-
1
-
-
0025150696
-
Moessbauer spectroscopy
-
J.G. Stevens, L.H. Bowen, K.M. Whatley, Moessbauer spectroscopy. Anal. Chem. 62(12), 125R–139R (1990). doi:10.1021/ac00211a003
-
(1990)
Anal. Chem.
, vol.62
, Issue.12
, pp. 125R-139R
-
-
Stevens, J.G.1
Bowen, L.H.2
Whatley, K.M.3
-
2
-
-
0001592495
-
Chemical sensors
-
J. Janata, Chemical sensors. Anal. Chem. 64(12), 196–219 (1992). doi:10.1021/ac00036a012
-
(1992)
Anal. Chem.
, vol.64
, Issue.12
, pp. 196-219
-
-
Janata, J.1
-
3
-
-
0028773702
-
Chemical sensors
-
J. Janata, M. Josowicz, D.M. DeVaney, Chemical sensors. Anal. Chem. 66(12), 207R–228R (1994). doi:10.1021/ac00084a010
-
(1994)
Anal. Chem.
, vol.66
, Issue.12
, pp. 207R-228R
-
-
Janata, J.1
Josowicz, M.2
DeVaney, D.M.3
-
4
-
-
0000672855
-
Chemical sensors
-
J. Janata, M. Josowicz, P. Vanýsek, D.M. DeVaney, Chemical sensors. Anal. Chem. 70(12), 179–208 (1998). doi:10.1021/a1980010w
-
(1998)
Anal. Chem.
, vol.70
, Issue.12
, pp. 179-208
-
-
Janata, J.1
Josowicz, M.2
Vanýsek, P.3
DeVaney, D.M.4
-
5
-
-
0035155450
-
Micromachined polymer-based chemical gas sensor array
-
F. Zee, J.W. Judy, Micromachined polymer-based chemical gas sensor array. Sens. Actuators B 72(2), 120–128 (2001). doi:10.1016/S0925-4005(00)00638-9
-
(2001)
Sens. Actuators B
, vol.72
, Issue.2
, pp. 120-128
-
-
Zee, F.1
Judy, J.W.2
-
6
-
-
19944384606
-
Toxic gas detection using porphyrin dispersed polymer composites
-
Y. Itagaki, K. Deki, S. Nakashima, Y. Sadaoka, Toxic gas detection using porphyrin dispersed polymer composites. Sens. Actuators B 108(1–2), 393–397 (2005). doi:10.1016/j.snb.2004.10.055
-
(2005)
Sens. Actuators B
, vol.108
, Issue.1-2
, pp. 393-397
-
-
Itagaki, Y.1
Deki, K.2
Nakashima, S.3
Sadaoka, Y.4
-
8
-
-
67649112033
-
Composite nanofibers of conducting polymers and hydrophobic insulating polymers: preparation and sensing applications
-
H. Bai, L. Zhao, C.H. Lu, C. Li, G.Q. Shi, Composite nanofibers of conducting polymers and hydrophobic insulating polymers: preparation and sensing applications. Polymer 50(14), 3292–3301 (2009). doi:10.1016/j.polymer.2009.04.066
-
(2009)
Polymer
, vol.50
, Issue.14
, pp. 3292-3301
-
-
Bai, H.1
Zhao, L.2
Lu, C.H.3
Li, C.4
Shi, G.Q.5
-
9
-
-
67949083428
-
5 thin film gas sensors: controlling the physical and sensing properties
-
5 thin film gas sensors: controlling the physical and sensing properties. Sens. Actuators B 141(1), 76–84 (2009). doi:10.1016/j.snb.2009.05.026
-
(2009)
Sens. Actuators B
, vol.141
, Issue.1
, pp. 76-84
-
-
Mohammadi, M.R.1
Fray, D.J.2
-
10
-
-
80055002862
-
Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application
-
J.S. Lee, O.S. Kwon, S.J. Park, E.Y. Park, S.A. You, H. Yoon, J. Jang, Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application. ACS Nano 5(10), 7992–8001 (2011). doi:10.1021/nn202471f
-
(2011)
ACS Nano
, vol.5
, Issue.10
, pp. 7992-8001
-
-
Lee, J.S.1
Kwon, O.S.2
Park, S.J.3
Park, E.Y.4
You, S.A.5
Yoon, H.6
Jang, J.7
-
11
-
-
84865488514
-
Three-dimensional graphene architectures
-
C. Li, G. Shi, Three-dimensional graphene architectures. Nanoscale 4(18), 5549–5563 (2012). doi:10.1039/c2nr31467c
-
(2012)
Nanoscale
, vol.4
, Issue.18
, pp. 5549-5563
-
-
Li, C.1
Shi, G.2
-
12
-
-
84876589032
-
2-(B) nanowires to humidity using ultraviolet illumination for trace explosive detection
-
2-(B) nanowires to humidity using ultraviolet illumination for trace explosive detection. Phys. Chem. Chem. Phys. 15(14), 5017–5021 (2013). doi:10.1039/c3cp43454k
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, Issue.14
, pp. 5017-5021
-
-
Wang, D.1
Chen, A.2
Jen, A.K.3
-
13
-
-
84872725435
-
Flexible graphene-based chemical sensors on paper substrates
-
G. Yang, C. Lee, J. Kim, F. Ren, S.J. Pearton, Flexible graphene-based chemical sensors on paper substrates. Phys. Chem. Chem. Phys. 15(6), 1798–1801 (2013). doi:10.1039/c2cp43717a
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, Issue.6
, pp. 1798-1801
-
-
Yang, G.1
Lee, C.2
Kim, J.3
Ren, F.4
Pearton, S.J.5
-
14
-
-
23144462910
-
The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors
-
Z. Chen, J. Appenzeller, J. Knoch, Y.M. Lin, P. Avouris, The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 5(7), 1497–1502 (2005). doi:10.1021/Nl0508624
-
(2005)
Nano Lett.
, vol.5
, Issue.7
, pp. 1497-1502
-
-
Chen, Z.1
Appenzeller, J.2
Knoch, J.3
Lin, Y.M.4
Avouris, P.5
-
15
-
-
7444220645
-
Electric field effect in atomically thin carbon films
-
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). doi:10.1126/science.1102896
-
(2004)
Science
, vol.306
, Issue.5696
, pp. 666-669
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
Grigorieva, I.V.7
Firsov, A.A.8
-
16
-
-
27744534165
-
Two-dimensional gas of massless Dirac fermions in graphene
-
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005). doi:10.1038/nature04233
-
(2005)
Nature
, vol.438
, Issue.7065
, pp. 197-200
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Katsnelson, M.I.5
Grigorieva, I.V.6
Dubonos, S.V.7
Firsov, A.A.8
-
17
-
-
27744475163
-
Experimental observation of the quantum Hall effect and Berry’s phase in graphene
-
Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065), 201–204 (2005). doi:10.1038/nature04235
-
(2005)
Nature
, vol.438
, Issue.7065
, pp. 201-204
-
-
Zhang, Y.1
Tan, Y.W.2
Stormer, H.L.3
Kim, P.4
-
18
-
-
33744469329
-
Electronic confinement and coherence in patterned epitaxial graphene
-
C. Berger, Z. Song, X. Li, X. Wu, N. Brown et al., Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777), 1191–1196 (2006). doi:10.1126/science.1125925
-
(2006)
Science
, vol.312
, Issue.5777
, pp. 1191-1196
-
-
Berger, C.1
Song, Z.2
Li, X.3
Wu, X.4
Brown, N.5
-
19
-
-
33750459007
-
Raman spectrum of graphene and graphene layers
-
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006). doi:10.1103/PhysRevLett.97.187401
-
(2006)
Phys. Rev. Lett.
, vol.97
, Issue.18
, pp. 187401
-
-
Ferrari, A.C.1
Meyer, J.C.2
Scardaci, V.3
Casiraghi, C.4
Lazzeri, M.5
-
20
-
-
33751348065
-
Energy gaps in graphene nanoribbons
-
Y.W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006). doi:10.1103/PhysRevLett.97.216803
-
(2006)
Phys. Rev. Lett.
, vol.97
, Issue.21
, pp. 216803
-
-
Son, Y.W.1
Cohen, M.L.2
Louie, S.G.3
-
21
-
-
33746344730
-
Graphene-based composite materials
-
S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006). doi:10.1038/nature04969
-
(2006)
Nature
, vol.442
, Issue.7100
, pp. 282-286
-
-
Stankovich, S.1
Dikin, D.A.2
Dommett, G.H.3
Kohlhaas, K.M.4
Zimney, E.J.5
Stach, E.A.6
Piner, R.D.7
Nguyen, S.T.8
Ruoff, R.S.9
-
22
-
-
33847690144
-
The rise of graphene
-
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6(3), 183–191 (2007). doi:10.1038/nmat1849
-
(2007)
Nat. Mater.
, vol.6
, Issue.3
, pp. 183-191
-
-
Geim, A.K.1
Novoselov, K.S.2
-
23
-
-
34547334459
-
Energy band-gap engineering of graphene nanoribbons
-
M.Y. Han, B. Ozyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98(20), 206805 (2007). doi:10.1103/PhysRevLett.98.206805
-
(2007)
Phys. Rev. Lett.
, vol.98
, Issue.20
, pp. 206805
-
-
Han, M.Y.1
Ozyilmaz, B.2
Zhang, Y.3
Kim, P.4
-
24
-
-
34548388792
-
Detection of individual gas molecules adsorbed on graphene
-
F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007). doi:10.1038/nmat1967
-
(2007)
Nat. Mater.
, vol.6
, Issue.9
, pp. 652-655
-
-
Schedin, F.1
Geim, A.K.2
Morozov, S.V.3
Hill, E.W.4
Blake, P.5
Katsnelson, M.I.6
Novoselov, K.S.7
-
25
-
-
34249742469
-
Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
-
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007). doi:10.1016/j.carbon.2007.02.034
-
(2007)
Carbon
, vol.45
, Issue.7
, pp. 1558-1565
-
-
Stankovich, S.1
Dikin, D.A.2
Piner, R.D.3
Kohlhaas, K.A.4
Kleinhammes, A.5
Jia, Y.6
Wu, Y.7
Nguyen, S.T.8
Ruoff, R.S.9
-
26
-
-
42349087225
-
Superior thermal conductivity of single-layer graphene
-
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008). doi:10.1021/nl0731872
-
(2008)
Nano Lett.
, vol.8
, Issue.3
, pp. 902-907
-
-
Balandin, A.A.1
Ghosh, S.2
Bao, W.3
Calizo, I.4
Teweldebrhan, D.5
Miao, F.6
Lau, C.N.7
-
27
-
-
43049170468
-
Ultrahigh electron mobility in suspended graphene
-
K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008). doi:10.1016/j.ssc.2008.02.024
-
(2008)
Solid State Commun.
, vol.146
, Issue.9-10
, pp. 351-355
-
-
Bolotin, K.I.1
Sikes, K.J.2
Jiang, Z.3
Klima, M.4
Fudenberg, G.5
Hone, J.6
Kim, P.7
Stormer, H.L.8
-
28
-
-
38949108623
-
Processable aqueous dispersions of graphene nanosheets
-
D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3(2), 101–105 (2008). doi:10.1038/nnano.2007.451
-
(2008)
Nat. Nanotechnol.
, vol.3
, Issue.2
, pp. 101-105
-
-
Li, D.1
Muller, M.B.2
Gilje, S.3
Kaner, R.B.4
Wallace, G.G.5
-
29
-
-
40049093097
-
Chemically derived, ultrasmooth graphene nanoribbon semiconductors
-
X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 1229–1232 (2008). doi:10.1126/science.1150878
-
(2008)
Science
, vol.319
, Issue.5867
, pp. 1229-1232
-
-
Li, X.1
Wang, X.2
Zhang, L.3
Lee, S.4
Dai, H.5
-
30
-
-
45349092986
-
Fine structure constant defines visual transparency of graphene
-
R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008). doi:10.1126/science.1156965
-
(2008)
Science
, vol.320
, Issue.5881
, pp. 1308
-
-
Nair, R.R.1
Blake, P.2
Grigorenko, A.N.3
Novoselov, K.S.4
Booth, T.J.5
Stauber, T.6
Peres, N.M.7
Geim, A.K.8
-
31
-
-
56149113622
-
Graphene-based ultracapacitors
-
M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008). doi:10.1021/nl802558y
-
(2008)
Nano Lett.
, vol.8
, Issue.10
, pp. 3498-3502
-
-
Stoller, M.D.1
Park, S.2
Zhu, Y.3
An, J.4
Ruoff, R.S.5
-
32
-
-
38749112127
-
Transparent, conductive graphene electrodes for dye-sensitized solar cells
-
X. Wang, L. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008). doi:10.1021/nl072838r
-
(2008)
Nano Lett.
, vol.8
, Issue.1
, pp. 323-327
-
-
Wang, X.1
Zhi, L.2
Mullen, K.3
-
33
-
-
59949098337
-
The electronic properties of graphene
-
A.H. Castro Neto, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009). doi:10.1103/RevModPhys.81.109
-
(2009)
Rev. Mod. Phys.
, vol.81
, Issue.1
, pp. 109-162
-
-
Castro Neto, A.H.1
Peres, N.M.R.2
Novoselov, K.S.3
Geim, A.K.4
-
34
-
-
67649225738
-
Graphene: status and prospects
-
A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009). doi:10.1126/science.1158877
-
(2009)
Science
, vol.324
, Issue.5934
, pp. 1530-1534
-
-
Geim, A.K.1
-
35
-
-
59649099717
-
Large-scale pattern growth of graphene films for stretchable transparent electrodes
-
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009). doi:10.1038/nature07719
-
(2009)
Nature
, vol.457
, Issue.7230
, pp. 706-710
-
-
Kim, K.S.1
Zhao, Y.2
Jang, H.3
Lee, S.Y.4
Kim, J.M.5
-
36
-
-
66749119012
-
Large-area synthesis of high-quality and uniform graphene films on copper foils
-
X. Li, W. Cai, J. An, S. Kim, J. Nah et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009). doi:10.1126/science.1171245
-
(2009)
Science
, vol.324
, Issue.5932
, pp. 1312-1314
-
-
Li, X.1
Cai, W.2
An, J.3
Kim, S.4
Nah, J.5
-
37
-
-
60749107706
-
Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition
-
A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(1), 30–35 (2009). doi:10.1021/nl801827v
-
(2009)
Nano Lett.
, vol.9
, Issue.1
, pp. 30-35
-
-
Reina, A.1
Jia, X.2
Ho, J.3
Nezich, D.4
Son, H.5
Bulovic, V.6
Dresselhaus, M.S.7
Kong, J.8
-
38
-
-
77956430820
-
Roll-to-roll production of 30-inch graphene films for transparent electrodes
-
S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574–578 (2010). doi:10.1038/nnano.2010.132
-
(2010)
Nat. Nanotechnol.
, vol.5
, Issue.8
, pp. 574-578
-
-
Bae, S.1
Kim, H.2
Lee, Y.3
Xu, X.4
Park, J.S.5
-
39
-
-
77949880674
-
The chemistry of graphene oxide
-
D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010). doi:10.1039/b917103g
-
(2010)
Chem. Soc. Rev.
, vol.39
, Issue.1
, pp. 228-240
-
-
Dreyer, D.R.1
Park, S.2
Bielawski, C.W.3
Ruoff, R.S.4
-
40
-
-
84892396086
-
Nanomaterials for gas sensing: a review of recent research
-
R. Bogue, Nanomaterials for gas sensing: a review of recent research. Sensor Rev. 34(1), 1–8 (2014). doi:10.1108/Sr-03-2013-637
-
(2014)
Sensor Rev.
, vol.34
, Issue.1
, pp. 1-8
-
-
Bogue, R.1
-
41
-
-
77957608946
-
Graphene/polyaniline nanocomposite for hydrogen sensing
-
L. Al-Mashat, K. Shin, K. Kalantar-Zadeh, J.D. Plessis, S.H. Han et al., Graphene/polyaniline nanocomposite for hydrogen sensing. J. Phys. Chem. C 114(39), 16168–16173 (2010). doi:10.1021/Jp103134u
-
(2010)
J. Phys. Chem. C
, vol.114
, Issue.39
, pp. 16168-16173
-
-
Al-Mashat, L.1
Shin, K.2
Kalantar-Zadeh, K.3
Plessis, J.D.4
Han, S.H.5
-
42
-
-
84859748631
-
2 gas sensing
-
2 gas sensing. J. Mater. Chem. 22(17), 8525–8531 (2012). doi:10.1039/C2jm16709c
-
(2012)
J. Mater. Chem.
, vol.22
, Issue.17
, pp. 8525-8531
-
-
An, X.Q.1
Yu, J.C.2
Wang, Y.3
Hu, Y.M.4
Yu, X.L.5
Zhang, G.J.6
-
43
-
-
65249119861
-
Intrinsic response of graphene vapor sensors
-
Y. Dan, Y. Lu, N.J. Kybert, Z. Luo, A.T. Johnson, Intrinsic response of graphene vapor sensors. Nano Lett. 9(4), 1472–1475 (2009). doi:10.1021/nl8033637
-
(2009)
Nano Lett.
, vol.9
, Issue.4
, pp. 1472-1475
-
-
Dan, Y.1
Lu, Y.2
Kybert, N.J.3
Luo, Z.4
Johnson, A.T.5
-
45
-
-
63449114919
-
Practical chemical sensors from chemically derived graphene
-
J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner, B.H. Weiller, Practical chemical sensors from chemically derived graphene. ACS Nano 3(2), 301–306 (2009). doi:10.1021/nn800593m
-
(2009)
ACS Nano
, vol.3
, Issue.2
, pp. 301-306
-
-
Fowler, J.D.1
Allen, M.J.2
Tung, V.C.3
Yang, Y.4
Kaner, R.B.5
Weiller, B.H.6
-
46
-
-
78650150008
-
Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing
-
Q. Ji, I. Honma, S.M. Paek, M. Akada, J.P. Hill, A. Vinu, K. Ariga, Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing. Angew. Chem. Int. Ed. 49(50), 9737–9979 (2010). doi:10.1002/anie.201004929
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, Issue.50
, pp. 9737-9979
-
-
Ji, Q.1
Honma, I.2
Paek, S.M.3
Akada, M.4
Hill, J.P.5
Vinu, A.6
Ariga, K.7
-
48
-
-
84907656142
-
Investigating the effect of gas absorption on the electromechanical and electrochemical behavior of graphene/ZnO structure, suitable for highly selective and sensitive gas sensors
-
S.M.J. Khadem, Y. Abdi, S. Darbari, F. Ostovari, Investigating the effect of gas absorption on the electromechanical and electrochemical behavior of graphene/ZnO structure, suitable for highly selective and sensitive gas sensors. Curr. Appl. Phys. 14(11), 1498–1503 (2014). doi:10.1016/j.cap.2014.07.020
-
(2014)
Curr. Appl. Phys.
, vol.14
, Issue.11
, pp. 1498-1503
-
-
Khadem, S.M.J.1
Abdi, Y.2
Darbari, S.3
Ostovari, F.4
-
49
-
-
77249097555
-
Reduced graphene oxide for room-temperature gas sensors
-
G. Lu, L.E. Ocola, J. Chen, Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20(44), 445502 (2009). doi:10.1088/0957-4484/20/44/445502
-
(2009)
Nanotechnology
, vol.20
, Issue.44
, pp. 445502
-
-
Lu, G.1
Ocola, L.E.2
Chen, J.3
-
50
-
-
79951889470
-
Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations
-
G. Lu, S. Park, K. Yu, R.S. Ruoff, L.E. Ocola, D. Rosenmann, J. Chen, Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano 5(2), 1154–1164 (2011). doi:10.1021/nn102803q
-
(2011)
ACS Nano
, vol.5
, Issue.2
, pp. 1154-1164
-
-
Lu, G.1
Park, S.2
Yu, K.3
Ruoff, R.S.4
Ocola, L.E.5
Rosenmann, D.6
Chen, J.7
-
51
-
-
84861017304
-
Selective gas sensing with a single pristine graphene transistor
-
S. Rumyantsev, G. Liu, M.S. Shur, R.A. Potyrailo, A.A. Balandin, Selective gas sensing with a single pristine graphene transistor. Nano Lett. 12(5), 2294–2298 (2012). doi:10.1021/nl3001293
-
(2012)
Nano Lett.
, vol.12
, Issue.5
, pp. 2294-2298
-
-
Rumyantsev, S.1
Liu, G.2
Shur, M.S.3
Potyrailo, R.A.4
Balandin, A.A.5
-
52
-
-
79955584980
-
2 nanoparticles: in situ synthesis and highly efficient materials for cataluminescence gas sensors
-
2 nanoparticles: in situ synthesis and highly efficient materials for cataluminescence gas sensors. J. Mater. Chem. 21(16), 5972–5977 (2011). doi:10.1039/C0jm04331a
-
(2011)
J. Mater. Chem.
, vol.21
, Issue.16
, pp. 5972-5977
-
-
Song, H.J.1
Zhang, L.C.2
He, C.L.3
Qu, Y.4
Tian, Y.F.5
Lv, Y.6
-
53
-
-
79956363443
-
Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors
-
J. Yi, W. Park II, Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sens. Actuators B 155(1), 264–269 (2011). doi:10.1039/C0jm04331a
-
(2011)
Sens. Actuators B
, vol.155
, Issue.1
, pp. 264-269
-
-
Yi, J.1
Park, W.2
-
54
-
-
84901534393
-
Gas concentration effects on the sensing properties of bilayer graphene
-
E. Akbari, V.K. Arora, A. Enzevaee, M.T. Ahmadi, M. Khaledian, R. Yusof, Gas concentration effects on the sensing properties of bilayer graphene. Plasmonics 9(4), 987–992 (2014). doi:10.1007/s11468-014-9705-4
-
(2014)
Plasmonics
, vol.9
, Issue.4
, pp. 987-992
-
-
Akbari, E.1
Arora, V.K.2
Enzevaee, A.3
Khaledian, M.4
Yusof, R.5
-
55
-
-
84903161655
-
Edge-functionalized graphene nanoflakes as selective gas sensors
-
A. Omidvar, A. Mohajeri, Edge-functionalized graphene nanoflakes as selective gas sensors. Sens. Actuators B 202, 622–630 (2014). doi:10.1016/j.snb.2014.05.136
-
(2014)
Sens. Actuators B
, vol.202
, pp. 622-630
-
-
Omidvar, A.1
Mohajeri, A.2
-
56
-
-
84902462974
-
3 gas sensor applications
-
3 gas sensor applications. Beilstein J. Nanotech. 5, 726–734 (2014). doi:10.3762/bjnano.5.85
-
(2014)
Plasmonics
, vol.5
, pp. 726-734
-
-
Akbari, E.1
Arora, V.K.2
Enzevaee, A.3
Ahmadi, M.T.4
Saeidmanesh, M.5
Khaledian, M.6
Karimi, H.7
Yusof, R.8
-
57
-
-
84907094833
-
Graphene sensors: a review of recent developments
-
R. Bogue, Graphene sensors: a review of recent developments. Sensor Rev. 34(3), 233–238 (2014). doi:10.1108/Sr-03-2014-631
-
(2014)
Sensor Rev.
, vol.34
, Issue.3
, pp. 233-238
-
-
Bogue, R.1
-
58
-
-
84881628853
-
Graphene-based gas sensors
-
W.J. Yuan, G.Q. Shi, Graphene-based gas sensors. J. Mater. Chem. A 1(35), 10078–10091 (2013). doi:10.1039/C3ta11774j
-
(2013)
J. Mater. Chem. A
, vol.1
, Issue.35
, pp. 10078-10091
-
-
Yuan, W.J.1
Shi, G.Q.2
-
59
-
-
33947477650
-
A new detector for gaseous components using semiconductive thin films
-
T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34(11), 1502–1503 (1962). doi:10.1021/ac60191a001
-
(1962)
Anal. Chem.
, vol.34
, Issue.11
, pp. 1502-1503
-
-
Seiyama, T.1
Kato, A.2
Fujiishi, K.3
Nagatani, M.4
-
60
-
-
36849103543
-
Activated tungsten oxide gas detectors
-
P.J. Shaver, Activated tungsten oxide gas detectors. Appl. Phys. Lett. 11(8), 255 (1967). doi:10.1063/1.1755123
-
(1967)
Appl. Phys. Lett.
, vol.11
, Issue.8
, pp. 255
-
-
Shaver, P.J.1
-
61
-
-
84873849463
-
Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite
-
Z.Q. Wu, X.D. Chen, S.B. Zhu, Z.W. Zhou, Y. Yao, W. Quan, B. Liu, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators B 178, 485–493 (2013). doi:10.1016/j.snb.2013.01.014
-
(2013)
Sens. Actuators B
, vol.178
, pp. 485-493
-
-
Wu, Z.Q.1
Chen, X.D.2
Zhu, S.B.3
Zhou, Z.W.4
Yao, Y.5
Quan, W.6
Liu, B.7
-
62
-
-
84901257463
-
2 sensor modelling
-
2 sensor modelling. J. Nanomater. 2014, 1–7 (2014). doi:10.1155/2014/534105
-
(2014)
J. Nanomater.
, vol.2014
, pp. 1-7
-
-
Akbari, E.1
Yusof, R.2
Ahmadi, M.T.3
Enzevaee, A.4
Kiani, M.J.5
Karimi, H.6
Rahmani, M.7
-
63
-
-
84862790747
-
Gas sensor based on p-phenylenediamine reduced graphene oxide
-
N.T. Hu, Y.Y. Wang, J. Chai, R.G. Gao, Z. Yang, E.S.W. Kong, Y.F. Zhang, Gas sensor based on p-phenylenediamine reduced graphene oxide. Sens. Actuators B 163(1), 107–114 (2012). doi:10.1016/j.snb.2012.01.016
-
(2012)
Sens. Actuators B
, vol.163
, Issue.1
, pp. 107-114
-
-
Hu, N.T.1
Wang, Y.Y.2
Chai, J.3
Gao, R.G.4
Yang, Z.5
Kong, E.S.W.6
Zhang, Y.F.7
-
64
-
-
65249119339
-
Simple method of preparing graphene flakes by an arc-discharge method
-
K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 113(11), 4257–4259 (2009). doi:10.1021/Jp900791y
-
(2009)
J. Phys. Chem. C
, vol.113
, Issue.11
, pp. 4257-4259
-
-
Subrahmanyam, K.S.1
Panchakarla, L.S.2
Govindaraj, A.3
Rao, C.N.R.4
-
65
-
-
41149109207
-
A study of graphenes prepared by different methods: characterization, properties and solubilization
-
K.S. Subrahmanyam, S.R.C. Vivekchand, A. Govindaraj, C.N.R. Rao, A study of graphenes prepared by different methods: characterization, properties and solubilization. J. Mater. Chem. 18(13), 1517–1523 (2008). doi:10.1039/B716536f
-
(2008)
J. Mater. Chem.
, vol.18
, Issue.13
, pp. 1517-1523
-
-
Subrahmanyam, K.S.1
Vivekchand, S.R.C.2
Govindaraj, A.3
Rao, C.N.R.4
-
66
-
-
84892466434
-
Synthesis, properties and potential applications of porous graphene: a review
-
R. Paola, H. Anming, C. Giuseppe, Synthesis, properties and potential applications of porous graphene: a review. Nano-Micro Lett. 5(4), 260–273 (2013). doi:10.5101/nml.v5i4.p260-273
-
(2013)
Nano-Micro Lett.
, vol.5
, Issue.4
, pp. 260-273
-
-
Paola, R.1
Anming, H.2
Giuseppe, C.3
-
67
-
-
84861841191
-
The prospective two-dimensional graphene nanosheets: preparation, functionalization, and applications
-
Z. Yang, R.G. Gao, N.T. Hu, J. Chai, Y.W. Cheng, L.Y. Zhang, H. Wei, E.S.W. Kong, Y.F. Zhang, The prospective two-dimensional graphene nanosheets: preparation, functionalization, and applications. Nano-Micro Lett. 4(1), 1–9 (2012). doi:10.3786/nml.v4i1.p1-9
-
(2012)
Nano-Micro Lett.
, vol.4
, Issue.1
, pp. 1-9
-
-
Yang, Z.1
Gao, R.G.2
Hu, N.T.3
Chai, J.4
Cheng, Y.W.5
Zhang, L.Y.6
Wei, H.7
Kong, E.S.W.8
Zhang, Y.F.9
-
68
-
-
19944428003
-
Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics
-
C. Berger, Z.M. Song, T.B. Li, X.B. Li, A.Y. Ogbazghi et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108(52), 19912–19916 (2004). doi:10.1021/Jp040650f
-
(2004)
J. Phys. Chem. B
, vol.108
, Issue.52
, pp. 19912-19916
-
-
Berger, C.1
Song, Z.M.2
Li, T.B.3
Li, X.B.4
Ogbazghi, A.Y.5
-
69
-
-
0026836808
-
STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition
-
T.A. Land, T. Michely, R.J. Behm, J.C. Hemminger, G. Comsa, STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surf. Sci. 264(3), 261–270 (1992). doi:10.1016/0039-6028(92)90183-7
-
(1992)
Surf. Sci.
, vol.264
, Issue.3
, pp. 261-270
-
-
Land, T.A.1
Michely, T.2
Behm, R.J.3
Hemminger, J.C.4
Comsa, G.5
-
70
-
-
34548424165
-
Scanning tunneling microscopy of graphene on Ru(0001)
-
S. Marchini, S. Gunther, J. Wintterlin, Scanning tunneling microscopy of graphene on Ru(0001). Phys. Rev. B 76, 075429 (2007). doi:10.1103/Physrevb.76.075429
-
(2007)
Phys. Rev. B
, vol.76
, pp. 075429
-
-
Marchini, S.1
Gunther, S.2
Wintterlin, J.3
-
71
-
-
40449136109
-
Structural coherency of graphene on Ir(111)
-
J. Coraux, A.T. N’Diaye, C. Busse, T. Michely, Structural coherency of graphene on Ir(111). Nano Lett. 8(2), 565–570 (2008). doi:10.1021/nl0728874
-
(2008)
Nano Lett.
, vol.8
, Issue.2
, pp. 565-570
-
-
Coraux, J.1
N’Diaye, A.T.2
Busse, C.3
Michely, T.4
-
72
-
-
58149218430
-
High-throughput solution processing of large-scale graphene
-
V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4(1), 25–29 (2009). doi:10.1038/nnano.2008.329
-
(2009)
Nat. Nanotechnol.
, vol.4
, Issue.1
, pp. 25-29
-
-
Tung, V.C.1
Allen, M.J.2
Yang, Y.3
Kaner, R.B.4
-
73
-
-
0010124537
-
On the atomic weight of graphite
-
B.C. Brodie, On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 149, 249–259 (1859). doi:10.1098/rstl.1859.0013
-
(1859)
Philos. Trans. R. Soc. Lond.
, vol.149
, pp. 249-259
-
-
Brodie, B.C.1
-
74
-
-
84981756708
-
Verfahren zur darstellung der graphitsäure
-
L. Staudenmaier, Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 31(2), 1481–1487 (1898). doi:10.1002/cber.18980310237
-
(1898)
Ber. Dtsch. Chem. Ges.
, vol.31
, Issue.2
, pp. 1481-1487
-
-
Staudenmaier, L.1
-
75
-
-
33947461960
-
Preparation of graphitic oxide
-
W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. JACS 80(6), 1339–1339 (1958). doi:10.1021/ja01539a017
-
(1958)
JACS
, vol.80
, Issue.6
, pp. 1339
-
-
Hummers, W.S.1
Offeman, R.E.2
-
76
-
-
84876939934
-
Enhanced activity of Pd nanoparticles supported on Vulcan XC72R carbon pretreated via a modified Hummers method for formic acid electrooxidation
-
J.Y. Cao, L.Z. Song, J.L. Tang, J. Xu, W.C. Wang, Z.D. Chen, Enhanced activity of Pd nanoparticles supported on Vulcan XC72R carbon pretreated via a modified Hummers method for formic acid electrooxidation. Appl. Surf. Sci. 274, 138–143 (2013). doi:10.1016/j.apsusc.2013.02.133
-
(2013)
Appl. Surf. Sci.
, vol.274
, pp. 138-143
-
-
Cao, J.Y.1
Song, L.Z.2
Tang, J.L.3
Xu, J.4
Wang, W.C.5
Chen, Z.D.6
-
77
-
-
84884533002
-
Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods
-
C. Botas, P. Alvarez, P. Blanco, M. Granda, C. Blanco et al., Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon 65, 156–164 (2013). doi:10.1016/j.carbon.2013.08.009
-
(2013)
Carbon
, vol.65
, pp. 156-164
-
-
Botas, C.1
Alvarez, P.2
Blanco, P.3
Granda, M.4
Blanco, C.5
-
78
-
-
73349091235
-
High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified hummers method
-
T. Chen, B. Zeng, J.L. Liu, J.H. Dong, X.Q. Liu, Z. Wu, X.Z. Yang, Z.M. Li, High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified hummers method. J. Phys. Conf. Ser. 188, 012051 (2009). doi:10.1088/1742-6596/188/1/012051
-
(2009)
J. Phys. Conf. Ser.
, vol.188
, pp. 012051
-
-
Chen, T.1
Zeng, B.2
Liu, J.L.3
Dong, J.H.4
Liu, X.Q.5
Wu, Z.6
Yang, X.Z.7
Li, Z.M.8
-
79
-
-
84922444038
-
A unique two-step Hummers method for fabricating low-defect graphene oxide nanoribbons through exfoliating multiwalled carbon nanotubes
-
C.I. Chang, K.H. Chang, H.H. Shen, C.C. Hu, A unique two-step Hummers method for fabricating low-defect graphene oxide nanoribbons through exfoliating multiwalled carbon nanotubes. J. Taiwan. Inst. Chem. E 45(5), 2762–2769 (2014). doi:10.1016/j.jtice.2014.05.030
-
(2014)
J. Taiwan. Inst. Chem. E
, vol.45
, Issue.5
, pp. 2762-2769
-
-
Chang, C.I.1
Chang, K.H.2
Shen, H.H.3
Hu, C.C.4
-
80
-
-
33744471173
-
Functionalized single graphene sheets derived from splitting graphite oxide
-
H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso et al., Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110(17), 8535–8539 (2006). doi:10.1021/jp060936f
-
(2006)
J. Phys. Chem. B
, vol.110
, Issue.17
, pp. 8535-8539
-
-
Schniepp, H.C.1
Li, J.L.2
McAllister, M.J.3
Sai, H.4
Herrera-Alonso, M.5
-
81
-
-
57349099336
-
Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation
-
X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, F. Zhang, Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv. Mater. 20(23), 4490–4493 (2008). doi:10.1002/adma.200801306
-
(2008)
Adv. Mater.
, vol.20
, Issue.23
, pp. 4490-4493
-
-
Fan, X.1
Peng, W.2
Li, Y.3
Li, X.4
Wang, S.5
Zhang, G.6
Zhang, F.7
-
82
-
-
53549119409
-
Facile synthesis and characterization of graphene nanosheets
-
G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C 112(22), 8192–8195 (2008). doi:10.1021/jp710931h
-
(2008)
J. Phys. Chem. C
, vol.112
, Issue.22
, pp. 8192-8195
-
-
Wang, G.1
Yang, J.2
Park, J.3
Gou, X.4
Wang, B.5
Liu, H.6
Yao, J.7
-
83
-
-
67649198223
-
Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance
-
H.-J. Shin, K.K. Kim, A. Benayad, S.-M. Yoon, H.K. Park et al., Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19(12), 1987–1992 (2009). doi:10.1002/adfm.200900167
-
(2009)
Adv. Funct. Mater.
, vol.19
, Issue.12
, pp. 1987-1992
-
-
Shin, H.-J.1
Kim, K.K.2
Benayad, A.3
Yoon, S.-M.4
Park, H.K.5
-
84
-
-
66749117817
-
Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films
-
M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong, Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chemistry15(25), 6116–6120 (2009). doi:10.1002/chem.200900596
-
(2009)
Chemistry
, vol.15
, Issue.25
, pp. 6116-6120
-
-
Zhou, M.1
Wang, Y.2
Zhai, Y.3
Zhai, J.4
Ren, W.5
Wang, F.6
Dong, S.7
-
85
-
-
67650684978
-
Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties
-
Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 21(13), 2950–2956 (2009). doi:10.1021/cm9006603
-
(2009)
Chem. Mater.
, vol.21
, Issue.13
, pp. 2950-2956
-
-
Zhou, Y.1
Bao, Q.2
Tang, L.A.L.3
Zhong, Y.4
Loh, K.P.5
-
86
-
-
74149088870
-
Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves
-
W. Chen, L. Yan, P.R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48(4), 1146–1152 (2010). doi:10.1016/j.carbon.2009.11.037
-
(2010)
Carbon
, vol.48
, Issue.4
, pp. 1146-1152
-
-
Chen, W.1
Yan, L.2
Bangal, P.R.3
-
87
-
-
75749121906
-
An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder
-
Z. Fan, K. Wang, T. Wei, J. Yan, L. Song, B. Shao, An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 48(5), 1686–1689 (2010). doi:10.1016/j.carbon.2009.12.063
-
(2010)
Carbon
, vol.48
, Issue.5
, pp. 1686-1689
-
-
Fan, Z.1
Wang, K.2
Wei, T.3
Yan, J.4
Song, L.5
Shao, B.6
-
88
-
-
77951071928
-
Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions
-
M.J. Fernandez-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J.M.D. Tascon, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 114(14), 6426–6432 (2010). doi:10.1021/jp100603h
-
(2010)
J. Phys. Chem. C
, vol.114
, Issue.14
, pp. 6426-6432
-
-
Fernandez-Merino, M.J.1
Guardia, L.2
Paredes, J.I.3
Villar-Rodil, S.4
Solis-Fernandez, P.5
Martinez-Alonso, A.6
Tascon, J.M.D.7
-
89
-
-
75449104301
-
Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design
-
X. Gao, J. Jang, S. Nagase, Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C 114(2), 832–842 (2010). doi:10.1021/jp909284g
-
(2010)
J. Phys. Chem. C
, vol.114
, Issue.2
, pp. 832-842
-
-
Gao, X.1
Jang, J.2
Nagase, S.3
-
90
-
-
77955751974
-
Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates
-
S. Mao, G. Lu, K. Yu, Z. Bo, J. Chen, Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv. Mater. 22(32), 3521–3526 (2010). doi:10.1002/adma.201000520
-
(2010)
Adv. Mater.
, vol.22
, Issue.32
, pp. 3521-3526
-
-
Mao, S.1
Lu, G.2
Yu, K.3
Bo, Z.4
Chen, J.5
-
91
-
-
77957119241
-
Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids
-
S. Pei, J. Zhao, J. Du, W. Ren, H.-M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15), 4466–4474 (2010). doi:10.1016/j.carbon.2010.08.006
-
(2010)
Carbon
, vol.48
, Issue.15
, pp. 4466-4474
-
-
Pei, S.1
Zhao, J.2
Du, J.3
Ren, W.4
Cheng, H.-M.5
-
92
-
-
77953314241
-
One-step synthesis of superior dispersion of chemically converted graphene in organic solvents
-
V.H. Pham, T.V. Cuong, T.-D. Nguyen-Phan, H.D. Pham, E.J. Kim, S.H. Hur, E.W. Shin, S. Kim, J.S. Chung, One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chem. Commun. 46(24), 4375–4377 (2010). doi:10.1039/c0cc00363h
-
(2010)
Chem. Commun.
, vol.46
, Issue.24
, pp. 4375-4377
-
-
Pham, V.H.1
Cuong, T.V.2
Nguyen-Phan, T.-D.3
Pham, H.D.4
Kim, E.J.5
Hur, S.H.6
Shin, E.W.7
Kim, S.8
Chung, J.S.9
-
93
-
-
76249106647
-
Reduction of graphene oxide via L-ascorbic acid
-
J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 46(7), 1112–1114 (2010). doi:10.1039/b917705a
-
(2010)
Chem. Commun.
, vol.46
, Issue.7
, pp. 1112-1114
-
-
Zhang, J.1
Yang, H.2
Shen, G.3
Cheng, P.4
Zhang, J.5
Guo, S.6
-
94
-
-
77957304435
-
Efficient preparation of large-area graphene oxide sheets for transparent conductive films
-
J. Zhao, S. Pei, W. Ren, L. Gao, H.-M. Cheng, Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 4(9), 5245–5252 (2010). doi:10.1021/nn1015506
-
(2010)
ACS Nano
, vol.4
, Issue.9
, pp. 5245-5252
-
-
Zhao, J.1
Pei, S.2
Ren, W.3
Gao, L.4
Cheng, H.-M.5
-
95
-
-
77951704609
-
Reducing Sugar: New functional molecules for the green synthesis of graphene nanosheets
-
C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing Sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4), 2429–2437 (2010). doi:10.1021/nn1002387
-
(2010)
ACS Nano
, vol.4
, Issue.4
, pp. 2429-2437
-
-
Zhu, C.1
Guo, S.2
Fang, Y.3
Dong, S.4
-
96
-
-
79956109062
-
Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide
-
Z.-J. Fan, W. Kai, J. Yan, T. Wei, L.-J. Zhi, J. Feng, Y.-M. Ren, L.-P. Song, F. Wei, Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 5(1), 191–198 (2011). doi:10.1021/nn102339t
-
(2011)
ACS Nano
, vol.5
, Issue.1
, pp. 191-198
-
-
Fan, Z.-J.1
Kai, W.2
Yan, J.3
Wei, T.4
Zhi, L.-J.5
Feng, J.6
Ren, Y.-M.7
Song, L.-P.8
Wei, F.9
-
97
-
-
80054801742
-
Electrical assembly and reduction of graphene oxide in a single solution step for use in flexible sensors
-
Y. Guo, B. Wu, H. Liu, Y. Ma, Y. Yang, J. Zheng, G. Yu, Y. Liu, Electrical assembly and reduction of graphene oxide in a single solution step for use in flexible sensors. Adv. Mater. 23(40), 4626–4630 (2011). doi:10.1002/adma.201103120
-
(2011)
Adv. Mater.
, vol.23
, Issue.40
, pp. 4626-4630
-
-
Guo, Y.1
Wu, B.2
Liu, H.3
Ma, Y.4
Yang, Y.5
Zheng, J.6
Yu, G.7
Liu, Y.8
-
98
-
-
80053249104
-
Evaluation criteria for reduced graphene oxide
-
D. Luo, G. Zhang, J. Liu, X. Sun, Evaluation criteria for reduced graphene oxide. J. Phys. Chem. C 115(23), 11327–11335 (2011). doi:10.1021/jp110001y
-
(2011)
J. Phys. Chem. C
, vol.115
, Issue.23
, pp. 11327-11335
-
-
Luo, D.1
Zhang, G.2
Liu, J.3
Sun, X.4
-
99
-
-
79955555293
-
Hydrazine-reduction of graphite- and graphene oxide
-
P. Sungjin, A. Jinho, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9), 3019–3023 (2011). doi:10.1016/j.carbon.2011.02.071
-
(2011)
Carbon
, vol.49
, Issue.9
, pp. 3019-3023
-
-
Sungjin, P.1
Jinho, A.2
Potts, J.R.3
Velamakanni, A.4
Murali, S.5
Ruoff, R.S.6
-
100
-
-
84859565360
-
Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide
-
O. Akhavan, M. Kalaee, Z.S. Alavi, S.M.A. Ghiasi, A. Esfandiar, Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide. Carbon 50(8), 3015–3025 (2012). doi:10.1016/j.carbon.2012.02.087
-
(2012)
Carbon
, vol.50
, Issue.8
, pp. 3015-3025
-
-
Akhavan, O.1
Kalaee, M.2
Alavi, Z.S.3
Ghiasi, S.M.A.4
Esfandiar, A.5
-
101
-
-
84862901076
-
Lithium aluminum hydride as reducing agent for chemically reduced graphene oxides
-
A. Ambrosi, C.K. Chua, A. Bonanni, M. Pumera, Lithium aluminum hydride as reducing agent for chemically reduced graphene oxides. Chem. Mater. 24(12), 2292–2298 (2012). doi:10.1021/cm300382b
-
(2012)
Chem. Mater.
, vol.24
, Issue.12
, pp. 2292-2298
-
-
Ambrosi, A.1
Chua, C.K.2
Bonanni, A.3
Pumera, M.4
-
102
-
-
84863206303
-
Chemical and thermal reduction of graphene oxide and its electrically conductive polylactic acid nanocomposites
-
Y. Shen, T. Jing, W. Ren, J. Zhang, Z.-G. Jiang, Z.-Z. Yu, A. Dasari, Chemical and thermal reduction of graphene oxide and its electrically conductive polylactic acid nanocomposites. Compos. Sci. Technol. 72(12), 1430–1435 (2012). doi:10.1016/j.compscitech.2012.05.018
-
(2012)
Compos. Sci. Technol.
, vol.72
, Issue.12
, pp. 1430-1435
-
-
Shen, Y.1
Jing, T.2
Ren, W.3
Zhang, J.4
Jiang, Z.-G.5
Yu, Z.-Z.6
Dasari, A.7
-
103
-
-
84865690678
-
Chemical and microscopic analysis of graphene prepared by different reduction degrees of graphene oxide
-
P. Solis-Fernandez, R. Rozada, J.I. Paredes, S. Villar-Rodil, M.J. Fernandez-Merino, L. Guardia, A. Martinez-Alonso, J.M.D. Tascon, Chemical and microscopic analysis of graphene prepared by different reduction degrees of graphene oxide. J. Alloys Compd. 536, S532–S537 (2012). doi:10.1016/j.jallcom.2012.01.102
-
(2012)
J. Alloys Compd.
, vol.536
, pp. S532-S537
-
-
Solis-Fernandez, P.1
Rozada, R.2
Paredes, J.I.3
Villar-Rodil, S.4
Fernandez-Merino, M.J.5
Guardia, L.6
Martinez-Alonso, A.7
Tascon, J.M.D.8
-
104
-
-
84865640346
-
3 catalyst
-
3 catalyst. Mater. Lett. 86, 161–164 (2012). doi:10.1016/j.matlet.2012.07.063
-
(2012)
Mater. Lett.
, vol.86
, pp. 161-164
-
-
Thanh Truong, D.1
Viet Hung, P.2
Bao Khanh, V.3
Hur, S.H.4
Shin, E.W.5
Kim, E.J.6
Chung, J.S.7
Tascon, J.M.D.8
-
105
-
-
84876529193
-
Reduction of graphene oxide with substituted borohydrides
-
C.K. Chua, M. Pumera, Reduction of graphene oxide with substituted borohydrides. J. Mater. Chem. A 1(5), 1892–1898 (2013). doi:10.1039/c2ta00665k
-
(2013)
J. Mater. Chem. A
, vol.1
, Issue.5
, pp. 1892-1898
-
-
Chua, C.K.1
Pumera, M.2
-
106
-
-
84870201488
-
A facile synthesis of reduced graphene oxide with Zn powder under acidic condition
-
P. Liu, Y. Huang, L. Wang, A facile synthesis of reduced graphene oxide with Zn powder under acidic condition. Mater. Lett. 91, 125–128 (2013). doi:10.1016/j.matlet.2012.09.085
-
(2013)
Mater. Lett.
, vol.91
, pp. 125-128
-
-
Liu, P.1
Huang, Y.2
Wang, L.3
-
107
-
-
84875736057
-
Ammonia gas sensor based on aniline reduced graphene oxide
-
X.L. Huang, N.T. Hu, Y.Y. Wang, Y.F. Zhang, Ammonia gas sensor based on aniline reduced graphene oxide. Adv. Mater. Res. 669, 79–84 (2013). doi:10.4028/www.scientific.net/AMR.669.79
-
(2013)
Adv. Mater. Res.
, vol.669
, pp. 79-84
-
-
Huang, X.L.1
Hu, N.T.2
Wang, Y.Y.3
Zhang, Y.F.4
-
109
-
-
84909972628
-
3 and reduced graphene oxide
-
3 and reduced graphene oxide. RSC Adv. 4(101), 57493–57500 (2014). doi:10.1039/C4ra10136g
-
(2014)
RSC Adv.
, vol.4
, Issue.101
, pp. 57493-57500
-
-
Dong, Y.L.1
Zhang, X.F.2
Cheng, X.L.3
Xu, Y.M.4
Gao, S.5
Zhao, H.6
Huo, L.H.7
-
111
-
-
84858222542
-
2 gas sensor
-
2 gas sensor. JACS 134(10), 4905–4917 (2012). doi:10.1021/ja211683m
-
(2012)
JACS
, vol.134
, Issue.10
, pp. 4905-4917
-
-
Deng, S.1
Tjoa, V.2
Fan, H.M.3
Tan, H.R.4
Sayle, D.C.5
Olivo, M.6
Mhaisalkar, S.7
Wei, J.8
Sow, C.H.9
-
112
-
-
84866091104
-
Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles
-
M. Gautam, A.H. Jayatissa, Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles. Solid-State Electron. 78, 159–165 (2012). doi:10.1016/j.sse.2012.05.059
-
(2012)
Solid-State Electron.
, vol.78
, pp. 159-165
-
-
Gautam, M.1
Jayatissa, A.H.2
-
114
-
-
84907207774
-
Low-cost and flexible printed graphene-PEDOT:PSS gas sensor for ammonia detection
-
Y. Seekaew, S. Lokavee, D. Phokharatkul, A. Wisitsoraat, T. Kerdcharoen, C. Wongchoosuk, Low-cost and flexible printed graphene-PEDOT:PSS gas sensor for ammonia detection. Org. Electron. 15(11), 2971–2981 (2014). doi:10.1016/j.orgel.2014.08.044
-
(2014)
Org. Electron.
, vol.15
, Issue.11
, pp. 2971-2981
-
-
Seekaew, Y.1
Lokavee, S.2
Phokharatkul, D.3
Wisitsoraat, A.4
Kerdcharoen, T.5
Wongchoosuk, C.6
-
115
-
-
84867372673
-
Reduced graphene oxide-polyaniline hybrid: Preparation, characterization and its applications for ammonia gas sensing
-
X. Huang, N. Hu, R. Gao, Y. Yu, Y. Wang, Z. Yang, E. Siu-Wai Kong, H. Wei, Y. Zhang, Reduced graphene oxide-polyaniline hybrid: Preparation, characterization and its applications for ammonia gas sensing. J. Mater. Chem. 22(42), 22488 (2012). doi:10.1039/c2jm34340a
-
(2012)
J. Mater. Chem.
, vol.22
, Issue.42
, pp. 22488
-
-
Huang, X.1
Hu, N.2
Gao, R.3
Yu, Y.4
Wang, Y.5
Yang, Z.6
Siu-Wai Kong, E.7
Wei, H.8
Zhang, Y.9
-
116
-
-
84890719969
-
3 gas sensors based on chemically reduced graphene oxide
-
3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 25(2), 025502 (2014). doi:10.1088/0957-4484/25/2/025502
-
(2014)
Nanotechnology
, vol.25
, Issue.2
, pp. 025502
-
-
Hu, N.1
Yang, Z.2
Wang, Y.3
Zhang, L.4
Wang, Y.5
Huang, X.6
Wei, H.7
Wei, L.8
Zhang, Y.9
-
117
-
-
84904016788
-
Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes
-
Y. Wang, L. Zhang, N. Hu, Y. Wang, Y. Zhang, Z. Zhou, Y. Liu, S. Shen, C. Peng, Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes. Nanoscale Res. Lett. 9(1), 251 (2014). doi:10.1186/1556-276X-9-251
-
(2014)
Nanoscale Res. Lett.
, vol.9
, Issue.1
, pp. 251
-
-
Wang, Y.1
Zhang, L.2
Hu, N.3
Wang, Y.4
Zhang, Y.5
Zhou, Z.6
Liu, Y.7
Shen, S.8
Peng, C.9
-
118
-
-
84867034285
-
Graphene based field effect transistor for the detection of ammonia
-
M. Gautam, A.H. Jayatissa, Graphene based field effect transistor for the detection of ammonia. J. Appl. Phys. 112, 064304 (2012). doi:10.1063/1.4752272
-
(2012)
J. Appl. Phys.
, vol.112
, pp. 064304
-
-
Gautam, M.1
Jayatissa, A.H.2
-
120
-
-
84893105569
-
Ammonia gas sensing using a graphene field-effect transistor gated by ionic liquid
-
A. Inaba, K. Yoo, Y. Takei, K. Matsumoto, I. Shimoyama, Ammonia gas sensing using a graphene field-effect transistor gated by ionic liquid. Sens. Actuators B 195, 15–21 (2014). doi:10.1016/j.snb.2013.12.118
-
(2014)
Sens. Actuators B
, vol.195
, pp. 15-21
-
-
Inaba, A.1
Yoo, K.2
Takei, Y.3
Matsumoto, K.4
Shimoyama, I.5
-
121
-
-
84901327820
-
The investigation of reduced graphene oxide/P3HT composite films for ammonia detection
-
Z.B. Ye, Y.D. Jiang, H.L. Tai, Z. Yuan, The investigation of reduced graphene oxide/P3HT composite films for ammonia detection. Integr. Ferroelectr. 154(1), 73–81 (2014). doi:10.1080/10584587.2014.904148
-
(2014)
Integr. Ferroelectr.
, vol.154
, Issue.1
, pp. 73-81
-
-
Ye, Z.B.1
Jiang, Y.D.2
Tai, H.L.3
Yuan, Z.4
-
122
-
-
84897511937
-
Ammonia gas detection by tannic acid functionalized and reduced graphene oxide at room temperature
-
S. Yoo, X. Li, Y. Wu, W.H. Liu, X.L. Wang, W.H. Yi, Ammonia gas detection by tannic acid functionalized and reduced graphene oxide at room temperature. J. Nanomater. 2014, 1–6 (2014). doi:10.1155/2014/497384
-
(2014)
J. Nanomater.
, vol.2014
, pp. 1-6
-
-
Yoo, S.1
Li, X.2
Wu, Y.3
Liu, W.H.4
Wang, X.L.5
Yi, W.H.6
-
124
-
-
84906310536
-
2 gas sensor using multilayer graphene films by chemical vapor deposition
-
2 gas sensor using multilayer graphene films by chemical vapor deposition. Carbon Lett. 14(3), 186–189 (2013). doi:10.5714/Cl.2013.14.3.186
-
(2013)
Carbon Lett.
, vol.14
, Issue.3
, pp. 186-189
-
-
Choi, H.1
Jeong, H.Y.2
Lee, D.S.3
Choi, C.G.4
Choi, S.Y.5
-
126
-
-
84901674451
-
2 at room temperature
-
2 at room temperature. ACS Appl. Mater. Interface 6(10), 7426–7433 (2014). doi:10.1021/am500843p
-
(2014)
ACS Appl. Mater. Interface
, vol.6
, Issue.10
, pp. 7426-7433
-
-
Huang, L.1
Wang, Z.2
Zhang, J.3
Pu, J.4
Lin, Y.5
Xu, S.6
Shen, L.7
Chen, Q.8
Shi, W.9
-
127
-
-
84930651364
-
Ultrasensitive and highly selective graphene-based single yarn for use in wearable gas sensor
-
Y. Ju Yun, W.G. Hong, N.-J. Choi, B. Hoon Kim, Y. Jun, H.-K. Lee, Ultrasensitive and highly selective graphene-based single yarn for use in wearable gas sensor. Sci. Rep. 5, 10904–10904 (2015). doi:10.1038/srep10904
-
(2015)
Sci. Rep.
, vol.5
, pp. 10904
-
-
Ju Yun, Y.1
Hong, W.G.2
Choi, N.-J.3
Hoon Kim, B.4
Jun, Y.5
Lee, H.-K.6
-
128
-
-
79957846816
-
2 detection
-
2 detection. Sens. Actuators B 155(2), 451–455 (2011). doi:10.1016/j.snb.2010.12.046
-
(2011)
Sens. Actuators B
, vol.155
, Issue.2
, pp. 451-455
-
-
Pearce, R.1
Iakimov, T.2
Andersson, M.3
Hultman, L.4
Spetz, A.L.5
Yakimova, R.6
-
129
-
-
84862786358
-
2 gas sensor based on ozone treated graphene
-
2 gas sensor based on ozone treated graphene. Sens. Actuators B 166, 172–176 (2012). doi:10.1016/j.snb.2012.02.036
-
(2012)
Sens. Actuators B
, vol.166
, pp. 172-176
-
-
Chung, M.G.1
Kim, D.H.2
Lee, H.M.3
Kim, T.4
Choi, J.H.5
Seo, D.K.6
Yoo, J.B.7
Hong, S.H.8
Kang, T.J.9
Kim, Y.H.10
-
131
-
-
84860508677
-
Faster response of NO(2) sensing in graphene-WO(3) nanocomposites
-
S. Srivastava, K. Jain, V.N. Singh, S. Singh, N. Vijayan, N. Dilawar, G. Gupta, T.D. Senguttuvan, Faster response of NO(2) sensing in graphene-WO(3) nanocomposites. Nanotechnology 23(20), 205501 (2012). doi:10.1088/0957-4484/23/20/205501
-
(2012)
Nanotechnology
, vol.23
, Issue.20
, pp. 205501
-
-
Srivastava, S.1
Jain, K.2
Singh, V.N.3
Singh, S.4
Vijayan, N.5
Dilawar, N.6
Gupta, G.7
Senguttuvan, T.D.8
-
133
-
-
84902355318
-
2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids
-
2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B 202, 272–278 (2014). doi:10.1016/j.snb.2014.05.086
-
(2014)
Sens. Actuators B
, vol.202
, pp. 272-278
-
-
Liu, S.1
Yu, B.2
Zhang, H.3
Fei, T.4
Zhang, T.5
-
135
-
-
84905279943
-
2 sensitive caesium doped graphene oxide conductometric sensors
-
2 sensitive caesium doped graphene oxide conductometric sensors. Beilstein. J. Nanotechnol. 5, 1073–1081 (2014). doi:10.3762/bjnano.5.120
-
(2014)
Beilstein. J. Nanotechnol.
, vol.5
, pp. 1073-1081
-
-
Piloto, C.1
Notarianni, M.2
Shafiei, M.3
Taran, E.4
Galpaya, D.5
Yan, C.6
Motta, N.7
-
136
-
-
84885995031
-
2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide
-
2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide. Sens. Actuators B 190, 865–872 (2014). doi:10.1016/j.snb.2013.09.078
-
(2014)
Sens. Actuators B
, vol.190
, pp. 865-872
-
-
Su, P.G.1
Shieh, H.C.2
-
138
-
-
84908199050
-
3 nanocomposite films
-
3 nanocomposite films. Talanta 132, 398–405 (2015). doi:10.1016/j.Talanta2014.09.034
-
(2015)
Talanta
, vol.132
, pp. 398-405
-
-
Su, P.-G.1
Peng, S.-L.2
-
140
-
-
78449291387
-
Hydrogen sensing using pd-functionalized multi-layer graphene nanoribbon networks
-
J.L. Johnson, A. Behnam, S.J. Pearton, A. Ural, Hydrogen sensing using pd-functionalized multi-layer graphene nanoribbon networks. Adv. Mater. 22(43), 4877–4880 (2010). doi:10.1002/adma.201001798
-
(2010)
Adv. Mater.
, vol.22
, Issue.43
, pp. 4877-4880
-
-
Johnson, J.L.1
Behnam, A.2
Pearton, S.J.3
Ural, A.4
-
141
-
-
79959764420
-
Hydrogen detection using platinum coated graphene grown on SiC
-
B.H. Chu, C.F. Lo, J. Nicolosi, C.Y. Chang, V. Chen, W. Strupinski, S.J. Pearton, F. Ren, Hydrogen detection using platinum coated graphene grown on SiC. Sens. Actuators B 157(2), 500–503 (2011). doi:10.1016/j.snb.2011.05.007
-
(2011)
Sens. Actuators B
, vol.157
, Issue.2
, pp. 500-503
-
-
Chu, B.H.1
Lo, C.F.2
Nicolosi, J.3
Chang, C.Y.4
Chen, V.5
Strupinski, W.6
Pearton, S.J.7
Ren, F.8
-
142
-
-
79959546844
-
Effect of coated platinum thickness on hydrogen detection sensitivity of graphene-based sensors
-
B.H. Chu, J. Nicolosi, C.F. Lo, W. Strupinski, S.J. Pearton, F. Ren, Effect of coated platinum thickness on hydrogen detection sensitivity of graphene-based sensors. Electrochem. Solid-State Lett. 14(7), K43–K45 (2011). doi:10.1149/1.3589250
-
(2011)
Electrochem. Solid-State Lett.
, vol.14
, Issue.7
, pp. K43-K45
-
-
Chu, B.H.1
Nicolosi, J.2
Lo, C.F.3
Strupinski, W.4
Pearton, S.J.5
Ren, F.6
-
143
-
-
79957855409
-
Fast response and recovery of hydrogen sensing in Pd-Pt nanoparticle-graphene composite layers
-
R. Kumar, D. Varandani, B.R. Mehta, V.N. Singh, Z. Wen, X. Feng, K. Muellen, Fast response and recovery of hydrogen sensing in Pd-Pt nanoparticle-graphene composite layers. Nanotechnology 22(27), 275719 (2011). doi:10.1088/0957-4484/22/27/275719
-
(2011)
Nanotechnology
, vol.22
, Issue.27
, pp. 275719
-
-
Kumar, R.1
Varandani, D.2
Mehta, B.R.3
Singh, V.N.4
Wen, Z.5
Feng, X.6
Muellen, K.7
-
144
-
-
84888244665
-
Enhanced hydrogen sensing properties of graphene by introducing a mono-atom-vacancy
-
Q.G. Jiang, Z.M. Ao, W.T. Zheng, S. Li, Q. Jiang, Enhanced hydrogen sensing properties of graphene by introducing a mono-atom-vacancy. Phys. Chem. Chem. Phys. 15(48), 21016–21022 (2013). doi:10.1039/c3cp52976b
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, Issue.48
, pp. 21016-21022
-
-
Jiang, Q.G.1
Ao, Z.M.2
Zheng, W.T.3
Li, S.4
Jiang, Q.5
-
145
-
-
77953678696
-
Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor
-
A. Kaniyoor, R.I. Jafri, T. Arockiadoss, S. Ramaprabhu, Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor. Nanoscale 1(3), 382–386 (2009). doi:10.1039/b9nr00015a
-
(2009)
Nanoscale
, vol.1
, Issue.3
, pp. 382-386
-
-
Kaniyoor, A.1
Jafri, R.I.2
Arockiadoss, T.3
Ramaprabhu, S.4
-
146
-
-
77956149871
-
Platinum/graphene nanosheet/SiC contacts and their application for hydrogen gas sensing
-
M. Shafiei, P.G. Spizzirri, R. Arsat, J. Yu, J. du Plessis, S. Dubin, R.B. Kaner, K. Kalantar-Zadeh, W. Wlodarski, Platinum/graphene nanosheet/SiC contacts and their application for hydrogen gas sensing. J. Phys. Chem. C 114(32), 13796–13801 (2010). doi:10.1021/jp104459s
-
(2010)
J. Phys. Chem. C
, vol.114
, Issue.32
, pp. 13796-13801
-
-
Shafiei, M.1
Spizzirri, P.G.2
Arsat, R.3
Yu, J.4
du Plessis, J.5
Dubin, S.6
Kaner, R.B.7
Kalantar-Zadeh, K.8
Wlodarski, W.9
-
147
-
-
79953169106
-
Hydrogen sensor based on a graphene: palladium nanocomposite
-
U. Lange, T. Hirsch, V.M. Mirsky, O.S. Wolfbeis, Hydrogen sensor based on a graphene: palladium nanocomposite. Electrochimi. Acta 56(10), 3707–3712 (2011). doi:10.1016/j.electacta.2010.10.078
-
(2011)
Electrochimi. Acta
, vol.56
, Issue.10
, pp. 3707-3712
-
-
Lange, U.1
Hirsch, T.2
Mirsky, V.M.3
Wolfbeis, O.S.4
-
148
-
-
84861848486
-
Flexible hydrogen sensors using graphene with palladium nanoparticle decoration
-
M.G. Chung, D.-H. Kim, D.K. Seo, T. Kim, H.U. Im, H.M. Lee, J.-B. Yoo, S.-H. Hong, T.J. Kang, Y.H. Kim, Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sens. Actuators B 169, 387–392 (2012). doi:10.1016/j.snb.2012.05.031
-
(2012)
Sens. Actuators B
, vol.169
, pp. 387-392
-
-
Chung, M.G.1
Kim, D.-H.2
Seo, D.K.3
Kim, T.4
Im, H.U.5
Lee, H.M.6
Yoo, J.-B.7
Hong, S.-H.8
Kang, T.J.9
Kim, Y.H.10
-
149
-
-
84859388720
-
Detection of hydrogen using graphene
-
R.C. Ehemann, P.S. Krstic, J. Dadras, P.R.C. Kent, J. Jakowski, Detection of hydrogen using graphene. Nanoscale Res. Lett. 7, 1–14 (2012). doi:10.1186/1556-276x-7-198
-
(2012)
Nanoscale Res. Lett.
, vol.7
, pp. 1-14
-
-
Ehemann, R.C.1
Krstic, P.S.2
Dadras, J.3
Kent, P.R.C.4
Jakowski, J.5
-
151
-
-
84867808074
-
Room-temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide
-
P.A. Russo, N. Donato, S.G. Leonardi, S. Baek, D.E. Conte, G. Neri, N. Pinna, Room-temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide. Angew. Chem. Int. Ed. 51(44), 11053–11057 (2012). doi:10.1002/anie.201204373
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, Issue.44
, pp. 11053-11057
-
-
Russo, P.A.1
Donato, N.2
Leonardi, S.G.3
Baek, S.4
Conte, D.E.5
Neri, G.6
Pinna, N.7
-
152
-
-
84873660347
-
Non-covalently modified graphene supported ultrafine nanoparticles of palladium for hydrogen gas sensing
-
X. Chen, F.M. Yasin, P.K. Eggers, R.A. Boulos, X. Duan, R.N. Lamb, K.S. Iyer, C.L. Raston, Non-covalently modified graphene supported ultrafine nanoparticles of palladium for hydrogen gas sensing. RSC Adv. 3(10), 3213–3217 (2013). doi:10.1039/c3ra22986f
-
(2013)
RSC Adv.
, vol.3
, Issue.10
, pp. 3213-3217
-
-
Chen, X.1
Yasin, F.M.2
Eggers, P.K.3
Boulos, R.A.4
Duan, X.5
Lamb, R.N.6
Iyer, K.S.7
Raston, C.L.8
-
153
-
-
84890439474
-
Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites
-
D.-T. Phan, G.-S. Chung, Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites. Int. J. Hydrogen Energ. 39(1), 620–629 (2014). doi:10.1016/j.ijhydene.2013.08.107
-
(2014)
Int. J. Hydrogen Energ.
, vol.39
, Issue.1
, pp. 620-629
-
-
Phan, D.-T.1
Chung, G.-S.2
-
154
-
-
84929991911
-
Alignment of graphene oxide nanostructures between microgap electrodes via dielectrophoresis for hydrogen gas sensing applications
-
B. Singh, J. Wang, S. Rathi, G.-H. Kim, Alignment of graphene oxide nanostructures between microgap electrodes via dielectrophoresis for hydrogen gas sensing applications. Appl. Phys. Lett. 106, 203106 (2015). doi:10.1063/1.4921524
-
(2015)
Appl. Phys. Lett.
, vol.106
, pp. 203106
-
-
Singh, B.1
Wang, J.2
Rathi, S.3
Kim, G.-H.4
-
155
-
-
84923253956
-
A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid
-
J. Hong, S. Lee, J. Seo, S. Pyo, J. Kim, T. Lee, A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid. ACS Appl. Mater. Interface 7(6), 3554–3561 (2015). doi:10.1021/am5073645
-
(2015)
ACS Appl. Mater. Interface
, vol.7
, Issue.6
, pp. 3554-3561
-
-
Hong, J.1
Lee, S.2
Seo, J.3
Pyo, S.4
Kim, J.5
Lee, T.6
-
156
-
-
84930362074
-
Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor
-
Z. Zhang, X. Zou, L. Xu, L. Liao, W. Liu, J. Ho, X. Xiao, C. Jiang, J. Li, Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor. Nanoscale 7(22), 10078–10084 (2015). doi:10.1039/c5nr01924a
-
(2015)
Nanoscale
, vol.7
, Issue.22
, pp. 10078-10084
-
-
Zhang, Z.1
Zou, X.2
Xu, L.3
Liao, L.4
Liu, W.5
Ho, J.6
Xiao, X.7
Jiang, C.8
Li, J.9
-
157
-
-
84922731221
-
Chemically modified graphene/PEDOT:PSS nanocomposite films for hydrogen gas sensing
-
Y. Zheng, D. Lee, H.Y. Koo, S. Maeng, Chemically modified graphene/PEDOT:PSS nanocomposite films for hydrogen gas sensing. Carbon 81, 54–62 (2015). doi:10.1016/j.carbon.2014.09.023
-
(2015)
Carbon
, vol.81
, pp. 54-62
-
-
Zheng, Y.1
Lee, D.2
Koo, H.Y.3
Maeng, S.4
-
158
-
-
84883599503
-
Chemiresistive gas sensing by few-layered graphene
-
K.R. Nemade, S.A. Waghuley, Chemiresistive gas sensing by few-layered graphene. J. Electron. Mater. 42(10), 2857–2866 (2013). doi:10.1007/s11664-013-2699-4
-
(2013)
J. Electron. Mater.
, vol.42
, Issue.10
, pp. 2857-2866
-
-
Nemade, K.R.1
Waghuley, S.A.2
-
160
-
-
84890556917
-
3/graphene composites
-
3/graphene composites. Opt. Mater. 36(3), 712–716 (2014). doi:10.1016/j.optmat.2013.11.024
-
(2014)
Opt. Mater.
, vol.36
, Issue.3
, pp. 712-716
-
-
Nemade, K.R.1
Waghuley, S.A.2
-
161
-
-
84902106333
-
3 quantum dots composites at low operable temperature
-
3 quantum dots composites at low operable temperature. Indian J. Phys. 88(6), 577–583 (2014). doi:10.1007/s12648-014-0454-1
-
(2014)
Indian J. Phys.
, vol.88
, Issue.6
, pp. 577-583
-
-
Nemade, K.R.1
Waghuley, S.A.2
-
162
-
-
84903369135
-
Non-hexagonal symmetry-induced functional T graphene for the detection of carbon monoxide
-
C.-S. Liu, R. Jia, X.-J. Ye, Z. Zeng, Non-hexagonal symmetry-induced functional T graphene for the detection of carbon monoxide. J. Chem. Phys. 139(3), 034704 (2013). doi:10.1063/1.4813528
-
(2013)
J. Chem. Phys.
, vol.139
, Issue.3
, pp. 034704
-
-
Liu, C.-S.1
Jia, R.2
Ye, X.-J.3
Zeng, Z.4
-
163
-
-
84872722513
-
Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film
-
Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film. IEEE Sens. J. 13(2), 777–782 (2013). doi:10.1109/jsen.2012.2227597
-
(2013)
IEEE Sens. J.
, vol.13
, Issue.2
, pp. 777-782
-
-
Wu, Z.1
Chen, X.2
Zhu, S.3
Zhou, Z.4
Yao, Y.5
Quan, W.6
Liu, B.7
-
164
-
-
79959662449
-
Carbon dioxide gas sensor using a graphene sheet
-
H.J. Yoon, D.H. Jun, J.H. Yang, Z.X. Zhou, S.S. Yang, M.M.-C. Cheng, Carbon dioxide gas sensor using a graphene sheet. Sens. Actuators B 157(1), 310–313 (2011). doi:10.1016/j.snb.2011.03.035
-
(2011)
Sens. Actuators B
, vol.157
, Issue.1
, pp. 310-313
-
-
Yoon, H.J.1
Jun, D.H.2
Yang, J.H.3
Zhou, Z.X.4
Yang, S.S.5
Cheng, M.M.C.6
-
165
-
-
84891531396
-
A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide
-
S.M. Hafiz, R. Ritikos, T.J. Whitcher, N.M. Razib, D.C.S. Bien et al., A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sens. Actuators B 193, 692–700 (2014). doi:10.1016/j.snb.2013.12.017
-
(2014)
Sens. Actuators B
, vol.193
, pp. 692-700
-
-
Hafiz, S.M.1
Ritikos, R.2
Whitcher, T.J.3
Razib, N.M.4
Bien, D.C.S.5
-
166
-
-
84871806980
-
Edge-tailored graphene oxide nanosheet-based field effect transistors for fast and reversible electronic detection of sulfur dioxide
-
F. Shen, D. Wang, R. Liu, X. Pei, T. Zhang, J. Jin, Edge-tailored graphene oxide nanosheet-based field effect transistors for fast and reversible electronic detection of sulfur dioxide. Nanoscale 5(2), 537–540 (2013). doi:10.1039/c2nr32752j
-
(2013)
Nanoscale
, vol.5
, Issue.2
, pp. 537-540
-
-
Shen, F.1
Wang, D.2
Liu, R.3
Pei, X.4
Zhang, T.5
Jin, J.6
-
167
-
-
84904817191
-
2 gas sensing properties of graphene by introducing dopant and defect: a first-principles study
-
2 gas sensing properties of graphene by introducing dopant and defect: a first-principles study. Appl. Surf. Sci. 313, 405–410 (2014). doi:10.1016/j.apsusc.2014.05.223
-
(2014)
Appl. Surf. Sci.
, vol.313
, pp. 405-410
-
-
Liu, X.-Y.1
Zhang, J.-M.2
Xu, K.-W.3
Ji, V.4
-
168
-
-
84893650764
-
Sulfur dioxide molecule sensors based on zigzag graphene nanoribbons with and without Cr dopant
-
L. Shao, G. Chen, H. Ye, H. Niu, Y. Wu, Y. Zhu, B. Ding, Sulfur dioxide molecule sensors based on zigzag graphene nanoribbons with and without Cr dopant. Phys. Lett. A 378(7–8), 667–671 (2014). doi:10.1016/j.physleta.2013.12.042
-
(2014)
Phys. Lett. A
, vol.378
, Issue.7-8
, pp. 667-671
-
-
Shao, L.1
Chen, G.2
Ye, H.3
Niu, H.4
Wu, Y.5
Zhu, Y.6
Ding, B.7
-
169
-
-
84866127150
-
Ping, Strain effects on enhanced hydrogen sulphide detection capability of Ag-decorated defective graphene
-
Q. Xian, M. Qingyuan, F. Yuan, Ping, Strain effects on enhanced hydrogen sulphide detection capability of Ag-decorated defective graphene. Mod. Phys. Lett. B 26(25), 1250166 (2012). doi:10.1142/s0217984912501667
-
(2012)
Mod. Phys. Lett. B
, vol.26
, Issue.25
, pp. 1250166
-
-
Xian, Q.1
Qingyuan, M.2
Yuan, F.3
-
170
-
-
84875859370
-
2S gas sensing with ultrahigh sensitivity
-
2S gas sensing with ultrahigh sensitivity. Nanoscale 5(4), 1564–1569 (2013). doi:10.1039/c2nr33164k
-
(2013)
Nanoscale
, vol.5
, Issue.4
, pp. 1564-1569
-
-
Zhou, L.1
Shen, F.2
Tian, X.3
Wang, D.4
Zhang, T.5
Chen, W.6
-
171
-
-
84898867284
-
3/graphene nanosheets and structural alignment dependency of device efficiency
-
3/graphene nanosheets and structural alignment dependency of device efficiency. J. Mater. Chem. A 2(19), 6714–6717 (2014). doi:10.1039/c3ta15180h
-
(2014)
J. Mater. Chem. A
, vol.2
, Issue.19
, pp. 6714-6717
-
-
Jiang, Z.1
Li, J.2
Aslan, H.3
Li, Q.4
Li, Y.5
-
172
-
-
84859996008
-
Detection of sulfur dioxide gas with graphene field effect transistor
-
Y. Ren, C. Zhu, W. Cai, H. Li, H. Ji, I. Kholmanov, Y. Wu, R.D. Piner, R.S. Ruoff, Detection of sulfur dioxide gas with graphene field effect transistor. Appl. Phys. Lett. 100, 163114 (2012). doi:10.1063/1.4704803
-
(2012)
Appl. Phys. Lett.
, vol.100
, pp. 163114
-
-
Ren, Y.1
Zhu, C.2
Cai, W.3
Li, H.4
Ji, H.5
Kholmanov, I.6
Wu, Y.7
Piner, R.D.8
Ruoff, R.S.9
-
173
-
-
84871821621
-
Yuan, G. Yu Fei, Ag supported Si-doped graphene for hydrogen sulphide detection: a first-principles investigation
-
Q. Xian, M. Qing, Yuan, G. Yu Fei, Ag supported Si-doped graphene for hydrogen sulphide detection: a first-principles investigation. Adv. Mater. Res. 602–604, 37–40 (2013). doi:10.4028/www.scientific.net/AMR.602-604.37
-
(2013)
Adv. Mater. Res.
, vol.602-604
, pp. 37-40
-
-
Xian, Q.1
Qing, M.2
-
176
-
-
84896879327
-
2 nanofibers functionalized with reduced graphene oxide nanosheets
-
2 nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl. Mater. Interface 6(4), 2588–2597 (2014). doi:10.1021/am405088q
-
(2014)
ACS Appl. Mater. Interface
, vol.6
, Issue.4
, pp. 2588-2597
-
-
Choi, S.-J.1
Jang, B.-H.2
Lee, S.-J.3
Min, B.K.4
Rothschild, A.5
Kim, I.-D.6
-
177
-
-
84939171545
-
2S molecules
-
2S molecules. Sci. Rep. 5, 8067 (2015). doi:10.1038/srep08067
-
(2015)
Sci. Rep.
, vol.5
, pp. 8067
-
-
Choi, S.-J.1
Choi, C.2
Kim, S.-J.3
Cho, H.-J.4
Hakim, M.5
Jeon, S.6
Kim, I.-D.7
-
178
-
-
84930638629
-
Hydrogen sulfide gas sensor based on decorated zigzag graphene nanoribbon with copper
-
M. Berahman, M.H. Sheikhi, Hydrogen sulfide gas sensor based on decorated zigzag graphene nanoribbon with copper. Sens. Actuators B 219, 338–345 (2015). doi:10.1016/j.snb.2015.04.114
-
(2015)
Sens. Actuators B
, vol.219
, pp. 338-345
-
-
Berahman, M.1
Sheikhi, M.H.2
-
179
-
-
84923899858
-
Sensing sulfur-containing gases using titanium and tin decorated zigzag graphene nanoribbons from first-principles
-
S.A. Tawfik, X.Y. Cui, D.J. Carter, S.P. Ringer, C. Stampfl, Sensing sulfur-containing gases using titanium and tin decorated zigzag graphene nanoribbons from first-principles. Phys. Chem. Chem. Phys. 17(10), 6925–6932 (2015). doi:10.1039/c4cp05919k
-
(2015)
Phys. Chem. Chem. Phys.
, vol.17
, Issue.10
, pp. 6925-6932
-
-
Tawfik, S.A.1
Cui, X.Y.2
Carter, D.J.3
Ringer, S.P.4
Stampfl, C.5
-
180
-
-
77949344390
-
All-organic vapor sensor using inkjet-printed reduced graphene oxide
-
V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, S.K. Manohar, All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 49(12), 2154–2157 (2010). doi:10.1002/anie.200905089
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, Issue.12
, pp. 2154-2157
-
-
Dua, V.1
Surwade, S.P.2
Ammu, S.3
Agnihotra, S.R.4
Jain, S.5
Roberts, K.E.6
Park, S.7
Ruoff, R.S.8
Manohar, S.K.9
-
181
-
-
79957530800
-
3/Graphene nanocomposites fabricated from graphene oxide
-
3/Graphene nanocomposites fabricated from graphene oxide. Chem. Commun. 47(22), 6350–6352 (2011). doi:10.1039/c1cc11711d
-
(2011)
Chem. Commun.
, vol.47
, Issue.22
, pp. 6350-6352
-
-
Jiang, Z.1
Wang, J.2
Meng, L.3
Huang, Y.4
Liu, L.5
-
182
-
-
84863011521
-
Detection of acetone vapor using graphene on polymer optical fiber
-
H. Zhang, A. Kulkarni, H. Kim, D. Woo, Y.-J. Kim, B.H. Hong, J.-B. Choi, T. Kim, Detection of acetone vapor using graphene on polymer optical fiber. J. Nanosci. Nanotechno. 11(7), 5939–5943 (2011). doi:10.1166/jnn.2011.4408
-
(2011)
J. Nanosci. Nanotechno.
, vol.11
, Issue.7
, pp. 5939-5943
-
-
Zhang, H.1
Kulkarni, A.2
Kim, H.3
Woo, D.4
Kim, Y.-J.5
Hong, B.H.6
Choi, J.-B.7
Kim, T.8
-
183
-
-
84871239952
-
Detection of organic vapors by graphene films functionalized with metallic nanoparticles
-
M. Gautam, A.H. Jayatissa, Detection of organic vapors by graphene films functionalized with metallic nanoparticles. J. Appl. Phys. 112, 114326 (2012). doi:10.1063/1.4768724
-
(2012)
J. Appl. Phys.
, vol.112
, pp. 114326
-
-
Gautam, M.1
Jayatissa, A.H.2
-
184
-
-
77955403225
-
Uniform and rich-wrinkled electrophoretic deposited graphene film: a robust electrochemical platform for TNT sensing
-
L. Tang, H. Feng, J. Cheng, J. Li, Uniform and rich-wrinkled electrophoretic deposited graphene film: a robust electrochemical platform for TNT sensing. Chem. Commun. 46(32), 5882–5884 (2010). doi:10.1039/c0cc01212b
-
(2010)
Chem. Commun.
, vol.46
, Issue.32
, pp. 5882-5884
-
-
Tang, L.1
Feng, H.2
Cheng, J.3
Li, J.4
-
185
-
-
84869872709
-
Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT
-
L. Fan, Y. Hu, X. Wang, L. Zhang, F. Li, D. Han, Z. Li, Q. Zhang, Z. Wang, L. Niu, Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta 101, 192–197 (2012). doi:10.1016/j.Talanta2012.08.048
-
(2012)
Talanta
, vol.101
, pp. 192-197
-
-
Fan, L.1
Hu, Y.2
Wang, X.3
Zhang, L.4
Li, F.5
Han, D.6
Li, Z.7
Zhang, Q.8
Wang, Z.9
Niu, L.10
-
186
-
-
84875120918
-
Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy
-
M. Liu, W. Chen, Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy. Biosens. Bioelectron. 46, 68–73 (2013). doi:10.1016/j.bios.2013.01.073
-
(2013)
Biosens. Bioelectron.
, vol.46
, pp. 68-73
-
-
Liu, M.1
Chen, W.2
-
187
-
-
84883775710
-
Graphene oxide as carboelectrocatalyst for in situ electrochemical oxidation and sensing of chemical warfare agent simulant
-
V.V. Singh, A.K. Nigam, S.S. Yadav, B.K. Tripathi, A. Srivastava, M. Boopathi, B. Singh, Graphene oxide as carboelectrocatalyst for in situ electrochemical oxidation and sensing of chemical warfare agent simulant. Sens. Actuators B 188, 1218–1224 (2013). doi:10.1016/j.snb.2013.08.013
-
(2013)
Sens. Actuators B
, vol.188
, pp. 1218-1224
-
-
Singh, V.V.1
Nigam, A.K.2
Yadav, S.S.3
Tripathi, B.K.4
Srivastava, A.5
Boopathi, M.6
Singh, B.7
-
188
-
-
84896396468
-
Aluminum nitride graphene for DMMP nerve agent adsorption and detection
-
M.D. Ganji, Z. Dalirandeh, A. Khosravi, A. Fereidoon, Aluminum nitride graphene for DMMP nerve agent adsorption and detection. Mater. Chem. Phys. 145(1–2), 260–267 (2014). doi:10.1016/j.matchemphys.2014.02.021
-
(2014)
Mater. Chem. Phys.
, vol.145
, Issue.1-2
, pp. 260-267
-
-
Ganji, M.D.1
Dalirandeh, Z.2
Khosravi, A.3
Fereidoon, A.4
-
189
-
-
84855265489
-
Fabrication of a graphene field effect transistor array on microchannels for ethanol sensing
-
B. Chen, H. Liu, X. Li, C. Lu, Y. Ding, B. Lu, Fabrication of a graphene field effect transistor array on microchannels for ethanol sensing. Appl. Surf. Sci. 258(6), 1971–1975 (2012). doi:10.1016/j.apsusc.2011.05.101
-
(2012)
Appl. Surf. Sci.
, vol.258
, Issue.6
, pp. 1971-1975
-
-
Chen, B.1
Liu, H.2
Li, X.3
Lu, C.4
Ding, Y.5
Lu, B.6
-
190
-
-
84859760313
-
Electrosynthesis of graphene oxide/polypyrene composite films and their applications for sensing organic vapors
-
L. Zhang, C. Li, A. Liu, G. Shi, Electrosynthesis of graphene oxide/polypyrene composite films and their applications for sensing organic vapors. J. Mater. Chem. 22(17), 8438–8443 (2012). doi:10.1039/c2jm16552j
-
(2012)
J. Mater. Chem.
, vol.22
, Issue.17
, pp. 8438-8443
-
-
Zhang, L.1
Li, C.2
Liu, A.3
Shi, G.4
-
191
-
-
84876115787
-
2 semiconductor composites: hydrothermal synthesis and gas sensing properties
-
2 semiconductor composites: hydrothermal synthesis and gas sensing properties. Sens. Actuators B 182, 336–343 (2013). doi:10.1016/j.snb.2013.03.019
-
(2013)
Sens. Actuators B
, vol.182
, pp. 336-343
-
-
Sun, P.1
Cai, Y.2
Du, S.3
Xu, X.4
You, L.5
Ma, J.6
Liu, F.7
Liang, X.8
Sun, Y.9
Lu, G.10
-
194
-
-
84890798016
-
Colorimetric sensor based on self-assembled polydiacetylene/graphene-stacked composite film for vapor-phase volatile organic compounds
-
X. Wang, X. Sun, P.A. Hu, J. Zhang, L. Wang, W. Feng, S. Lei, B. Yang, W. Cao, Colorimetric sensor based on self-assembled polydiacetylene/graphene-stacked composite film for vapor-phase volatile organic compounds. Adv. Funct. Mater. 23(48), 6044–6050 (2013). doi:10.1002/adfm.201301044
-
(2013)
Adv. Funct. Mater.
, vol.23
, Issue.48
, pp. 6044-6050
-
-
Wang, X.1
Sun, X.2
Hu, P.A.3
Zhang, J.4
Wang, L.5
Feng, W.6
Lei, S.7
Yang, B.8
Cao, W.9
-
196
-
-
84922609556
-
Reduced graphene oxide coated optical fiber for methanol and ethanol vapor detection at room temperature. Proceedings of SPIE 9270, Optoel
-
T. Kavinkumar, D. Sastikumar, S. Manivannan, Reduced graphene oxide coated optical fiber for methanol and ethanol vapor detection at room temperature. Proceedings of SPIE 9270, Optoel. Dev. Integr. V, 92700U (2014). doi:10.1117/12.2071841
-
(2014)
Dev. Integr
, vol.92700U
-
-
Kavinkumar, T.1
Sastikumar, D.2
Manivannan, S.3
-
197
-
-
84907899541
-
Silver/graphene nanocomposite-modified optical fiber sensor platform for ethanol detection in water medium
-
A. Aziz, H.N. Lim, S.H. Girei, M.H. Yaacob, M.A. Mandi, N.M. Huang, A. Pandikumar, Silver/graphene nanocomposite-modified optical fiber sensor platform for ethanol detection in water medium. Sens. Actuators B 206, 119–125 (2015). doi:10.1016/j.snb.2014.09.035
-
(2015)
Sens. Actuators B
, vol.206
, pp. 119-125
-
-
Aziz, A.1
Lim, H.N.2
Girei, S.H.3
Yaacob, M.H.4
Mandi, M.A.5
Huang, N.M.6
Pandikumar, A.7
-
198
-
-
84910091898
-
Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid
-
A.S.M.I. Uddin, P. Duy-Thach, G.-S. Chung, Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid. Sens. Actuators B 207, 362–369 (2015). doi:10.1016/j.snb.2014.10.091
-
(2015)
Sens. Actuators B
, vol.207
, pp. 362-369
-
-
Uddin, A.S.M.I.1
Duy-Thach, P.2
Chung, G.-S.3
-
199
-
-
84928949920
-
Acetylene gas sensing properties of an Ag-loaded hierarchical ZnO nanostructure-decorated reduced graphene oxide hybrid
-
A.S.M.I. Uddin, K.-W. Lee, G.-S. Chung, Acetylene gas sensing properties of an Ag-loaded hierarchical ZnO nanostructure-decorated reduced graphene oxide hybrid. Sens. Actuators B 216, 33–40 (2015). doi:10.1016/j.snb.2015.04.028
-
(2015)
Sens. Actuators B
, vol.216
, pp. 33-40
-
-
Uddin, A.S.M.I.1
Lee, K.-W.2
Chung, G.-S.3
-
201
-
-
2942672686
-
The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors
-
A. Rothschild, Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J. Appl. Phys. 95(11), 6374–6380 (2004). doi:10.1063/1.1728314
-
(2004)
J. Appl. Phys.
, vol.95
, Issue.11
, pp. 6374-6380
-
-
Rothschild, A.1
Komem, Y.2
-
202
-
-
67049096816
-
Gas sensors using hierarchical and hollow oxide nanostructures: overview
-
J.-H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens. Actuators B 140(1), 319–336 (2009). doi:10.1016/j.snb.2009.04.026
-
(2009)
Sens. Actuators B
, vol.140
, Issue.1
, pp. 319-336
-
-
Lee, J.-H.1
-
203
-
-
84925953168
-
Screening of charged impurities as a possible mechanism for conductance change in graphene gas sensing
-
L. Sang-Zi, C. Gugang, A.R. Harutyunyan, J.O. Sofo, Screening of charged impurities as a possible mechanism for conductance change in graphene gas sensing. Phys. Rev. B: Condens. Matter 90(11), 115410 (2014). doi:10.1103/PhysRevB.90.115410
-
(2014)
Phys. Rev. B: Condens. Matter
, vol.90
, Issue.11
, pp. 115410
-
-
Sang-Zi, L.1
Gugang, C.2
Harutyunyan, A.R.3
Sofo, J.O.4
-
204
-
-
0032120320
-
Formulation and characterization of ZnO: Sb thick-film gas sensors
-
N.J. Dayan, S.R. Sainkar, R.N. Karekar, R.C. Aiyer, Formulation and characterization of ZnO: Sb thick-film gas sensors. Thin Solid Films 325(1–2), 254–258 (1998). doi:10.1016/s0040-6090(98)00501-x
-
(1998)
Thin Solid Films
, vol.325
, Issue.1-2
, pp. 254-258
-
-
Dayan, N.J.1
Sainkar, S.R.2
Karekar, R.N.3
Aiyer, R.C.4
-
205
-
-
0346392275
-
Oxide semiconductor gas sensors
-
N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors. Catal. Surv. Asia 7(1), 63–75 (2003). doi:10.1023/a:1023436725457
-
(2003)
Catal. Surv. Asia
, vol.7
, Issue.1
, pp. 63-75
-
-
Yamazoe, N.1
Sakai, G.2
Shimanoe, K.3
-
206
-
-
0026208646
-
New approaches for improving semiconductor gas sensors
-
N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators B 5(1–4), 7–19 (1991). doi:10.1016/0925-4005(91)80213-4
-
(1991)
Sens. Actuators B
, vol.5
, Issue.1-4
, pp. 7-19
-
-
Yamazoe, N.1
-
207
-
-
0030235521
-
Variations in I–V characteristics of oxide semiconductors induced by oxidizing gases
-
M. Egashira, Y. Shimizu, Y. Takao, S. Sako, Variations in I–V characteristics of oxide semiconductors induced by oxidizing gases. Sens. Actuators B 35(1–3), 62–67 (1996). doi:10.1016/s0925-4005(96)02015-1
-
(1996)
Sens. Actuators B
, vol.35
, Issue.1-3
, pp. 62-67
-
-
Egashira, M.1
Shimizu, Y.2
Takao, Y.3
Sako, S.4
-
208
-
-
84904539347
-
A novel sensing mechanism for resistive gas sensors based on layered reduced graphene oxide thin films at room temperature
-
Y. Zhou, Y.D. Jiang, T. Xie, H.L. Tai, G.Z. Xie, A novel sensing mechanism for resistive gas sensors based on layered reduced graphene oxide thin films at room temperature. Sens. Actuators B 203, 135–142 (2014). doi:10.1016/j.snb.2014.06.105
-
(2014)
Sens. Actuators B
, vol.203
, pp. 135-142
-
-
Zhou, Y.1
Jiang, Y.D.2
Xie, T.3
Tai, H.L.4
Xie, G.Z.5
-
209
-
-
84922259583
-
Photo-induced selective gas detection based on reduced graphene oxide/Si Schottky diode
-
M. Zhu, X. Li, S. Chung, L. Zhao, X. Li, X. Zang, K. Wang, J. Wei, M. Zhong, K. Zhou, D. Xie, H. Zhu, Photo-induced selective gas detection based on reduced graphene oxide/Si Schottky diode. Carbon 84, 138–145 (2015). doi:10.1016/j.carbon.2014.12.008
-
(2015)
Carbon
, vol.84
, pp. 138-145
-
-
Zhu, M.1
Li, X.2
Chung, S.3
Zhao, L.4
Li, X.5
Zang, X.6
Wang, K.7
Wei, J.8
Zhong, M.9
Zhou, K.10
Xie, D.11
Zhu, H.12
-
210
-
-
84930193786
-
Switch of p-n electricity of reduced-graphene-oxide-flake stacked films enabling room-temperature gas sensing from ultrasensitive to insensitive
-
R.-C. Wang, Y.-M. Chang, Switch of p-n electricity of reduced-graphene-oxide-flake stacked films enabling room-temperature gas sensing from ultrasensitive to insensitive. Carbon 91, 416–422 (2015). doi:10.1016/j.carbon.2015.05.012
-
(2015)
Carbon
, vol.91
, pp. 416-422
-
-
Wang, R.-C.1
Chang, Y.-M.2
-
211
-
-
84859773740
-
High sensitivity gas detection using a macroscopic three-dimensional graphene foam network
-
F. Yavari, Z.P. Chen, A.V. Thomas, W.C. Ren, H.M. Cheng, N. Koratkar, High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci. Rep. 1, 166 (2011). doi:10.1038/srep00166
-
(2011)
Sci. Rep.
, vol.1
, pp. 166
-
-
Yavari, F.1
Chen, Z.P.2
Thomas, A.V.3
Ren, W.C.4
Cheng, H.M.5
Koratkar, N.6
-
212
-
-
84878879374
-
3 nanowire-like network fabricated on coplanar sensor surface by sacrificial CNTs for enhanced gas sensing performance
-
3 nanowire-like network fabricated on coplanar sensor surface by sacrificial CNTs for enhanced gas sensing performance. Sens. Actuators B 185, 345–353 (2013). doi:10.1016/j.snb.2013.05.007
-
(2013)
Sens. Actuators B
, vol.185
, pp. 345-353
-
-
Yi, S.1
Tian, S.Q.2
Zeng, D.W.3
Xu, K.4
Zhang, S.P.5
Xie, C.S.6
-
213
-
-
4143096109
-
Qualitative and quantitative analysis of organophosphorus pesticide residues using temperature modulated SnO(2) gas sensor
-
X. Huang, J. Lin, Z. Pi, Z. Yu, Qualitative and quantitative analysis of organophosphorus pesticide residues using temperature modulated SnO(2) gas sensor. Talanta 64, 538–545 (2004). doi:10.1016/j.Talanta.2004.03.022
-
(2004)
Talanta
, vol.64
, pp. 538-545
-
-
Huang, X.1
Lin, J.2
Pi, Z.3
Yu, Z.4
|