopus 로고
    • Characterizing Binding of Small Molecules. II. Evaluating the Potency of Small Molecules to Combat Resistance Based on Docking Structures
    • Ding, B. et al. Characterizing Binding of Small Molecules. II. Evaluating the Potency of Small Molecules to Combat Resistance Based on Docking Structures. J. Chem. Inf. Model. 53, 1213-1222 (2013).
    • (2013) J. Chem. Inf. Model , vol.53 , pp. 1213-1222
    • Ding, B.1
  • 20
    • 33846457931 scopus 로고    scopus 로고
    • Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia
    • Cowan-Jacob, S. W. et al. Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. Acta Crystallogr. D Biol. Crystallogr. 63, 80-93 (2006).
    • (2006) Acta Crystallogr. D Biol. Crystallogr , vol.63 , pp. 80-93
    • Cowan-Jacob, S.W.1
  • 21
    • 77956691818 scopus 로고    scopus 로고
    • Crystal structure of the ALK (anaplastic lymphoma kinase) catalytic domain
    • Lee, C. et al. Crystal structure of the ALK (anaplastic lymphoma kinase) catalytic domain. Biochem. J. 430, 425-437 (2010).
    • (2010) Biochem. J , vol.430 , pp. 425-437
    • Lee, C.1
  • 22
    • 70350061746 scopus 로고    scopus 로고
    • Selective inhibitors of the mutant B-Raf pathway: Discovery of a potent and orally bioavailable aminoisoquinoline
    • Smith, A. L. et al. Selective inhibitors of the mutant B-Raf pathway: discovery of a potent and orally bioavailable aminoisoquinoline. J. Med. Chem. 52, 6189-6192 (2009).
    • (2009) J. Med. Chem , vol.52 , pp. 6189-6192
    • Smith, A.L.1
  • 23
    • 33846108633 scopus 로고    scopus 로고
    • BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities
    • Liu, T. et al. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 35, D198-D201 (2007).
    • (2007) Nucleic Acids Res , vol.35 , pp. D198-D201
    • Liu, T.1
  • 24
    • 84864264343 scopus 로고    scopus 로고
    • Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking
    • Mysinger, M. M. et al. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem. 55, 6582-6594 (2012).
    • (2012) J. Med. Chem , vol.55 , pp. 6582-6594
    • Mysinger, M.M.1
  • 25
    • 84938151793 scopus 로고    scopus 로고
    • Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives
    • Lagarde, N. et al. Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives. J. Chem. Inf. Model. 55, 1297-1307 (2015).
    • (2015) J. Chem. Inf. Model , vol.55 , pp. 1297-1307
    • Lagarde, N.1
  • 26
    • 70349932423 scopus 로고    scopus 로고
    • AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility
    • Morris, G. M. et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785-2791 (2009).
    • (2009) J. Comput. Chem , vol.30 , pp. 2785-2791
    • Morris, G.M.1
  • 27
    • 11644261806 scopus 로고    scopus 로고
    • Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function
    • Morris, G. M. et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639-1662 (1998).
    • (1998) J. Comput. Chem , vol.19 , pp. 1639-1662
    • Morris, G.M.1
  • 28
    • 84896534505 scopus 로고    scopus 로고
    • Structural and energetic analyses of SNPs in drug targets and implications for drug therapy
    • Sun, H.-Y. et al. Structural and energetic analyses of SNPs in drug targets and implications for drug therapy. J. Chem. Inf. Model. 53, 3343-3351 (2013).
    • (2013) J. Chem. Inf. Model , vol.53 , pp. 3343-3351
    • Sun, H.-Y.1
  • 29
    • 84918815113 scopus 로고    scopus 로고
    • Finding chemical drugs for genetic diseases
    • Sun, H.-Y. et al. Finding chemical drugs for genetic diseases. Drug Discov. Today 19, 1836-1840 (2014).
    • (2014) Drug Discov. Today , vol.19 , pp. 1836-1840
    • Sun, H.-Y.1
  • 30
    • 84873047397 scopus 로고    scopus 로고
    • How to improve docking accuracy of AutoDock4.2: A case study using different electrostatic potentials
    • Hou, X. et al. How to improve docking accuracy of AutoDock4.2: A case study using different electrostatic potentials. J. Chem. Inf. Model. 53, 188-200 (2013).
    • (2013) J. Chem. Inf. Model , vol.53 , pp. 188-200
    • Hou, X.1
  • 31
    • 79960258119 scopus 로고    scopus 로고
    • Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values
    • Søndergaard, C. R. et al. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J. Chem. Theory Comput. 7, 2284-2295 (2011).
    • (2011) J. Chem. Theory Comput , vol.7 , pp. 2284-2295
    • Søndergaard, C.R.1
  • 32
    • 49149147973 scopus 로고
    • Iterative partial equalization of orbital electronegativity - A rapid access to atomic charges
    • Gasteiger, J. & Marsili, M. Iterative partial equalization of orbital electronegativity - a rapid access to atomic charges. Tetrahedron 36, 3219-3228 (1980).
    • (1980) Tetrahedron , vol.36 , pp. 3219-3228
    • Gasteiger, J.1    Marsili, M.2
  • 33
    • 33748538349 scopus 로고    scopus 로고
    • Automatic atom type and bond type perception in molecular mechanical calculations
    • Wang, J. et al. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247-260 (2006).
    • (2006) J. Mol. Graph. Model , vol.25 , pp. 247-260
    • Wang, J.1
  • 34
    • 84862614975 scopus 로고    scopus 로고
    • University of California, San Francisco
    • Case, D. et al. AMBER 12. University of California, San Francisco (2012).
    • (2012) AMBER 12
    • Case, D.1
  • 35
    • 0036890178 scopus 로고    scopus 로고
    • Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation
    • Jakalian, A. et al. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 23, 1623-1641 (2002).
    • (2002) J. Comput. Chem , vol.23 , pp. 1623-1641
    • Jakalian, A.1
  • 36
    • 84880541805 scopus 로고    scopus 로고
    • Assessing the Performance of MM/PBSA and MM/GBSA Methods. 3. The Impact of Force Fields and Ligand Charge Models
    • Xu, L. et al. Assessing the Performance of MM/PBSA and MM/GBSA Methods. 3. The Impact of Force Fields and Ligand Charge Models. J. Phys. Chem. B. 117, 8408-8421 (2013).
    • (2013) J. Phys. Chem. B , vol.117 , pp. 8408-8421
    • Xu, L.1
  • 37
    • 77349088235 scopus 로고    scopus 로고
    • A comparison of different electrostatic potentials on prediction accuracy in CoMFA and CoMSIA studies
    • Tsai, K.-C. et al. A comparison of different electrostatic potentials on prediction accuracy in CoMFA and CoMSIA studies. Eur. J. Med. Chem. 45, 1544-1551 (2010).
    • (2010) Eur. J. Med. Chem , vol.45 , pp. 1544-1551
    • Tsai, K.-C.1
  • 38
    • 33846823909 scopus 로고
    • Particle mesh Ewald: An N log(N) method for Ewald sums in large systems
    • Darden, T. et al. Particle mesh Ewald: An N log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089-10092 (1993).
    • (1993) J. Chem. Phys , vol.98 , pp. 10089-10092
    • Darden, T.1
  • 39
    • 0001398008 scopus 로고    scopus 로고
    • How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J
    • Wang, J. et al. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21, 1049-1074 (2000).
    • (2000) Comput. Chem , vol.21 , pp. 1049-1074
    • Wang, J.1
  • 40
    • 2942532422 scopus 로고    scopus 로고
    • Development and testing of a general amber force field
    • Wang, J. et al. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157-1174 (2004).
    • (2004) J. Comput. Chem , vol.25 , pp. 1157-1174
    • Wang, J.1
  • 41
    • 0004016501 scopus 로고
    • Comparison of simple potential functions for simulating liquid water
    • Jorgensen, W. L. et al. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926-935 (1983).
    • (1983) J. Chem. Phys , vol.79 , pp. 926-935
    • Jorgensen, W.L.1
  • 42
    • 84860635411 scopus 로고    scopus 로고
    • Characterization of domain-peptide interaction interface: Prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models
    • Hou, T. et al. Characterization of domain-peptide interaction interface: prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models. J. Proteome Res. 11, 2982-2995 (2012).
    • (2012) J. Proteome Res , vol.11 , pp. 2982-2995
    • Hou, T.1
  • 43
    • 80053956528 scopus 로고    scopus 로고
    • Characterization of PDZ domain-peptide interaction interface based on energetic patterns
    • Li, N. et al. Characterization of PDZ domain-peptide interaction interface based on energetic patterns. Proteins: Struct., Funct., Bioinf. 79, 3208-3220 (2011).
    • (2011) Proteins: Struct., Funct., Bioinf , vol.79 , pp. 3208-3220
    • Li, N.1
  • 44
    • 1842479952 scopus 로고    scopus 로고
    • Exploring protein native states and large-scale conformational changes with a modified generalized born model
    • Onufriev, A. et al. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins: Struct., Funct., Bioinf. 55, 383-394 (2004).
    • (2004) Proteins: Struct., Funct., Bioinf , vol.55 , pp. 383-394
    • Onufriev, A.1
  • 45
    • 0043245780 scopus 로고    scopus 로고
    • Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes
    • Gohlke, H. et al. Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J. Mol. Biol. 330, 891-914 (2003).
    • (2003) J. Mol. Biol , vol.330 , pp. 891-914
    • Gohlke, H.1
  • 46
    • 84904438047 scopus 로고    scopus 로고
    • Assessing the Performance of MM/PBSA and MM/GBSA Methods. 4. Accuracies of MM/PBSA and MM/GBSA Methodologies Evaluated by Various Simulation Protocols using PDBbind Data Set
    • Sun, H. et al. Assessing the Performance of MM/PBSA and MM/GBSA Methods. 4. Accuracies of MM/PBSA and MM/GBSA Methodologies Evaluated by Various Simulation Protocols using PDBbind Data Set. Phys. Chem. Chem. Phys. 16, 16719-16729 (2014).
    • (2014) Phys. Chem. Chem. Phys , vol.16 , pp. 16719-16729
    • Sun, H.1
  • 47
    • 84907893510 scopus 로고    scopus 로고
    • Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring
    • Sun, H. et al. Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys. Chem. Chem. Phys. 16, 22035-22045 (2014).
    • (2014) Phys. Chem. Chem. Phys , vol.16 , pp. 22035-22045
    • Sun, H.1
  • 48
    • 84868699636 scopus 로고    scopus 로고
    • Application of a post-docking procedure based on MM-PBSA and MM-GBSA on single and multiple protein conformations
    • Sgobba, M. et al. Application of a post-docking procedure based on MM-PBSA and MM-GBSA on single and multiple protein conformations. Eur. J. Med. Chem. 58, 431-440 (2012).
    • (2012) Eur. J. Med. Chem , vol.58 , pp. 431-440
    • Sgobba, M.1
  • 49
    • 84893388298 scopus 로고    scopus 로고
    • Towards fully automated high performance computing drug discovery: A massively parallel virtual screening pipeline for docking and MM/GBSA rescoring to improve enrichment
    • Zhang, X. et al. Towards fully automated high performance computing drug discovery: A massively parallel virtual screening pipeline for docking and MM/GBSA rescoring to improve enrichment. J. Chem. Inf. Model. 54, 324-337 (2013).
    • (2013) J. Chem. Inf. Model , vol.54 , pp. 324-337
    • Zhang, X.1
  • 51
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C. & Vapnik, V. Support-vector networks. Machine learning 20, 273-297 (1995).
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 52
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Chang, C.-C. & Lin, C.-J. LIBSVM: a library for support vector machines. ACM T. Intel. Syst. Tec. 2, 1-27 (2001).
    • (2001) ACM T. Intel. Syst. Tec , vol.2 , pp. 1-27
    • Chang, C.-C.1    Lin, C.-J.2
  • 53
    • 33947600314 scopus 로고    scopus 로고
    • Support vector machines approach for predicting druggable proteins: Recent progress in its exploration and investigation of its usefulness
    • Han, L. Y. et al. Support vector machines approach for predicting druggable proteins: recent progress in its exploration and investigation of its usefulness. Drug Discov. Today 12, 304-313 (2007).
    • (2007) Drug Discov. Today , vol.12 , pp. 304-313
    • Han, L.Y.1
  • 54
    • 84899804542 scopus 로고    scopus 로고
    • In silico prediction of chemical acute oral toxicity using multi-classification methods
    • Li, X. et al. In silico prediction of chemical acute oral toxicity using multi-classification methods. J. Chem. Inf. Model. 54, 1061-1069 (2014).
    • (2014) J. Chem. Inf. Model , vol.54 , pp. 1061-1069
    • Li, X.1
  • 55
    • 61449101624 scopus 로고    scopus 로고
    • Predicting drug resistance of the HIV-1 protease using molecular interaction energy components
    • Hou, T. et al. Predicting drug resistance of the HIV-1 protease using molecular interaction energy components. Proteins: Struct., Funct., Bioinf. 74, 837-846 (2009).
    • (2009) Proteins: Struct., Funct., Bioinf , vol.74 , pp. 837-846
    • Hou, T.1
  • 56
    • 84896504827 scopus 로고    scopus 로고
    • Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods
    • Zang, Q. et al. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods. J. Chem. Inf. Model. 53, 3244-3261 (2013).
    • (2013) J. Chem. Inf. Model , vol.53 , pp. 3244-3261
    • Zang, Q.1
  • 57
    • 0002606755 scopus 로고    scopus 로고
    • Virtual screening-an overview
    • Walters, W. P. et al. Virtual screening-an overview. Drug Discov.Today. 3, 160-178 (1998).
    • (1998) Drug Discov.Today , vol.3 , pp. 160-178
    • Walters, W.P.1
  • 58
    • 84870177359 scopus 로고    scopus 로고
    • Drug-likeness analysis of traditional Chinese medicines: Prediction of drug-likeness using machine learning approaches
    • Tian, S. et al. Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches. Mol. Pharm. 9, 2875-2886 (2012).
    • (2012) Mol. Pharm , vol.9 , pp. 2875-2886
    • Tian, S.1
  • 59
    • 75849153303 scopus 로고    scopus 로고
    • The universal protein resource (UniProt) in 2010
    • Apweiler, R. et al. The universal protein resource (UniProt) in 2010. Nucleic Acids. Res. 38, 142-148 (2010).
    • (2010) Nucleic Acids. Res , vol.38 , pp. 142-148
    • Apweiler, R.1
  • 60
    • 84923362888 scopus 로고    scopus 로고
    • Importance of protein flexibility in ranking inhibitor affinities: Modeling the binding mechanisms of piperidine carboxamides as Type I1/2 ALK inhibitors
    • Kong, X. et al. Importance of protein flexibility in ranking inhibitor affinities: modeling the binding mechanisms of piperidine carboxamides as Type I1/2 ALK inhibitors. Phys. Chem. Chem. Phys. 17, 6098-6113 (2015).
    • (2015) Phys. Chem. Chem. Phys , vol.17 , pp. 6098-6113
    • Kong, X.1
  • 61
    • 84947059490 scopus 로고    scopus 로고
    • Discovery of Novel ROCK1 Inhibitors via Integrated Virtual Screening Strategy and Bioassays
    • Shen, M. et al. Discovery of Novel ROCK1 Inhibitors via Integrated Virtual Screening Strategy and Bioassays. Sci. Rep. 5 (2015).
    • (2015) Sci. Rep , vol.5
    • Shen, M.1
  • 62
    • 84957939855 scopus 로고    scopus 로고
    • Directly-binding rather than Induced-fit dominated binding affinity difference in (S) and (R)-crizotinib bound MTH1
    • Sun, H. et al. Directly-binding rather than Induced-fit dominated binding affinity difference in (S) and (R)-crizotinib bound MTH1. J. Chem. Theory Comput. 12, 851-860 (2016).
    • (2016) J. Chem. Theory Comput , vol.12 , pp. 851-860
    • Sun, H.1
  • 63
    • 84885131303 scopus 로고    scopus 로고
    • Computational Analysis of the Binding Specificity of Gleevec to Abl, c-Kit, Lck, and c-Src Tyrosine Kinases
    • Lin, Y.-L. & Roux, B. Computational Analysis of the Binding Specificity of Gleevec to Abl, c-Kit, Lck, and c-Src Tyrosine Kinases. J. Am. Chem. Soc. 135, 14741-14753 (2013).
    • (2013) J. Am. Chem. Soc , vol.135 , pp. 14741-14753
    • Lin, Y.-L.1    Roux, B.2
  • 64
    • 84954097335 scopus 로고    scopus 로고
    • Molecular principle of the cyclin-dependent kinase selectivity of 4-(thiazol-5-yl)-2-(phenylamino) pyrimidine-5- carbonitrile derivatives revealed by molecular modeling studies
    • Kong, X. et al. Molecular principle of the cyclin-dependent kinase selectivity of 4-(thiazol-5-yl)-2-(phenylamino) pyrimidine-5- carbonitrile derivatives revealed by molecular modeling studies. Phys. Chem. Chem. Phys. 18, 2034-2046 (2016).
    • (2016) Phys. Chem. Chem. Phys , vol.18 , pp. 2034-2046
    • Kong, X.1
  • 65
    • 84884570151 scopus 로고    scopus 로고
    • Insight into Crizotinib Resistance Mechanisms Caused by Three Mutations in ALK Tyrosine Kinase using Free Energy Calculation Approaches
    • Sun, H. et al. Insight into Crizotinib Resistance Mechanisms Caused by Three Mutations in ALK Tyrosine Kinase using Free Energy Calculation Approaches. J. Chem. Inf. Model. 53, 2376-2389 (2013).
    • (2013) J. Chem. Inf. Model , vol.53 , pp. 2376-2389
    • Sun, H.1
  • 66
    • 84905503390 scopus 로고    scopus 로고
    • P-loop conformation governed crizotinib resistance in G2032R-mutated ROS1 tyrosine kinase: Clues from free energy landscape
    • Sun, H. et al. P-loop conformation governed crizotinib resistance in G2032R-mutated ROS1 tyrosine kinase: clues from free energy landscape. PLoS Comput. Biol. 10, e1003729 (2014).
    • (2014) PLoS Comput. Biol , vol.10
    • Sun, H.1
  • 67
    • 84862882308 scopus 로고    scopus 로고
    • A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK
    • Sun, H. Y. & Ji, F. Q. A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK. Biochem. Biophys. Res. Commun. 423, 319-324 (2012).
    • (2012) Biochem. Biophys. Res. Commun , vol.423 , pp. 319-324
    • Sun, H.Y.1    Ji, F.Q.2
  • 68
    • 84901740666 scopus 로고    scopus 로고
    • ADMET evaluation in drug discovery. 13. Development of in silico prediction models for p-glycoprotein substrates
    • Li, D. et al. ADMET evaluation in drug discovery. 13. Development of in silico prediction models for p-glycoprotein substrates. Mol. Pharm. 11, 716-726 (2014).
    • (2014) Mol. Pharm , vol.11 , pp. 716-726
    • Li, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.