-
1
-
-
11844276610
-
Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae
-
Ahn S.H., Cheung W.L., Hsu J.Y., Diaz R.L., Smith M.M., Allis C.D. Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae. Cell 2005, 120(1):25-36.
-
(2005)
Cell
, vol.120
, Issue.1
, pp. 25-36
-
-
Ahn, S.H.1
Cheung, W.L.2
Hsu, J.Y.3
Diaz, R.L.4
Smith, M.M.5
Allis, C.D.6
-
2
-
-
77449157577
-
Probing the (H3-H4)2 histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling
-
Bowman A., Ward R., El-Mkami H., Owen-Hughes T., Norman D.G. Probing the (H3-H4)2 histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling. Nucleic Acids Res. 2010, 38(2):695-707.
-
(2010)
Nucleic Acids Res.
, vol.38
, Issue.2
, pp. 695-707
-
-
Bowman, A.1
Ward, R.2
El-Mkami, H.3
Owen-Hughes, T.4
Norman, D.G.5
-
3
-
-
0029826050
-
+-ATPase and expression of PMA1 and PMA2 genes in Saccharomyces cerevisiae cells grown at optimal and low pH
-
+-ATPase and expression of PMA1 and PMA2 genes in Saccharomyces cerevisiae cells grown at optimal and low pH. Arch. Microbiol. 1996, 166(5):315-320.
-
(1996)
Arch. Microbiol.
, vol.166
, Issue.5
, pp. 315-320
-
-
Carmelo, V.1
Bogaerts, P.2
Sá-Correia, I.3
-
4
-
-
0031551022
-
Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae
-
Carmelo V., Santos H., Sá-Correia I. Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1997, 1325(1):63-70.
-
(1997)
Biochim. Biophys. Acta
, vol.1325
, Issue.1
, pp. 63-70
-
-
Carmelo, V.1
Santos, H.2
Sá-Correia, I.3
-
5
-
-
51549087123
-
Probing nucleosome function: a highly versatile library of synthetic histone H3 and H4 mutants
-
Dai J., Hyland E.M., Yuan D.S., Huang H., Bader J.S., Boeke J.D. Probing nucleosome function: a highly versatile library of synthetic histone H3 and H4 mutants. Cell 2008, 134(6):1066-1078.
-
(2008)
Cell
, vol.134
, Issue.6
, pp. 1066-1078
-
-
Dai, J.1
Hyland, E.M.2
Yuan, D.S.3
Huang, H.4
Bader, J.S.5
Boeke, J.D.6
-
6
-
-
84881220384
-
Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement
-
Ding J., Bierma J., Smith M.R., Poliner E., Wolfe C., Hadduck A.N., Zara S.van, Jirikovic M., Zee K., Penner M.H., Patton-Vogt J., Bakalinsky A.T. Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement. Appl. Microbiol. Biotechnol. 2013, 97(16):7405-7416.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, Issue.16
, pp. 7405-7416
-
-
Ding, J.1
Bierma, J.2
Smith, M.R.3
Poliner, E.4
Wolfe, C.5
Hadduck, A.N.6
Zara, S.7
Jirikovic, M.8
Zee, K.9
Penner, M.H.10
Patton-Vogt, J.11
Bakalinsky, A.T.12
-
7
-
-
84865434614
-
Proteomic research reveals the stress response and detoxification of yeast to combined inhibitors
-
Ding M.Z., Wang X., Liu W., Cheng J.S., Yang Y., Yuan Y.J. Proteomic research reveals the stress response and detoxification of yeast to combined inhibitors. PLoS One 2012, 7(8):e43474.
-
(2012)
PLoS One
, vol.7
, Issue.8
-
-
Ding, M.Z.1
Wang, X.2
Liu, W.3
Cheng, J.S.4
Yang, Y.5
Yuan, Y.J.6
-
8
-
-
8644284924
-
Mitochondrial fission proteins regulate programmed cell death in yeast
-
Fannjiang Y., Cheng W.C., Lee S.J., Qi B., Pevsner J., McCaffery J.M., Hill R.B., Basañez G., Hardwick J.M. Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev. 2004, 18(22):2785-2797.
-
(2004)
Genes Dev.
, vol.18
, Issue.22
, pp. 2785-2797
-
-
Fannjiang, Y.1
Cheng, W.C.2
Lee, S.J.3
Qi, B.4
Pevsner, J.5
McCaffery, J.M.6
Hill, R.B.7
Basañez, G.8
Hardwick, J.M.9
-
9
-
-
84879610545
-
Methylation of histone H3 on lysine 79 associates with a group of replication origins and helps limit DNA replication once per cell cycle
-
Fu H., Maunakea A.K., Martin M.M., Huang L., Zhang Y., Ryan M., Kim R., Lin C.M., Zhao K., Aladjem M.I. Methylation of histone H3 on lysine 79 associates with a group of replication origins and helps limit DNA replication once per cell cycle. PLoS Genet. 2013, 9(6):e1003542.
-
(2013)
PLoS Genet.
, vol.9
, Issue.6
-
-
Fu, H.1
Maunakea, A.K.2
Martin, M.M.3
Huang, L.4
Zhang, Y.5
Ryan, M.6
Kim, R.7
Lin, C.M.8
Zhao, K.9
Aladjem, M.I.10
-
10
-
-
1542359000
-
Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains
-
Garay-Arroyo A., Covarrubias A.A., Clark I., Niño I., Gosset G., Martinez A. Response to different environmental stress conditions of industrial and laboratory Saccharomyces cerevisiae strains. Appl. Microbiol. Biotechnol. 2004, 63(6):734-741.
-
(2004)
Appl. Microbiol. Biotechnol.
, vol.63
, Issue.6
, pp. 734-741
-
-
Garay-Arroyo, A.1
Covarrubias, A.A.2
Clark, I.3
Niño, I.4
Gosset, G.5
Martinez, A.6
-
11
-
-
77955893526
-
Systematic screen reveals new functional dynamics of histones H3 and H4 during gametogenesis
-
Govin J., Dorsey J., Gaucher J., Rousseaux S., Khochbin S., Berger S.L. Systematic screen reveals new functional dynamics of histones H3 and H4 during gametogenesis. Genes Dev. 2010, 24(16):1772-1786.
-
(2010)
Genes Dev.
, vol.24
, Issue.16
, pp. 1772-1786
-
-
Govin, J.1
Dorsey, J.2
Gaucher, J.3
Rousseaux, S.4
Khochbin, S.5
Berger, S.L.6
-
12
-
-
33747337558
-
Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p
-
Kawahata M., Masaki K., Fujii T., Iefuji H. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 2006, 6(6):924-936.
-
(2006)
FEMS Yeast Res.
, vol.6
, Issue.6
, pp. 924-936
-
-
Kawahata, M.1
Masaki, K.2
Fujii, T.3
Iefuji, H.4
-
13
-
-
12544249147
-
Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass
-
Klinke H.B., Thomsen A.B., Ahring B.K. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 2004, 66(1):10-26.
-
(2004)
Appl. Microbiol. Biotechnol.
, vol.66
, Issue.1
, pp. 10-26
-
-
Klinke, H.B.1
Thomsen, A.B.2
Ahring, B.K.3
-
14
-
-
84881226766
-
Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5
-
Kitanovic A., Bonowski F., Heigwer F., Ruoff P., Kitanovic I., Ungewiss C., Wölfl S. Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5. Front. Oncol. 2012, 2:118.
-
(2012)
Front. Oncol.
, vol.2
, pp. 118
-
-
Kitanovic, A.1
Bonowski, F.2
Heigwer, F.3
Ruoff, P.4
Kitanovic, I.5
Ungewiss, C.6
Wölfl, S.7
-
15
-
-
84890786451
-
Lignocellulosic ethanol production at high-gravity: challenges and perspectives
-
Koppram R., Tomás-Pejó E., Xiros C., Olsson L. Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol. 2014, 32(1):46-53.
-
(2014)
Trends Biotechnol.
, vol.32
, Issue.1
, pp. 46-53
-
-
Koppram, R.1
Tomás-Pejó, E.2
Xiros, C.3
Olsson, L.4
-
16
-
-
84860834629
-
Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol - a review
-
Laluce C., Schenberg A.C., Gallardo J.C., Coradello L.F., Pombeiro-Sponchiado S.R. Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol - a review. Appl. Biochem. Biotechnol. 2012, 166(8):1908-1926.
-
(2012)
Appl. Biochem. Biotechnol.
, vol.166
, Issue.8
, pp. 1908-1926
-
-
Laluce, C.1
Schenberg, A.C.2
Gallardo, J.C.3
Coradello, L.F.4
Pombeiro-Sponchiado, S.R.5
-
17
-
-
77952876202
-
Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae
-
Li B.Z., Yuan Y.J. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2010, 86(6):1915-1924.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.86
, Issue.6
, pp. 1915-1924
-
-
Li, B.Z.1
Yuan, Y.J.2
-
18
-
-
84855463014
-
Ethanol-induced yeast flocculation directed by the promoter of TPS1 encoding trehalose-6-phosphate synthase 1 for efficient ethanol production
-
Li Q., Zhao X.Q., Chang A.K., Zhang Q.M., Bai F.W. Ethanol-induced yeast flocculation directed by the promoter of TPS1 encoding trehalose-6-phosphate synthase 1 for efficient ethanol production. Metab. Eng. 2012, 14(1):1-8.
-
(2012)
Metab. Eng.
, vol.14
, Issue.1
, pp. 1-8
-
-
Li, Q.1
Zhao, X.Q.2
Chang, A.K.3
Zhang, Q.M.4
Bai, F.W.5
-
19
-
-
77950367759
-
Cu,Zn-superoxide dismutase is required for cell wall structure and for tolerance to cell wall-perturbing agents in Saccharomyces cerevisiae
-
Liu X., Zhang X., Zhang Z. Cu,Zn-superoxide dismutase is required for cell wall structure and for tolerance to cell wall-perturbing agents in Saccharomyces cerevisiae. FEBS Lett. 2010, 584(6):1245-1250.
-
(2010)
FEBS Lett.
, vol.584
, Issue.6
, pp. 1245-1250
-
-
Liu, X.1
Zhang, X.2
Zhang, Z.3
-
21
-
-
0034807841
-
Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid
-
Ludovico P., Sousa M.J., Silva M.T., Leão C., CÔrte-Real M. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 2001, 147(Pt 9):2409-2415.
-
(2001)
Microbiology
, vol.147
, Issue.PART 9
, pp. 2409-2415
-
-
Ludovico, P.1
Sousa, M.J.2
Silva, M.T.3
Leão, C.4
CÔrte-Real, M.5
-
22
-
-
0036678040
-
Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae
-
Ludovico P., Rodrigues F., Almeida A., Silva M.T., Barrientos A., CÔrte-Real M. Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol. Cell. Biol. 2002, 13(8):2598-2606.
-
(2002)
Mol. Cell. Biol.
, vol.13
, Issue.8
, pp. 2598-2606
-
-
Ludovico, P.1
Rodrigues, F.2
Almeida, A.3
Silva, M.T.4
Barrientos, A.5
CÔrte-Real, M.6
-
23
-
-
1842411320
-
Crystal structure of the nucleosome core particle at 2.8A resolution
-
Luger K., Mäder A.W., Richmond R.K., Sargent D.F., Richmond T.J. Crystal structure of the nucleosome core particle at 2.8A resolution. Nature 1997, 389(6648):251-260.
-
(1997)
Nature
, vol.389
, Issue.6648
, pp. 251-260
-
-
Luger, K.1
Mäder, A.W.2
Richmond, R.K.3
Sargent, D.F.4
Richmond, T.J.5
-
24
-
-
33845880445
-
Global analysis of functional surfaces of core histones with comprehensive point mutants
-
Matsubara K., Sano N., Umehara T., Horikoshi M. Global analysis of functional surfaces of core histones with comprehensive point mutants. Genes Cells 2007, 12(1):13-33.
-
(2007)
Genes Cells
, vol.12
, Issue.1
, pp. 13-33
-
-
Matsubara, K.1
Sano, N.2
Umehara, T.3
Horikoshi, M.4
-
25
-
-
0030765448
-
MIPS: a database for protein sequences, homology data and yeast genome information
-
Mewes H.W., Albermann K., Heumann K., Liebl S., Pfeiffer F. MIPS: a database for protein sequences, homology data and yeast genome information. Nucleic Acid. Res. 1997, 25(1):28-30.
-
(1997)
Nucleic Acid. Res.
, vol.25
, Issue.1
, pp. 28-30
-
-
Mewes, H.W.1
Albermann, K.2
Heumann, K.3
Liebl, S.4
Pfeiffer, F.5
-
26
-
-
77958169154
-
Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid
-
Mira N.P., Becker J.D., Sá-Correia I. Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS 2010, 14(5):587-601.
-
(2010)
OMICS
, vol.14
, Issue.5
, pp. 587-601
-
-
Mira, N.P.1
Becker, J.D.2
Sá-Correia, I.3
-
27
-
-
77958135565
-
Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
-
Mira N.P., Palma M., Guerreiro J.F., Sá-Correia I. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microbial Cell Fact. 2010, 9:79. 10.1186/1475-2859-9-79.
-
(2010)
Microbial Cell Fact.
, vol.9
, pp. 79
-
-
Mira, N.P.1
Palma, M.2
Guerreiro, J.F.3
Sá-Correia, I.4
-
28
-
-
77958162502
-
Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view
-
Mira N.P., Teixeira M.C., Sá-Correia I. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS 2010, 14(5):525-540.
-
(2010)
OMICS
, vol.14
, Issue.5
, pp. 525-540
-
-
Mira, N.P.1
Teixeira, M.C.2
Sá-Correia, I.3
-
29
-
-
71049194353
-
Presence of the Fps1p aquaglyceroporin channel is essential for Hog1p activation, but suppresses Slt2(Mpk1)p activation, with acetic acid stress of yeast
-
Mollapour M., Shepherd A., Piper P.W. Presence of the Fps1p aquaglyceroporin channel is essential for Hog1p activation, but suppresses Slt2(Mpk1)p activation, with acetic acid stress of yeast. Microbiology 2009, 155:3304-3311.
-
(2009)
Microbiology
, vol.155
, pp. 3304-3311
-
-
Mollapour, M.1
Shepherd, A.2
Piper, P.W.3
-
30
-
-
0343618697
-
Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition
-
Palmqvist E., Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour. Technol. 2000, 74:25-33.
-
(2000)
Bioresour. Technol.
, vol.74
, pp. 25-33
-
-
Palmqvist, E.1
Hahn-Hagerdal, B.2
-
31
-
-
0033982072
-
Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae
-
Pampulha M.E., Loureiro-Dias M.C. Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 2000, 184(1):69-72.
-
(2000)
FEMS Microbiol. Lett.
, vol.184
, Issue.1
, pp. 69-72
-
-
Pampulha, M.E.1
Loureiro-Dias, M.C.2
-
32
-
-
84875104827
-
Genome-wide overexpression screen for sodium acetate resistance in Saccharomyces cerevisiae
-
Peña P.V., Glasker S., Srienc F. Genome-wide overexpression screen for sodium acetate resistance in Saccharomyces cerevisiae. J. Biotechnol. 2013, 164(1):26-33.
-
(2013)
J. Biotechnol.
, vol.164
, Issue.1
, pp. 26-33
-
-
Peña, P.V.1
Glasker, S.2
Srienc, F.3
-
33
-
-
77953492945
-
Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier
-
Pereira C., Chaves S., Alves S., Salin B., Camougrand N., Manon S., Sousa M.J., CÔrte-Real M. Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier. Mol. Microbiol. 2010, 76(6):1398-1410.
-
(2010)
Mol. Microbiol.
, vol.76
, Issue.6
, pp. 1398-1410
-
-
Pereira, C.1
Chaves, S.2
Alves, S.3
Salin, B.4
Camougrand, N.5
Manon, S.6
Sousa, M.J.7
CÔrte-Real, M.8
-
34
-
-
0034769551
-
Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives
-
Piper P., Calderon C.O., Hatzixanthis K., Mollapour M. Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 2001, 147:2635-2642.
-
(2001)
Microbiology
, vol.147
, pp. 2635-2642
-
-
Piper, P.1
Calderon, C.O.2
Hatzixanthis, K.3
Mollapour, M.4
-
35
-
-
0037223438
-
The tor pathway regulates gene expression by linking nutrient sensing to histone acetylation
-
Rohde J.R., Cardenas M.E. The tor pathway regulates gene expression by linking nutrient sensing to histone acetylation. Mol. Cell. Biol. 2003, 23(2):629-635.
-
(2003)
Mol. Cell. Biol.
, vol.23
, Issue.2
, pp. 629-635
-
-
Rohde, J.R.1
Cardenas, M.E.2
-
36
-
-
84859517708
-
Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells
-
Sakamoto T., Hasunuma T., Hori Y., Yamada R., Kondo A. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J. Biotechnol. 2012, 158(4):203-210.
-
(2012)
J. Biotechnol.
, vol.158
, Issue.4
, pp. 203-210
-
-
Sakamoto, T.1
Hasunuma, T.2
Hori, Y.3
Yamada, R.4
Kondo, A.5
-
37
-
-
84888241538
-
Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae
-
Sousa M., Duarte A.M., Fernandes T.R., Chaves S.R., Pacheco A., Leão C., CÔrte-Real M., Sousa M.J. Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae. BMC Genomics 2013, 14:838.
-
(2013)
BMC Genomics
, vol.14
, pp. 838
-
-
Sousa, M.1
Duarte, A.M.2
Fernandes, T.R.3
Chaves, S.R.4
Pacheco, A.5
Leão, C.6
CÔrte-Real, M.7
Sousa, M.J.8
-
38
-
-
84868611282
-
Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator
-
Tanaka K., Ishii Y., Ogawa J., Shima J. Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl. Environ. Microbiol. 2012, 78(22):8161-8163.
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, Issue.22
, pp. 8161-8163
-
-
Tanaka, K.1
Ishii, Y.2
Ogawa, J.3
Shima, J.4
-
39
-
-
0034002481
-
The H3-H4 N-terminal tail domains are the primary mediators of transcription factor IIIA access to 5S DNA within a nucleosome
-
Vitolo J.M., Thiriet C., Hayes J.J. The H3-H4 N-terminal tail domains are the primary mediators of transcription factor IIIA access to 5S DNA within a nucleosome. Mol. Cell. Biol. 2000, 20(6):2167-2175.
-
(2000)
Mol. Cell. Biol.
, vol.20
, Issue.6
, pp. 2167-2175
-
-
Vitolo, J.M.1
Thiriet, C.2
Hayes, J.J.3
-
40
-
-
84885439374
-
Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast
-
Wei N., Quarterman J., Kim S.R., Cate J.H., Jin Y.S. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat. Commun. 2013, 4:2580.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2580
-
-
Wei, N.1
Quarterman, J.2
Kim, S.R.3
Cate, J.H.4
Jin, Y.S.5
-
41
-
-
0028445339
-
Transcriptional activation. Switched-on chromatin
-
Wolffe A.P. Transcriptional activation. Switched-on chromatin. Curr. Biol. 1994, 4(6):525-528.
-
(1994)
Curr. Biol.
, vol.4
, Issue.6
, pp. 525-528
-
-
Wolffe, A.P.1
-
42
-
-
78651428997
-
Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene
-
Zhang J.G., Liu X.Y., He X.P., Guo X.N., Lu Y., Zhang B.R. Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene. Biotechnol. Lett. 2011, 33(2):277-284.
-
(2011)
Biotechnol. Lett.
, vol.33
, Issue.2
, pp. 277-284
-
-
Zhang, J.G.1
Liu, X.Y.2
He, X.P.3
Guo, X.N.4
Lu, Y.5
Zhang, B.R.6
-
43
-
-
0035992124
-
Response of gene expression in Saccharomyces cerevisiae to amphotericin B and nystatin measured by microarrays
-
Zhang L., Zhang Y., Zhou Y., An S., Zhou Y., Cheng J. Response of gene expression in Saccharomyces cerevisiae to amphotericin B and nystatin measured by microarrays. J. Antimicrob. Chemother. 2002, 49(6):905-915.
-
(2002)
J. Antimicrob. Chemother.
, vol.49
, Issue.6
, pp. 905-915
-
-
Zhang, L.1
Zhang, Y.2
Zhou, Y.3
An, S.4
Zhou, Y.5
Cheng, J.6
-
44
-
-
79955718565
-
Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae
-
Zheng D.Q., Wu X.C., Wang P.M., Chi X.Q., Tao X.L., Li P., Jiang X.H., Zhao Y.H. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 2011, 38(3):415-422.
-
(2011)
J. Ind. Microbiol. Biotechnol.
, vol.38
, Issue.3
, pp. 415-422
-
-
Zheng, D.Q.1
Wu, X.C.2
Wang, P.M.3
Chi, X.Q.4
Tao, X.L.5
Li, P.6
Jiang, X.H.7
Zhao, Y.H.8
|