메뉴 건너뛰기




Volumn 54, Issue 4, 2014, Pages 1061-1069

In silico prediction of chemical acute oral toxicity using multi-classification methods

Author keywords

[No Author keywords available]

Indexed keywords

BARIUM COMPOUNDS; BINARY TREES; DECISION TREES; ENVIRONMENTAL PROTECTION AGENCY; NEAREST NEIGHBOR SEARCH; RISK ASSESSMENT; SUPPORT VECTOR MACHINES; TOXICITY;

EID: 84899804542     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci5000467     Document Type: Article
Times cited : (161)

References (43)
  • 1
    • 0031831569 scopus 로고    scopus 로고
    • Acute oral toxicity
    • Walum, E. Acute oral toxicity Environ. Health Perspect. 1998, 106 (Suppl. 2) 497-503
    • (1998) Environ. Health Perspect. , vol.106 , Issue.SUPPL. 2 , pp. 497-503
    • Walum, E.1
  • 2
    • 33644510766 scopus 로고    scopus 로고
    • Mechanistic insight into acetylcholinesterase inhibition and acute toxicity of organophosphorus compounds: A molecular modeling study
    • Guo, J. X.; Wu, J. J.; Wright, J. B.; Lushington, G. H. Mechanistic insight into acetylcholinesterase inhibition and acute toxicity of organophosphorus compounds: a molecular modeling study Chem. Res. Toxicol. 2006, 19, 209-216
    • (2006) Chem. Res. Toxicol. , vol.19 , pp. 209-216
    • Guo, J.X.1    Wu, J.J.2    Wright, J.B.3    Lushington, G.H.4
  • 3
  • 4
    • 34250628511 scopus 로고    scopus 로고
    • QSAR modeling of acute toxicity for nitrobenzene derivatives towards rats: Comparative analysis by MLRA and optimal descriptors
    • Toropov, A. A.; Rasulev, B. F.; Leszczynski, J. QSAR modeling of acute toxicity for nitrobenzene derivatives towards rats: comparative analysis by MLRA and optimal descriptors QSAR Comb. Sci. 2007, 26, 686-693
    • (2007) QSAR Comb. Sci. , vol.26 , pp. 686-693
    • Toropov, A.A.1    Rasulev, B.F.2    Leszczynski, J.3
  • 5
    • 73849128409 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure
    • Zhu, H.; Martin, T. M.; Ye, L.; Sedykh, A.; Young, D. M.; Tropsha, A. Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure Chem. Res. Toxicol. 2009, 22, 1913-1921
    • (2009) Chem. Res. Toxicol. , vol.22 , pp. 1913-1921
    • Zhu, H.1    Martin, T.M.2    Ye, L.3    Sedykh, A.4    Young, D.M.5    Tropsha, A.6
  • 6
    • 84871194085 scopus 로고    scopus 로고
    • U.S. EPA: Washington, DC, Chapter 7: Precautionary Statements.
    • Label Review Manual; U.S. EPA: Washington, DC, 2012; Chapter 7: Precautionary Statements.
    • (2012) Label Review Manual
  • 7
    • 84870017710 scopus 로고    scopus 로고
    • AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties
    • Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P. W.; Tang, Y. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties J. Chem. Inf. Model. 2012, 52, 3099-3105
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 3099-3105
    • Cheng, F.1    Li, W.2    Zhou, Y.3    Shen, J.4    Wu, Z.5    Liu, G.6    Lee, P.W.7    Tang, Y.8
  • 8
    • 84899826862 scopus 로고    scopus 로고
    • MDL Toxicity Database (presently Accelrys Toxicity Database). (accessed on Febrary 14th, 2013).
    • MDL Toxicity Database (presently Accelrys Toxicity Database). http://accelrys.com/products/databases/bioactivity/toxicity.html (accessed on Febrary 14th, 2013).
  • 9
    • 84899863765 scopus 로고    scopus 로고
    • Quantitative Structure Activity Relationship. (accessed on Febrary 14th, 2013).
    • Quantitative Structure Activity Relationship. http://www.epa.gov/nrmrl/ std/qsar/qsar.html (accessed on Febrary 14th, 2013).
  • 10
    • 77954068708 scopus 로고    scopus 로고
    • Estimation of ADME properties with substructure pattern recognition
    • Shen, J.; Cheng, F.; Xu, Y.; Li, W.; Tang, Y. Estimation of ADME properties with substructure pattern recognition J. Chem. Inf. Model. 2010, 50, 1034-1041
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1034-1041
    • Shen, J.1    Cheng, F.2    Xu, Y.3    Li, W.4    Tang, Y.5
  • 12
    • 79953005609 scopus 로고    scopus 로고
    • PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints
    • Yap, C. W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints J. Comput. Chem. 2011, 32, 1466-1474
    • (2011) J. Comput. Chem. , vol.32 , pp. 1466-1474
    • Yap, C.W.1
  • 14
    • 84899842185 scopus 로고    scopus 로고
    • Orange, version 2.6.1. (accessed on Febrary 14th, 2013).
    • Orange, version 2.6.1. http://www.ailab.si/orange/ (accessed on Febrary 14th, 2013).
  • 16
  • 17
    • 39449088858 scopus 로고    scopus 로고
    • Naïve Bayes classification using 2D pharmacophore feature triplet vectors
    • Watson, P. Naïve Bayes classification using 2D pharmacophore feature triplet vectors J. Chem. Inf. Model. 2008, 48, 166-178
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 166-178
    • Watson, P.1
  • 18
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover, T. M.; Hart, P. Nearest neighbor pattern classification IEEE Trans. Inf. Theory 1967, 13, 21-27
    • (1967) IEEE Trans. Inf. Theory , vol.13 , pp. 21-27
    • Cover, T.M.1    Hart, P.2
  • 19
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C.; Vapnik, V. Support-vector networks Machine Learning 1995, 20, 273-297
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 20
    • 79960245348 scopus 로고    scopus 로고
    • Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers
    • Cheng, F.; Yu, Y.; Shen, J.; Yang, L.; Li, W.; Liu, G.; Lee, P. W.; Tang, Y. Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers J. Chem. Inf. Model. 2011, 51, 996-1011
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 996-1011
    • Cheng, F.1    Yu, Y.2    Shen, J.3    Yang, L.4    Li, W.5    Liu, G.6    Lee, P.W.7    Tang, Y.8
  • 21
    • 23844460948 scopus 로고    scopus 로고
    • Prediction of cytochrome P450 3A4, 2D6, and 2C9 inhibitors and substrates by using support vector machines
    • Yap, C. W.; Chen, Y. Z. Prediction of cytochrome P450 3A4, 2D6, and 2C9 inhibitors and substrates by using support vector machines J. Chem. Inf. Model. 2005, 45, 982-992
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 982-992
    • Yap, C.W.1    Chen, Y.Z.2
  • 22
    • 33846864233 scopus 로고    scopus 로고
    • Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques
    • Eitrich, T.; Kless, A.; Druska, C.; Meyer, W.; Grotendorst, J. Classification of highly unbalanced CYP450 data of drugs using cost sensitive machine learning techniques J. Chem. Inf. Model. 2007, 47, 92-103
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 92-103
    • Eitrich, T.1    Kless, A.2    Druska, C.3    Meyer, W.4    Grotendorst, J.5
  • 23
    • 72949110641 scopus 로고    scopus 로고
    • Comparison of multilabel and single-label classification applied to the prediction of the isoform specificity of cytochrome P450 substrates
    • Michielan, L.; Terfloth, L.; Gasteiger, J.; Moro, S. Comparison of multilabel and single-label classification applied to the prediction of the isoform specificity of cytochrome P450 substrates J. Chem. Inf. Model. 2009, 49, 2588-2605
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 2588-2605
    • Michielan, L.1    Terfloth, L.2    Gasteiger, J.3    Moro, S.4
  • 24
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu, C.-W.; Lin, C.-J. A comparison of methods for multi-class support vector machines IEEE Trans. Neural Networks 2002, 13, 415-425
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 25
    • 33646495490 scopus 로고    scopus 로고
    • Binary tree of SVM: A new fast multiclass training and classification algorithm
    • Fei, B.; Liu, J. Binary tree of SVM: a new fast multiclass training and classification algorithm IEEE Trans. Neural Networks 2006, 17, 696-704
    • (2006) IEEE Trans. Neural Networks , vol.17 , pp. 696-704
    • Fei, B.1    Liu, J.2
  • 26
    • 13444293728 scopus 로고    scopus 로고
    • Support vector machines with binary tree architecture for multi-class classification
    • Cheong, S.; Oh, S. H.; Lee, S.-Y. Support vector machines with binary tree architecture for multi-class classification Neural Inf. Process. Lett. Rev. 2004, 2, 47-51
    • (2004) Neural Inf. Process. Lett. Rev. , vol.2 , pp. 47-51
    • Cheong, S.1    Oh, S.H.2    Lee, S.-Y.3
  • 27
    • 4043078519 scopus 로고    scopus 로고
    • A decision based one-against-one method for multi-class support vector machine
    • Debnath, R.; Takahide, N.; Takahashi, H. A decision based one-against-one method for multi-class support vector machine Pattern Anal. Appl. 2004, 7, 164-175
    • (2004) Pattern Anal. Appl. , vol.7 , pp. 164-175
    • Debnath, R.1    Takahide, N.2    Takahashi, H.3
  • 28
    • 67349205580 scopus 로고    scopus 로고
    • Three-class classification models of logS and logP derived by using GA-CG-SVM approach
    • Zhang, H.; Xiang, M.-L.; Ma, C.-Y.; Huang, Q.; Li, W.; Xie, Y.; Wei, Y.-Q.; Yang, S.-Y. Three-class classification models of logS and logP derived by using GA-CG-SVM approach Mol. Divers. 2009, 13, 261-268
    • (2009) Mol. Divers. , vol.13 , pp. 261-268
    • Zhang, H.1    Xiang, M.-L.2    Ma, C.-Y.3    Huang, Q.4    Li, W.5    Xie, Y.6    Wei, Y.-Q.7    Yang, S.-Y.8
  • 29
    • 80053385615 scopus 로고    scopus 로고
    • Classification models for neocryptolepine derivatives as inhibitors of the β-haematin formation
    • Dejaegher, B.; Dhooghe, L.; Goodarzi, M.; Apers, S.; Pieters, L.; Heyden, Y. V. Classification models for neocryptolepine derivatives as inhibitors of the β-haematin formation Anal. Chim. Acta 2011, 705, 98-110
    • (2011) Anal. Chim. Acta , vol.705 , pp. 98-110
    • Dejaegher, B.1    Dhooghe, L.2    Goodarzi, M.3    Apers, S.4    Pieters, L.5    Heyden, Y.V.6
  • 30
    • 67049108622 scopus 로고    scopus 로고
    • A multi-class SVM classifier utilizing binary decision tree
    • Madzarov, G.; Gjorgjevikj, D.; Chorbev, I. A multi-class SVM classifier utilizing binary decision tree Informatica 2009, 33, 233-241
    • (2009) Informatica , vol.33 , pp. 233-241
    • Madzarov, G.1    Gjorgjevikj, D.2    Chorbev, I.3
  • 31
    • 84870235699 scopus 로고    scopus 로고
    • Support vector machines combined with wavelet-based feature extraction for identification of drugs hidden in anthropomorphic phantom
    • Qu, D.; Li, W.; Zhang, Y.; Sun, B.; Zhong, Y.; Liu, J.; Yu, D.; Li, M. Support vector machines combined with wavelet-based feature extraction for identification of drugs hidden in anthropomorphic phantom Measurement 2013, 46, 284-293
    • (2013) Measurement , vol.46 , pp. 284-293
    • Qu, D.1    Li, W.2    Zhang, Y.3    Sun, B.4    Zhong, Y.5    Liu, J.6    Yu, D.7    Li, M.8
  • 32
    • 33846820291 scopus 로고    scopus 로고
    • Progress in QSAR toxicity screening of pharmaceutical impurities and other FDA regulated products
    • Kruhlak, N. L.; Contrera, J. F.; Benz, R. D.; Matthews, E. J. Progress in QSAR toxicity screening of pharmaceutical impurities and other FDA regulated products Adv. Drug Delivery Rev. 2007, 59, 43-55
    • (2007) Adv. Drug Delivery Rev. , vol.59 , pp. 43-55
    • Kruhlak, N.L.1    Contrera, J.F.2    Benz, R.D.3    Matthews, E.J.4
  • 33
    • 49849084348 scopus 로고    scopus 로고
    • Structure alerts for carcinogenicity, and the Salmonella assay system: A novel insight through the chemical relational databases technology
    • Benigni, R.; Bossa, C. Structure alerts for carcinogenicity, and the Salmonella assay system: A novel insight through the chemical relational databases technology Mutat. Res., Rev. Mutat. Res. 2008, 659, 248-261
    • (2008) Mutat. Res., Rev. Mutat. Res. , vol.659 , pp. 248-261
    • Benigni, R.1    Bossa, C.2
  • 34
    • 33846923287 scopus 로고    scopus 로고
    • In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors
    • Jensen, B. F.; Vind, C.; Padkjær, S. B.; Brockhoff, P. B.; Refsgaard, H. H. F. In silico prediction of cytochrome P450 2D6 and 3A4 inhibition using Gaussian kernel weighted k-nearest neighbor and extended connectivity fingerprints, including structural fragment analysis of inhibitors versus noninhibitors J. Med. Chem. 2007, 50, 501-511
    • (2007) J. Med. Chem. , vol.50 , pp. 501-511
    • Jensen, B.F.1    Vind, C.2    Padkjær, S.B.3    Brockhoff, P.B.4    Refsgaard, H.H.F.5
  • 37
    • 4243148518 scopus 로고    scopus 로고
    • Organophosphate toxicology: Safety aspects of nonacetylcholinesterase secondary targets
    • Casida, J. E.; Quistad, G. B. Organophosphate toxicology: safety aspects of nonacetylcholinesterase secondary targets Chem. Res. Toxicol. 2004, 17, 983-998
    • (2004) Chem. Res. Toxicol. , vol.17 , pp. 983-998
    • Casida, J.E.1    Quistad, G.B.2
  • 38
    • 67949110959 scopus 로고    scopus 로고
    • Acute toxicity of some synthetic cyanogens in rats and their response to oral treatment with alpha-ketoglutarate
    • Bhattacharya, R.; Satpute, R. M.; Hariharakrishnan, J.; Tripathi, H.; Saxena, P. B. Acute toxicity of some synthetic cyanogens in rats and their response to oral treatment with alpha-ketoglutarate Food Chem. Toxicol. 2009, 47, 2314-2320
    • (2009) Food Chem. Toxicol. , vol.47 , pp. 2314-2320
    • Bhattacharya, R.1    Satpute, R.M.2    Hariharakrishnan, J.3    Tripathi, H.4    Saxena, P.B.5
  • 40
    • 0031868433 scopus 로고    scopus 로고
    • Quantitative structure-activity analyses of nitrobenzene toxicity to Tetrahymena pyriformis
    • Cronin, M. T.; Gregory, B. W.; Schultz, T. W. Quantitative structure-activity analyses of nitrobenzene toxicity to Tetrahymena pyriformis Chem. Res. Toxicol. 1998, 11, 902-908
    • (1998) Chem. Res. Toxicol. , vol.11 , pp. 902-908
    • Cronin, M.T.1    Gregory, B.W.2    Schultz, T.W.3
  • 42


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.