메뉴 건너뛰기




Volumn 28, Issue 8, 2012, Pages 374-381

Replication timing and its emergence from stochastic processes

Author keywords

DNA replication timing; MCM; ORC; Replication initiation; Stochastic models

Indexed keywords

DNA;

EID: 84863872155     PISSN: 01689525     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tig.2012.03.011     Document Type: Review
Times cited : (81)

References (97)
  • 1
    • 0027067071 scopus 로고
    • Genetics and enzymology of DNA replication in Escherichia coli
    • Baker T.A., Wickner S.H. Genetics and enzymology of DNA replication in Escherichia coli. Annu. Rev. Genet. 1992, 26:447-477.
    • (1992) Annu. Rev. Genet. , vol.26 , pp. 447-477
    • Baker, T.A.1    Wickner, S.H.2
  • 2
    • 77953632048 scopus 로고    scopus 로고
    • Eukaryotic chromosome DNA replication: where, when, and how?
    • Masai H., et al. Eukaryotic chromosome DNA replication: where, when, and how?. Annu. Rev. Biochem. 2010, 79:89-130.
    • (2010) Annu. Rev. Biochem. , vol.79 , pp. 89-130
    • Masai, H.1
  • 3
    • 70350751416 scopus 로고    scopus 로고
    • Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing
    • Remus D., et al. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 2009, 139:719-730.
    • (2009) Cell , vol.139 , pp. 719-730
    • Remus, D.1
  • 4
    • 73949091058 scopus 로고    scopus 로고
    • A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication
    • Evrin C., et al. A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:20240-20245.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 20240-20245
    • Evrin, C.1
  • 5
    • 77953954908 scopus 로고    scopus 로고
    • How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells?
    • Labib K. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells?. Genes Dev. 2010, 24:1208-1219.
    • (2010) Genes Dev. , vol.24 , pp. 1208-1219
    • Labib, K.1
  • 6
    • 0036306239 scopus 로고    scopus 로고
    • Kinetic model of DNA replication in eukaryotic organisms
    • Herrick J., et al. Kinetic model of DNA replication in eukaryotic organisms. J. Mol. Biol. 2002, 320:741-750.
    • (2002) J. Mol. Biol. , vol.320 , pp. 741-750
    • Herrick, J.1
  • 7
    • 41349099106 scopus 로고    scopus 로고
    • Nucleation and growth in one dimension. II. Application to DNA replication kinetics
    • Jun S., Bechhoefer J. Nucleation and growth in one dimension. II. Application to DNA replication kinetics. Phys. Rev. E 2005, 71:011909.
    • (2005) Phys. Rev. E , vol.71 , pp. 011909
    • Jun, S.1    Bechhoefer, J.2
  • 8
    • 77956253770 scopus 로고    scopus 로고
    • Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing
    • Yang S.C., et al. Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing. Mol. Syst. Biol. 2010, 6:404.
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 404
    • Yang, S.C.1
  • 9
    • 54849417379 scopus 로고    scopus 로고
    • A revisionist replicon model for higher eukaryotic genomes
    • Hamlin J.L., et al. A revisionist replicon model for higher eukaryotic genomes. J. Cell. Biochem. 2008, 105:321-329.
    • (2008) J. Cell. Biochem. , vol.105 , pp. 321-329
    • Hamlin, J.L.1
  • 10
    • 27944452746 scopus 로고    scopus 로고
    • Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development
    • Norio P., et al. Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol. Cell 2005, 20:575-587.
    • (2005) Mol. Cell , vol.20 , pp. 575-587
    • Norio, P.1
  • 11
    • 84857846907 scopus 로고    scopus 로고
    • Modeling inhomogeneous DNA replication kinetics
    • Gauthier M.G., et al. Modeling inhomogeneous DNA replication kinetics. PLoS ONE 2012, 7:e32053.
    • (2012) PLoS ONE , vol.7
    • Gauthier, M.G.1
  • 12
    • 0014413470 scopus 로고
    • On the mechanism of DNA replication in mammalian chromosomes
    • Huberman J.A., Riggs A.D. On the mechanism of DNA replication in mammalian chromosomes. J. Mol. Biol. 1968, 32:327-341.
    • (1968) J. Mol. Biol. , vol.32 , pp. 327-341
    • Huberman, J.A.1    Riggs, A.D.2
  • 13
    • 0035825156 scopus 로고    scopus 로고
    • Replication origins in Xenopus egg extract are 5-15 kilobases apart and are activated in clusters that fire at different times
    • Blow J.J., et al. Replication origins in Xenopus egg extract are 5-15 kilobases apart and are activated in clusters that fire at different times. J. Cell Biol. 2001, 152:15-25.
    • (2001) J. Cell Biol. , vol.152 , pp. 15-25
    • Blow, J.J.1
  • 14
    • 0036791653 scopus 로고    scopus 로고
    • Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus
    • Pasero P., et al. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev. 2002, 16:2479-2484.
    • (2002) Genes Dev. , vol.16 , pp. 2479-2484
    • Pasero, P.1
  • 15
    • 77649199221 scopus 로고    scopus 로고
    • S-phase progression in mammalian cells: modelling the influence of nuclear organization
    • Shaw A., et al. S-phase progression in mammalian cells: modelling the influence of nuclear organization. Chromosome Res. 2010, 18:163-178.
    • (2010) Chromosome Res. , vol.18 , pp. 163-178
    • Shaw, A.1
  • 16
    • 70350669746 scopus 로고    scopus 로고
    • Open chromatin encoded in DNA sequence is the signature of 'master' replication origins in human cells
    • Audit B., et al. Open chromatin encoded in DNA sequence is the signature of 'master' replication origins in human cells. Nucleic Acids Res. 2009, 37:6064-6075.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 6064-6075
    • Audit, B.1
  • 17
    • 84855272663 scopus 로고    scopus 로고
    • Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome
    • Guilbaud G., et al. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome. PLoS Comput. Biol. 2011, 7:e1002322.
    • (2011) PLoS Comput. Biol. , vol.7
    • Guilbaud, G.1
  • 18
    • 77649233258 scopus 로고    scopus 로고
    • Reconciling stochastic origin firing with defined replication timing
    • Rhind N., et al. Reconciling stochastic origin firing with defined replication timing. Chromosome Res. 2010, 18:35-43.
    • (2010) Chromosome Res. , vol.18 , pp. 35-43
    • Rhind, N.1
  • 19
    • 3142593637 scopus 로고    scopus 로고
    • Persistence length of chromatin determines origin spacing in Xenopus early-embryo DNA replication: quantitative comparisons between theory and experiment
    • Jun S., et al. Persistence length of chromatin determines origin spacing in Xenopus early-embryo DNA replication: quantitative comparisons between theory and experiment. Cell Cycle 2004, 3:223-229.
    • (2004) Cell Cycle , vol.3 , pp. 223-229
    • Jun, S.1
  • 20
    • 61849083545 scopus 로고    scopus 로고
    • The temporal program of chromosome replication: genomewide replication in clb5Δ Saccharomyces cerevisiae
    • McCune H.J., et al. The temporal program of chromosome replication: genomewide replication in clb5Δ Saccharomyces cerevisiae. Genetics 2008, 180:1833-1847.
    • (2008) Genetics , vol.180 , pp. 1833-1847
    • McCune, H.J.1
  • 21
    • 30044438457 scopus 로고    scopus 로고
    • DNA replication origins fire stochastically in fission yeast
    • Patel P.K., et al. DNA replication origins fire stochastically in fission yeast. Mol. Biol. Cell 2006, 17:308-316.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 308-316
    • Patel, P.K.1
  • 22
    • 36348988518 scopus 로고    scopus 로고
    • DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI
    • Czajkowsky D.M., et al. DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI. J. Mol. Biol. 2008, 375:12-19.
    • (2008) J. Mol. Biol. , vol.375 , pp. 12-19
    • Czajkowsky, D.M.1
  • 23
    • 59449092118 scopus 로고    scopus 로고
    • The Hsk1(Cdc7) replication kinase regulates origin efficiency
    • Patel P.K., et al. The Hsk1(Cdc7) replication kinase regulates origin efficiency. Mol. Biol. Cell 2008, 19:5550-5558.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 5550-5558
    • Patel, P.K.1
  • 24
    • 82455164158 scopus 로고    scopus 로고
    • Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast
    • Mantiero D., et al. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J. 2011, 30:4805-4814.
    • (2011) EMBO J. , vol.30 , pp. 4805-4814
    • Mantiero, D.1
  • 25
    • 61349201535 scopus 로고    scopus 로고
    • Establishing the program of origin firing during S phase in fission yeast
    • Wu P.Y., Nurse P. Establishing the program of origin firing during S phase in fission yeast. Cell 2009, 136:852-864.
    • (2009) Cell , vol.136 , pp. 852-864
    • Wu, P.Y.1    Nurse, P.2
  • 26
    • 84155171119 scopus 로고    scopus 로고
    • Origin association of sld3, sld7, and cdc45 proteins is a key step for determination of origin-firing timing
    • Tanaka S., et al. Origin association of sld3, sld7, and cdc45 proteins is a key step for determination of origin-firing timing. Curr. Biol. 2011, 21:2055-2063.
    • (2011) Curr. Biol. , vol.21 , pp. 2055-2063
    • Tanaka, S.1
  • 27
    • 67649172243 scopus 로고    scopus 로고
    • A model for the spatiotemporal organization of DNA replication in Saccharomyces cerevisiae
    • Spiesser T.W., et al. A model for the spatiotemporal organization of DNA replication in Saccharomyces cerevisiae. Mol. Genet. Genomics 2009, 282:25-35.
    • (2009) Mol. Genet. Genomics , vol.282 , pp. 25-35
    • Spiesser, T.W.1
  • 28
    • 77957238006 scopus 로고    scopus 로고
    • Mathematical modelling of whole chromosome replication
    • de Moura A.P., et al. Mathematical modelling of whole chromosome replication. Nucleic Acids Res. 2010, 38:5623-5633.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 5623-5633
    • de Moura, A.P.1
  • 29
    • 77953969988 scopus 로고    scopus 로고
    • Genome-wide estimation of firing efficiencies of origins of DNA replication from time-course copy number variation data
    • Luo H., et al. Genome-wide estimation of firing efficiencies of origins of DNA replication from time-course copy number variation data. BMC Bioinform. 2010, 11:247.
    • (2010) BMC Bioinform. , vol.11 , pp. 247
    • Luo, H.1
  • 30
    • 50449107544 scopus 로고    scopus 로고
    • Stochastic hybrid modeling of DNA replication across a complete genome
    • Lygeros J., et al. Stochastic hybrid modeling of DNA replication across a complete genome. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:12295-12300.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 12295-12300
    • Lygeros, J.1
  • 31
    • 79956207745 scopus 로고    scopus 로고
    • Modeling and analysis of DNA replication
    • Koutroumpas K., Lygeros J. Modeling and analysis of DNA replication. Automatica 2011, 47:1156-1164.
    • (2011) Automatica , vol.47 , pp. 1156-1164
    • Koutroumpas, K.1    Lygeros, J.2
  • 32
    • 77649233017 scopus 로고    scopus 로고
    • Molecular analysis of the replication program in unicellular model organisms
    • Raghuraman M.K., Brewer B.J. Molecular analysis of the replication program in unicellular model organisms. Chromosome Res. 2010, 18:19-34.
    • (2010) Chromosome Res. , vol.18 , pp. 19-34
    • Raghuraman, M.K.1    Brewer, B.J.2
  • 33
    • 79958075422 scopus 로고    scopus 로고
    • Mrc1 marks early-firing origins and coordinates timing and efficiency of initiation in fission yeast
    • Hayano M., et al. Mrc1 marks early-firing origins and coordinates timing and efficiency of initiation in fission yeast. Mol. Cell. Biol. 2011, 31:2380-2391.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 2380-2391
    • Hayano, M.1
  • 34
    • 84856103786 scopus 로고    scopus 로고
    • Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae
    • Knott S.R., et al. Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell 2012, 148:99-111.
    • (2012) Cell , vol.148 , pp. 99-111
    • Knott, S.R.1
  • 35
    • 0034725550 scopus 로고    scopus 로고
    • Replication fork density increases during DNA synthesis in X. laevis egg extracts
    • Herrick J., et al. Replication fork density increases during DNA synthesis in X. laevis egg extracts. J. Mol. Biol. 2000, 300:1133-1142.
    • (2000) J. Mol. Biol. , vol.300 , pp. 1133-1142
    • Herrick, J.1
  • 36
    • 0034711945 scopus 로고    scopus 로고
    • Mechanisms ensuring rapid and complete DNA replication despite random initiation in Xenopus early embryos
    • Lucas I., et al. Mechanisms ensuring rapid and complete DNA replication despite random initiation in Xenopus early embryos. J. Mol. Biol. 2000, 296:769-786.
    • (2000) J. Mol. Biol. , vol.296 , pp. 769-786
    • Lucas, I.1
  • 37
    • 55249092105 scopus 로고    scopus 로고
    • DNA replication timing is deterministic at the level of chromosomal domains but stochastic at the level of replicons in Xenopus egg extracts
    • Labit H., et al. DNA replication timing is deterministic at the level of chromosomal domains but stochastic at the level of replicons in Xenopus egg extracts. Nucleic Acids Res. 2008, 36:5623-5634.
    • (2008) Nucleic Acids Res. , vol.36 , pp. 5623-5634
    • Labit, H.1
  • 38
    • 51449101224 scopus 로고    scopus 로고
    • A dynamic stochastic model for DNA replication initiation in early embryos
    • Goldar A., et al. A dynamic stochastic model for DNA replication initiation in early embryos. PLoS ONE 2008, 3:e2919.
    • (2008) PLoS ONE , vol.3
    • Goldar, A.1
  • 39
    • 65549146426 scopus 로고    scopus 로고
    • Control of DNA replication by anomalous reaction-diffusion kinetics
    • Gauthier M.G., Bechhoefer J. Control of DNA replication by anomalous reaction-diffusion kinetics. Phys. Rev.Lett. 2009, 102:158104.
    • (2009) Phys. Rev.Lett. , vol.102 , pp. 158104
    • Gauthier, M.G.1    Bechhoefer, J.2
  • 40
    • 0018952783 scopus 로고
    • Regulated replication of DNA microinjected into eggs of Xenopus laevis
    • Harland R.M., Laskey R.A. Regulated replication of DNA microinjected into eggs of Xenopus laevis. Cell 1980, 21:761-771.
    • (1980) Cell , vol.21 , pp. 761-771
    • Harland, R.M.1    Laskey, R.A.2
  • 41
    • 0027370672 scopus 로고
    • Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of Xenopus early embryos
    • Hyrien O., Mechali M. Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of Xenopus early embryos. EMBO J. 1993, 12:4511-4520.
    • (1993) EMBO J. , vol.12 , pp. 4511-4520
    • Hyrien, O.1    Mechali, M.2
  • 42
    • 55849108473 scopus 로고    scopus 로고
    • How Xenopus laevis embryos replicate reliably: investigating the random-completion problem
    • Yang S.C., Bechhoefer J. How Xenopus laevis embryos replicate reliably: investigating the random-completion problem. Phys. Rev. E 2008, 78:041917.
    • (2008) Phys. Rev. E , vol.78 , pp. 041917
    • Yang, S.C.1    Bechhoefer, J.2
  • 43
    • 0013945962 scopus 로고
    • The regulation of DNA synthesis and mitosis in multinucleate frog eggs
    • Graham C.F. The regulation of DNA synthesis and mitosis in multinucleate frog eggs. J. Cell Sci. 1966, 1:363-374.
    • (1966) J. Cell Sci. , vol.1 , pp. 363-374
    • Graham, C.F.1
  • 44
    • 67651241789 scopus 로고    scopus 로고
    • Universal temporal profile of replication origin activation in eukaryotes
    • Goldar A., et al. Universal temporal profile of replication origin activation in eukaryotes. PLoS ONE 2009, 4:e5899.
    • (2009) PLoS ONE , vol.4
    • Goldar, A.1
  • 45
    • 0016017980 scopus 로고
    • The units of DNA replication in Drosophila melanogaster chromosomes
    • Blumenthal A.B., et al. The units of DNA replication in Drosophila melanogaster chromosomes. Cold Spring Harb. Symp. Quant. Biol. 1974, 38:205-223.
    • (1974) Cold Spring Harb. Symp. Quant. Biol. , vol.38 , pp. 205-223
    • Blumenthal, A.B.1
  • 46
    • 0000648656 scopus 로고
    • Late DNA synthesis in heterochromatin
    • Lima-de-Faria A., Jaworska H. Late DNA synthesis in heterochromatin. Nature 1968, 217:138-142.
    • (1968) Nature , vol.217 , pp. 138-142
    • Lima-de-Faria, A.1    Jaworska, H.2
  • 47
    • 4444258534 scopus 로고    scopus 로고
    • Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers
    • Gilbert N., et al. Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 2004, 118:555-566.
    • (2004) Cell , vol.118 , pp. 555-566
    • Gilbert, N.1
  • 48
    • 33644861248 scopus 로고    scopus 로고
    • A question of timing: emerging links between transcription and replication
    • Schwaiger M., Schubeler D. A question of timing: emerging links between transcription and replication. Curr. Opin. Genet. Dev. 2006, 16:177-183.
    • (2006) Curr. Opin. Genet. Dev. , vol.16 , pp. 177-183
    • Schwaiger, M.1    Schubeler, D.2
  • 49
    • 10644297436 scopus 로고    scopus 로고
    • Coordination of replication and transcription along a Drosophila chromosome
    • MacAlpine D.M., et al. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev. 2004, 18:3094-3105.
    • (2004) Genes Dev. , vol.18 , pp. 3094-3105
    • MacAlpine, D.M.1
  • 50
    • 65449142884 scopus 로고    scopus 로고
    • Replication timing and transcriptional control: beyond cause and effect: part II
    • Hiratani I., et al. Replication timing and transcriptional control: beyond cause and effect: part II. Curr. Opin. Genet. Dev. 2009, 19:142-149.
    • (2009) Curr. Opin. Genet. Dev. , vol.19 , pp. 142-149
    • Hiratani, I.1
  • 51
    • 70349873824 scopus 로고    scopus 로고
    • Comprehensive mapping of long-range interactions reveals folding principles of the human genome
    • Lieberman-Aiden E., et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009, 326:289-293.
    • (2009) Science , vol.326 , pp. 289-293
    • Lieberman-Aiden, E.1
  • 52
    • 77952994784 scopus 로고    scopus 로고
    • Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types
    • Ryba T., et al. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 2010, 20:761-770.
    • (2010) Genome Res. , vol.20 , pp. 761-770
    • Ryba, T.1
  • 53
    • 79952451729 scopus 로고    scopus 로고
    • Regulation of DNA replication by chromatin structures: accessibility and recruitment
    • Hayashi M.T., Masukata H. Regulation of DNA replication by chromatin structures: accessibility and recruitment. Chromosoma 2011, 120:39-46.
    • (2011) Chromosoma , vol.120 , pp. 39-46
    • Hayashi, M.T.1    Masukata, H.2
  • 54
    • 33845405316 scopus 로고    scopus 로고
    • DNA replication origin interference increases the spacing between initiation events in human cells
    • Lebofsky R., et al. DNA replication origin interference increases the spacing between initiation events in human cells. Mol. Biol. Cell 2006, 17:5337-5345.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 5337-5345
    • Lebofsky, R.1
  • 55
    • 80052523848 scopus 로고    scopus 로고
    • Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features
    • Cayrou C., et al. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res. 2011, 21:1438-1449.
    • (2011) Genome Res. , vol.21 , pp. 1438-1449
    • Cayrou, C.1
  • 56
    • 79952303535 scopus 로고    scopus 로고
    • Cdc45 limits replicon usage from a low density of preRCs in mammalian cells
    • Wong P.G., et al. Cdc45 limits replicon usage from a low density of preRCs in mammalian cells. PLoS ONE 2011, 6:e17533.
    • (2011) PLoS ONE , vol.6
    • Wong, P.G.1
  • 57
    • 40949152974 scopus 로고    scopus 로고
    • Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus
    • Krasinska L., et al. Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus. EMBO J. 2008, 27:758-769.
    • (2008) EMBO J. , vol.27 , pp. 758-769
    • Krasinska, L.1
  • 58
    • 62549132126 scopus 로고    scopus 로고
    • Cyclin A-Cdk1 regulates the origin firing program in mammalian cells
    • Katsuno Y., et al. Cyclin A-Cdk1 regulates the origin firing program in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:3184-3189.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 3184-3189
    • Katsuno, Y.1
  • 59
    • 76149140088 scopus 로고    scopus 로고
    • Replication factory activation can be decoupled from the replication timing program by modulating Cdk levels
    • Thomson A.M., et al. Replication factory activation can be decoupled from the replication timing program by modulating Cdk levels. J. Cell Biol. 2010, 188:209-221.
    • (2010) J. Cell Biol. , vol.188 , pp. 209-221
    • Thomson, A.M.1
  • 60
    • 0037031834 scopus 로고    scopus 로고
    • MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts
    • Edwards M.C., et al. MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J. Biol. Chem. 2002, 277:33049-33057.
    • (2002) J. Biol. Chem. , vol.277 , pp. 33049-33057
    • Edwards, M.C.1
  • 61
    • 0036232401 scopus 로고    scopus 로고
    • Initiation sites are distributed at frequent intervals in the Chinese hamster dihydrofolate reductase origin of replication but are used with very different efficiencies
    • Dijkwel P.A., et al. Initiation sites are distributed at frequent intervals in the Chinese hamster dihydrofolate reductase origin of replication but are used with very different efficiencies. Mol. Cell. Biol. 2002, 22:3053-3065.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 3053-3065
    • Dijkwel, P.A.1
  • 62
    • 0141557808 scopus 로고    scopus 로고
    • CpG methylation of DNA restricts prereplication complex assembly in Xenopus egg extracts
    • Harvey K.J., Newport J. CpG methylation of DNA restricts prereplication complex assembly in Xenopus egg extracts. Mol. Cell. Biol. 2003, 23:6769-6779.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 6769-6779
    • Harvey, K.J.1    Newport, J.2
  • 63
    • 77953011587 scopus 로고    scopus 로고
    • MRC1-dependent scaling of the budding yeast DNA replication timing program
    • Koren A., et al. MRC1-dependent scaling of the budding yeast DNA replication timing program. Genome Res. 2010, 20:781-790.
    • (2010) Genome Res. , vol.20 , pp. 781-790
    • Koren, A.1
  • 64
    • 34548789595 scopus 로고    scopus 로고
    • Replication in hydroxyurea: it's a matter of time
    • Alvino G.M., et al. Replication in hydroxyurea: it's a matter of time. Mol. Cell. Biol. 2007, 27:6396-6406.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 6396-6406
    • Alvino, G.M.1
  • 65
    • 84855289466 scopus 로고    scopus 로고
    • Do replication forks control late origin firing in Saccharomyces cerevisiae?
    • Ma E., et al. Do replication forks control late origin firing in Saccharomyces cerevisiae?. Nucleic Acids Res. 2012, 40:2010-2019.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 2010-2019
    • Ma, E.1
  • 66
    • 33751520767 scopus 로고    scopus 로고
    • DNA replication timing: random thoughts about origin firing
    • Rhind N. DNA replication timing: random thoughts about origin firing. Nat. Cell Biol. 2006, 8:1313-1316.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 1313-1316
    • Rhind, N.1
  • 68
    • 77951183112 scopus 로고    scopus 로고
    • Measurement of replication structures at the nanometer scale using super-resolution light microscopy
    • Baddeley D., et al. Measurement of replication structures at the nanometer scale using super-resolution light microscopy. Nucleic Acids Res. 2010, 38:e8.
    • (2010) Nucleic Acids Res. , vol.38
    • Baddeley, D.1
  • 69
    • 79961039218 scopus 로고    scopus 로고
    • Replication-associated mutational asymmetry in the human genome
    • Chen C.L., et al. Replication-associated mutational asymmetry in the human genome. Mol. Biol. Evol. 2011, 28:2327-2337.
    • (2011) Mol. Biol. Evol. , vol.28 , pp. 2327-2337
    • Chen, C.L.1
  • 70
    • 22244455429 scopus 로고    scopus 로고
    • Replication-associated strand asymmetries in mammalian genomes: toward detection of replication origins
    • Touchon M., et al. Replication-associated strand asymmetries in mammalian genomes: toward detection of replication origins. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:9836-9841.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 9836-9841
    • Touchon, M.1
  • 72
    • 84856239876 scopus 로고    scopus 로고
    • Optimal placement of origins for DNA replication
    • Karschau J., et al. Optimal placement of origins for DNA replication. Phys. Rev. Lett. 2012, 108:058101.
    • (2012) Phys. Rev. Lett. , vol.108 , pp. 058101
    • Karschau, J.1
  • 73
    • 37249025795 scopus 로고    scopus 로고
    • Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress
    • Ge X.Q., et al. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev. 2007, 21:3331-3341.
    • (2007) Genes Dev. , vol.21 , pp. 3331-3341
    • Ge, X.Q.1
  • 74
    • 79961170861 scopus 로고    scopus 로고
    • How dormant origins promote complete genome replication
    • Blow J.J., et al. How dormant origins promote complete genome replication. Trends Biochem. Sci. 2011, 36:405-414.
    • (2011) Trends Biochem. Sci. , vol.36 , pp. 405-414
    • Blow, J.J.1
  • 75
    • 64049108074 scopus 로고    scopus 로고
    • A model for DNA replication showing how dormant origins safeguard against replication fork failure
    • Blow J.J., Ge X.Q. A model for DNA replication showing how dormant origins safeguard against replication fork failure. EMBO Rep. 2009, 10:406-412.
    • (2009) EMBO Rep. , vol.10 , pp. 406-412
    • Blow, J.J.1    Ge, X.Q.2
  • 76
    • 77953174412 scopus 로고    scopus 로고
    • Defects and DNA replication
    • Gauthier M.G., et al. Defects and DNA replication. Phys. Rev. Lett. 2010, 104:218104.
    • (2010) Phys. Rev. Lett. , vol.104 , pp. 218104
    • Gauthier, M.G.1
  • 77
    • 3943107573 scopus 로고    scopus 로고
    • Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints
    • Sancar A., et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 2004, 73:39-85.
    • (2004) Annu. Rev. Biochem. , vol.73 , pp. 39-85
    • Sancar, A.1
  • 78
    • 80054948832 scopus 로고    scopus 로고
    • Genetic variation and DNA replication timing, or why is there late replicating DNA?
    • Herrick J. Genetic variation and DNA replication timing, or why is there late replicating DNA?. Evolution 2011, 65:3031-3047.
    • (2011) Evolution , vol.65 , pp. 3031-3047
    • Herrick, J.1
  • 79
    • 84921756839 scopus 로고
    • The bacterial chromosome and its manner of replication as seen by autoradiography
    • Cairns J. The bacterial chromosome and its manner of replication as seen by autoradiography. J. Mol. Biol. 1963, 6:208-213.
    • (1963) J. Mol. Biol. , vol.6 , pp. 208-213
    • Cairns, J.1
  • 80
    • 0019903249 scopus 로고
    • Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication
    • Gratzner H.G. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 1982, 218:474-475.
    • (1982) Science , vol.218 , pp. 474-475
    • Gratzner, H.G.1
  • 81
    • 0032559794 scopus 로고    scopus 로고
    • Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells
    • Jackson D.A., Pombo A. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol. 1998, 140:1285-1295.
    • (1998) J. Cell Biol. , vol.140 , pp. 1285-1295
    • Jackson, D.A.1    Pombo, A.2
  • 82
    • 0028032302 scopus 로고
    • Alignment and sensitive detection of DNA by a moving interface
    • Bensimon A., et al. Alignment and sensitive detection of DNA by a moving interface. Science 1994, 265:2096-2098.
    • (1994) Science , vol.265 , pp. 2096-2098
    • Bensimon, A.1
  • 83
    • 13044316665 scopus 로고    scopus 로고
    • Dynamic molecular combing: stretching the whole human genome for high-resolution studies
    • Michalet X., et al. Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science 1997, 277:1518-2123.
    • (1997) Science , vol.277 , pp. 1518-2123
    • Michalet, X.1
  • 84
    • 0035861512 scopus 로고    scopus 로고
    • Visualization of DNA replication on individual Epstein-Barr virus episomes
    • Norio P., Schildkraut C.L. Visualization of DNA replication on individual Epstein-Barr virus episomes. Science 2001, 294:2361-2364.
    • (2001) Science , vol.294 , pp. 2361-2364
    • Norio, P.1    Schildkraut, C.L.2
  • 85
    • 33745239698 scopus 로고    scopus 로고
    • Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories
    • Kitamura E., et al. Live-cell imaging reveals replication of individual replicons in eukaryotic replication factories. Cell 2006, 125:1297-1308.
    • (2006) Cell , vol.125 , pp. 1297-1308
    • Kitamura, E.1
  • 86
    • 77952934028 scopus 로고    scopus 로고
    • Single-molecule studies of the replisome
    • van Oijen A.M., Loparo J.J. Single-molecule studies of the replisome. Annu. Rev. Biophys. 2010, 39:429-448.
    • (2010) Annu. Rev. Biophys. , vol.39 , pp. 429-448
    • van Oijen, A.M.1    Loparo, J.J.2
  • 87
    • 22544469401 scopus 로고    scopus 로고
    • Restriction mapping in nanofluidic devices
    • Riehn R., et al. Restriction mapping in nanofluidic devices. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:10012-10016.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 10012-10016
    • Riehn, R.1
  • 88
    • 66749165907 scopus 로고    scopus 로고
    • Microfluidic-assisted analysis of replicating DNA molecules
    • Sidorova J.M., et al. Microfluidic-assisted analysis of replicating DNA molecules. Nat. Protoc. 2009, 4:849-861.
    • (2009) Nat. Protoc. , vol.4 , pp. 849-861
    • Sidorova, J.M.1
  • 89
    • 0035812808 scopus 로고    scopus 로고
    • Replication dynamics of the yeast genome
    • Raghuraman M.K., et al. Replication dynamics of the yeast genome. Science 2001, 294:115-121.
    • (2001) Science , vol.294 , pp. 115-121
    • Raghuraman, M.K.1
  • 90
    • 1642514822 scopus 로고    scopus 로고
    • Replication timing of the human genome
    • Woodfine K., et al. Replication timing of the human genome. Hum. Mol. Genet. 2004, 13:191-202.
    • (2004) Hum. Mol. Genet. , vol.13 , pp. 191-202
    • Woodfine, K.1
  • 91
    • 73249147619 scopus 로고    scopus 로고
    • Predictable dynamic program of timing of DNA replication in human cells
    • Desprat R., et al. Predictable dynamic program of timing of DNA replication in human cells. Genome Res. 2009, 19:2288-2299.
    • (2009) Genome Res. , vol.19 , pp. 2288-2299
    • Desprat, R.1
  • 92
    • 77950661675 scopus 로고    scopus 로고
    • Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes
    • Chen C.L., et al. Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. Genome Res. 2010, 20:447-457.
    • (2010) Genome Res. , vol.20 , pp. 447-457
    • Chen, C.L.1
  • 93
    • 0036668464 scopus 로고    scopus 로고
    • Mapping of early firing origins on a replication profile of budding yeast
    • Yabuki N., et al. Mapping of early firing origins on a replication profile of budding yeast. Genes Cells 2002, 7:781-789.
    • (2002) Genes Cells , vol.7 , pp. 781-789
    • Yabuki, N.1
  • 94
    • 79961184602 scopus 로고    scopus 로고
    • Dynamics of DNA replication in yeast
    • Retkute R., et al. Dynamics of DNA replication in yeast. Phys. Rev. Lett. 2011, 107:068103.
    • (2011) Phys. Rev. Lett. , vol.107 , pp. 068103
    • Retkute, R.1
  • 95
    • 41349107964 scopus 로고    scopus 로고
    • Nucleation and growth in one dimension. I. The generalized Kolmogorov-Johnson-Mehl-Avrami model
    • Jun S., et al. Nucleation and growth in one dimension. I. The generalized Kolmogorov-Johnson-Mehl-Avrami model. Phys. Rev. E 2005, 71:011908.
    • (2005) Phys. Rev. E , vol.71 , pp. 011908
    • Jun, S.1
  • 96
    • 68349133942 scopus 로고    scopus 로고
    • Computational methods to study kinetics of DNA replication
    • Yang S.C., et al. Computational methods to study kinetics of DNA replication. Methods Mol. Biol. 2009, 521:555-573.
    • (2009) Methods Mol. Biol. , vol.521 , pp. 555-573
    • Yang, S.C.1
  • 97
    • 77954805777 scopus 로고    scopus 로고
    • Mathematical modelling of DNA replication reveals a trade-off between coherence of origin activation and robustness against rereplication
    • Brummer A., et al. Mathematical modelling of DNA replication reveals a trade-off between coherence of origin activation and robustness against rereplication. PLoS Comput. Biol. 2010, 6:e1000783.
    • (2010) PLoS Comput. Biol. , vol.6
    • Brummer, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.