-
1
-
-
84897129156
-
Differential scales of protein quality control
-
Wolff S., et al. Differential scales of protein quality control. Cell 2014, 157:52-64.
-
(2014)
Cell
, vol.157
, pp. 52-64
-
-
Wolff, S.1
-
2
-
-
33746377894
-
Protein misfolding, functional amyloid, and human disease
-
Chiti F., Dobson C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75:333-366.
-
(2006)
Annu. Rev. Biochem.
, vol.75
, pp. 333-366
-
-
Chiti, F.1
Dobson, C.M.2
-
3
-
-
67650410543
-
Biological and chemical approaches to diseases of proteostasis deficiency
-
Powers E.T., et al. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 2009, 78:959-991.
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 959-991
-
-
Powers, E.T.1
-
4
-
-
84890204277
-
Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system
-
Amm I., et al. Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim. Biophys. Acta 2014, 1843:182-196.
-
(2014)
Biochim. Biophys. Acta
, vol.1843
, pp. 182-196
-
-
Amm, I.1
-
5
-
-
80054025654
-
The role of Atg proteins in autophagosome formation
-
Mizushima N., et al. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 2011, 27:107-132.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
-
6
-
-
84861867814
-
Ubiquitin and membrane protein turnover: from cradle to grave
-
MacGurn J.A., et al. Ubiquitin and membrane protein turnover: from cradle to grave. Annu. Rev. Biochem. 2012, 81:231-259.
-
(2012)
Annu. Rev. Biochem.
, vol.81
, pp. 231-259
-
-
MacGurn, J.A.1
-
7
-
-
84869065405
-
Design principles of protein biosynthesis-coupled quality control
-
Rodrigo-Brenni M.C., Hegde R.S. Design principles of protein biosynthesis-coupled quality control. Dev. Cell 2012, 23:896-907.
-
(2012)
Dev. Cell
, vol.23
, pp. 896-907
-
-
Rodrigo-Brenni, M.C.1
Hegde, R.S.2
-
8
-
-
77957169824
-
Role of a ribosome-associated E3 ubiquitin ligase in protein quality control
-
Bengtson M.H., Joazeiro C.A.P. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 2010, 467:470-473.
-
(2010)
Nature
, vol.467
, pp. 470-473
-
-
Bengtson, M.H.1
Joazeiro, C.A.P.2
-
9
-
-
84871523350
-
A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress
-
Brandman O., et al. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 2012, 151:1042-1054.
-
(2012)
Cell
, vol.151
, pp. 1042-1054
-
-
Brandman, O.1
-
10
-
-
84875481864
-
Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products
-
Defenouillère Q., et al. Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:5046-5051.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 5046-5051
-
-
Defenouillère, Q.1
-
11
-
-
84878857004
-
Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation
-
Shao S., et al. Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation. Mol. Cell 2013, 50:637-648.
-
(2013)
Mol. Cell
, vol.50
, pp. 637-648
-
-
Shao, S.1
-
12
-
-
84879034688
-
Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome
-
Verma R., et al. Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. Elife 2013, 2:e00308.
-
(2013)
Elife
, vol.2
, pp. e00308
-
-
Verma, R.1
-
13
-
-
84924777167
-
Structure and assembly pathway of the ribosome quality control complex
-
Shao S., et al. Structure and assembly pathway of the ribosome quality control complex. Mol. Cell 2015, 57:433-444.
-
(2015)
Mol. Cell
, vol.57
, pp. 433-444
-
-
Shao, S.1
-
14
-
-
33645277360
-
Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation
-
Doma M.K., Parker R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 2006, 440:561-564.
-
(2006)
Nature
, vol.440
, pp. 561-564
-
-
Doma, M.K.1
Parker, R.2
-
15
-
-
84877801536
-
Quality control systems for aberrant mRNAs induced by aberrant translation elongation and termination
-
Inada T. Quality control systems for aberrant mRNAs induced by aberrant translation elongation and termination. Biochim. Biophys. Acta 2013, 1829:634-642.
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, pp. 634-642
-
-
Inada, T.1
-
17
-
-
84888136634
-
The intimate relationships of mRNA decay and translation
-
Roy B., Jacobson A. The intimate relationships of mRNA decay and translation. Trends Genet. 2013, 29:691-699.
-
(2013)
Trends Genet.
, vol.29
, pp. 691-699
-
-
Roy, B.1
Jacobson, A.2
-
18
-
-
0037155592
-
An mRNA surveillance mechanism that eliminates transcripts lacking termination codons
-
Frischmeyer P.A., et al. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 2002, 295:2258-2261.
-
(2002)
Science
, vol.295
, pp. 2258-2261
-
-
Frischmeyer, P.A.1
-
19
-
-
66849136862
-
Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome
-
Dimitrova L.N., et al. Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome. J. Biol. Chem. 2009, 284:10343-10352.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 10343-10352
-
-
Dimitrova, L.N.1
-
20
-
-
65649104440
-
A convergence of rRNA and mRNA quality control pathways revealed by mechanistic analysis of nonfunctional rRNA decay
-
Cole S.E., et al. A convergence of rRNA and mRNA quality control pathways revealed by mechanistic analysis of nonfunctional rRNA decay. Mol. Cell 2009, 34:440-450.
-
(2009)
Mol. Cell
, vol.34
, pp. 440-450
-
-
Cole, S.E.1
-
21
-
-
77957935294
-
Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay
-
Shoemaker C.J., et al. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science 2010, 330:369-372.
-
(2010)
Science
, vol.330
, pp. 369-372
-
-
Shoemaker, C.J.1
-
22
-
-
79955626576
-
Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes
-
Pisareva V.P., et al. Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. EMBO J. 2011, 30:1804-1817.
-
(2011)
EMBO J.
, vol.30
, pp. 1804-1817
-
-
Pisareva, V.P.1
-
23
-
-
84863904349
-
The elongation, termination, and recycling phases of translation in eukaryotes
-
Dever T.E., Green R. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb. Perspect. Biol. 2012, 4:a013706.
-
(2012)
Cold Spring Harb. Perspect. Biol.
, vol.4
, pp. a013706
-
-
Dever, T.E.1
Green, R.2
-
24
-
-
84855501083
-
Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast
-
Shoemaker C.J., Green R. Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:E1392-E1398.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. E1392-E1398
-
-
Shoemaker, C.J.1
Green, R.2
-
25
-
-
79958809003
-
Structure of the no-go mRNA decay complex Dom34-Hbs1 bound to a stalled 80S ribosome
-
Becker T., et al. Structure of the no-go mRNA decay complex Dom34-Hbs1 bound to a stalled 80S ribosome. Nat. Struct. Mol. Biol. 2011, 18:715-720.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 715-720
-
-
Becker, T.1
-
26
-
-
74749098978
-
The role of ABCE1 in eukaryotic posttermination ribosomal recycling
-
Pisarev A.V., et al. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol. Cell 2010, 37:196-210.
-
(2010)
Mol. Cell
, vol.37
, pp. 196-210
-
-
Pisarev, A.V.1
-
27
-
-
84904434651
-
Cryoelectron microscopic structures of eukaryotic translation termination complexes containing eRF1-eRF3 or eRF1-ABCE1
-
Preis A., et al. Cryoelectron microscopic structures of eukaryotic translation termination complexes containing eRF1-eRF3 or eRF1-ABCE1. Cell Rep. 2014, 8:59-65.
-
(2014)
Cell Rep.
, vol.8
, pp. 59-65
-
-
Preis, A.1
-
28
-
-
84940478899
-
Structural basis for stop codon recognition in eukaryotes
-
Brown A., et al. Structural basis for stop codon recognition in eukaryotes. Nature 2015, 524:493-496.
-
(2015)
Nature
, vol.524
, pp. 493-496
-
-
Brown, A.1
-
29
-
-
84857396073
-
Structural basis of highly conserved ribosome recycling in eukaryotes and archaea
-
Becker T., et al. Structural basis of highly conserved ribosome recycling in eukaryotes and archaea. Nature 2012, 482:501-506.
-
(2012)
Nature
, vol.482
, pp. 501-506
-
-
Becker, T.1
-
30
-
-
1842287951
-
Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ribosomes in activation of eIF2alpha kinase GCN2
-
Marton M.J., et al. Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ribosomes in activation of eIF2alpha kinase GCN2. Mol. Cell. Biol. 1997, 17:4474-4489.
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 4474-4489
-
-
Marton, M.J.1
-
31
-
-
84904806049
-
Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration
-
Ishimura R., et al. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science 2014, 345:455-459.
-
(2014)
Science
, vol.345
, pp. 455-459
-
-
Ishimura, R.1
-
32
-
-
84922479672
-
Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains
-
Shen P.S., et al. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Science 2015, 347:75-78.
-
(2015)
Science
, vol.347
, pp. 75-78
-
-
Shen, P.S.1
-
33
-
-
84909606327
-
Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex
-
Lyumkis D., et al. Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:15981-15986.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 15981-15986
-
-
Lyumkis, D.1
-
34
-
-
79960637590
-
Protein targeting and degradation are coupled for elimination of mislocalized proteins
-
Hessa T., et al. Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 2011, 475:394-397.
-
(2011)
Nature
, vol.475
, pp. 394-397
-
-
Hessa, T.1
-
35
-
-
80054041334
-
Membrane protein Insertion at the endoplasmic reticulum
-
Shao S., Hegde R.S. Membrane protein Insertion at the endoplasmic reticulum. Annu. Rev. Cell Dev. Biol. 2011, 27:25-56.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 25-56
-
-
Shao, S.1
Hegde, R.S.2
-
36
-
-
14544302354
-
Co-translational protein targeting by the signal recognition particle
-
Shan S-O., Walter P. Co-translational protein targeting by the signal recognition particle. FEBS Lett. 2005, 579:921-926.
-
(2005)
FEBS Lett.
, vol.579
, pp. 921-926
-
-
Shan, S.-O.1
Walter, P.2
-
37
-
-
81855184492
-
Tail-anchored membrane protein insertion into the endoplasmic reticulum
-
Hegde R.S., Keenan R.J. Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 2011, 12:787-798.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 787-798
-
-
Hegde, R.S.1
Keenan, R.J.2
-
38
-
-
13844266603
-
The signal recognition particle and its interactions during protein targeting
-
Halic M., Beckmann R. The signal recognition particle and its interactions during protein targeting. Curr. Opin. Struct. Biol. 2005, 15:116-125.
-
(2005)
Curr. Opin. Struct. Biol.
, vol.15
, pp. 116-125
-
-
Halic, M.1
Beckmann, R.2
-
39
-
-
33947218544
-
Identification of a targeting factor for posttranslational membrane protein insertion into the ER
-
Stefanovic S., Hegde R.S. Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 2007, 128:1147-1159.
-
(2007)
Cell
, vol.128
, pp. 1147-1159
-
-
Stefanovic, S.1
Hegde, R.S.2
-
40
-
-
84904567733
-
Cytosolic quality control of mislocalized proteins requires RNF126 recruitment to Bag6
-
Rodrigo-Brenni M.C., et al. Cytosolic quality control of mislocalized proteins requires RNF126 recruitment to Bag6. Mol. Cell 2014, 55:227-237.
-
(2014)
Mol. Cell
, vol.55
, pp. 227-237
-
-
Rodrigo-Brenni, M.C.1
-
41
-
-
77956183398
-
A ribosome-associating factor chaperones tail-anchored membrane proteins
-
Mariappan M., et al. A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature 2010, 466:1120-1124.
-
(2010)
Nature
, vol.466
, pp. 1120-1124
-
-
Mariappan, M.1
-
42
-
-
84937403604
-
Structures of the scanning and engaged states of the mammalian SRP-ribosome complex
-
Voorhees R.M., Hegde R.S. Structures of the scanning and engaged states of the mammalian SRP-ribosome complex. Elife 2015, 4:e07975.
-
(2015)
Elife
, vol.4
, pp. e07975
-
-
Voorhees, R.M.1
Hegde, R.S.2
-
43
-
-
77955878748
-
BAG-6 is essential for selective elimination of defective proteasomal substrates
-
Minami R., et al. BAG-6 is essential for selective elimination of defective proteasomal substrates. J. Cell Biol. 2010, 190:637-650.
-
(2010)
J. Cell Biol.
, vol.190
, pp. 637-650
-
-
Minami, R.1
-
44
-
-
77957376226
-
A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum
-
Wang F., et al. A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum. Mol. Cell 2010, 40:159-171.
-
(2010)
Mol. Cell
, vol.40
, pp. 159-171
-
-
Wang, F.1
-
45
-
-
0028361309
-
Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones
-
Frydman J., et al. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 1994, 370:111-117.
-
(1994)
Nature
, vol.370
, pp. 111-117
-
-
Frydman, J.1
-
46
-
-
84902119042
-
Crystal structure of ATP-bound Get3-Get4-Get5 complex reveals regulation of Get3 by Get4
-
Gristick H.B., et al. Crystal structure of ATP-bound Get3-Get4-Get5 complex reveals regulation of Get3 by Get4. Nat. Struct. Mol. Biol. 2014, 21:437-442.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 437-442
-
-
Gristick, H.B.1
-
47
-
-
84924362921
-
Structure of the Get3 targeting factor in complex with its membrane protein cargo
-
Mateja A., et al. Structure of the Get3 targeting factor in complex with its membrane protein cargo. Science 2015, 347:1152-1155.
-
(2015)
Science
, vol.347
, pp. 1152-1155
-
-
Mateja, A.1
-
48
-
-
84920434089
-
Bag6 complex contains a minimal tail-anchor-targeting module and a mock BAG domain
-
Mock J-Y., et al. Bag6 complex contains a minimal tail-anchor-targeting module and a mock BAG domain. Proc. Natl. Acad. Sci. U.S.A. 2015, 112:106-111.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 106-111
-
-
Mock, J.-Y.1
-
49
-
-
84871682623
-
SGTA recognizes a noncanonical ubiquitin-like domain in the Bag6-Ubl4A-Trc35 complex to promote endoplasmic reticulum-associated degradation
-
Xu Y., et al. SGTA recognizes a noncanonical ubiquitin-like domain in the Bag6-Ubl4A-Trc35 complex to promote endoplasmic reticulum-associated degradation. Cell Rep. 2012, 2:1633-1644.
-
(2012)
Cell Rep.
, vol.2
, pp. 1633-1644
-
-
Xu, Y.1
-
50
-
-
84875350852
-
The association of BAG6 with SGTA and tail-anchored proteins
-
Leznicki P., et al. The association of BAG6 with SGTA and tail-anchored proteins. PLoS ONE 2013, 8:e59590.
-
(2013)
PLoS ONE
, vol.8
, pp. e59590
-
-
Leznicki, P.1
-
51
-
-
79957745796
-
A biochemical analysis of the constraints of tail-anchored protein biogenesis
-
Leznicki P., et al. A biochemical analysis of the constraints of tail-anchored protein biogenesis. Biochem. J. 2011, 436:719-727.
-
(2011)
Biochem. J.
, vol.436
, pp. 719-727
-
-
Leznicki, P.1
-
52
-
-
84877330444
-
Precise timing of ATPase activation drives targeting of tail-anchored proteins
-
Rome M.E., et al. Precise timing of ATPase activation drives targeting of tail-anchored proteins. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:7666-7671.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 7666-7671
-
-
Rome, M.E.1
-
53
-
-
84911930505
-
Differential gradients of interaction affinities drive efficient targeting and recycling in the GET pathway
-
Rome M.E., et al. Differential gradients of interaction affinities drive efficient targeting and recycling in the GET pathway. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:E4929-E4935.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. E4929-E4935
-
-
Rome, M.E.1
-
54
-
-
79959347089
-
A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation
-
Wang Q., et al. A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol. Cell 2011, 42:758-770.
-
(2011)
Mol. Cell
, vol.42
, pp. 758-770
-
-
Wang, Q.1
-
55
-
-
84896950126
-
The chaperone BAG6 captures dislocated glycoproteins in the cytosol
-
Claessen J.H.L., et al. The chaperone BAG6 captures dislocated glycoproteins in the cytosol. PLoS ONE 2014, 9:e90204.
-
(2014)
PLoS ONE
, vol.9
, pp. e90204
-
-
Claessen, J.H.L.1
-
56
-
-
84903780276
-
BAG6 regulates the quality control of a polytopic ERAD substrate
-
Payapilly A., High S. BAG6 regulates the quality control of a polytopic ERAD substrate. J. Cell Sci. 2014, 127:2898-2909.
-
(2014)
J. Cell Sci.
, vol.127
, pp. 2898-2909
-
-
Payapilly, A.1
High, S.2
-
57
-
-
82955207151
-
BAT3 guides misfolded glycoproteins out of the endoplasmic reticulum
-
Claessen J.H.L., Ploegh H.L. BAT3 guides misfolded glycoproteins out of the endoplasmic reticulum. PLoS ONE 2011, 6:e28542.
-
(2011)
PLoS ONE
, vol.6
, pp. e28542
-
-
Claessen, J.H.L.1
Ploegh, H.L.2
-
58
-
-
84890197334
-
The complexity of recognition of ubiquitinated substrates by the 26S proteasome
-
Ciechanover A., Stanhill A. The complexity of recognition of ubiquitinated substrates by the 26S proteasome. Biochim. Biophys. Acta 2014, 1843:86-96.
-
(2014)
Biochim. Biophys. Acta
, vol.1843
, pp. 86-96
-
-
Ciechanover, A.1
Stanhill, A.2
-
59
-
-
84946491193
-
A sweet code for glycoprotein folding
-
Published online July 28, 2015
-
Caramelo J.J., Parodi A.J. A sweet code for glycoprotein folding. FEBS Lett. 2015, Published online July 28, 2015. 10.1016/j.febslet.2015.07.021.
-
(2015)
FEBS Lett.
-
-
Caramelo, J.J.1
Parodi, A.J.2
-
60
-
-
84931565973
-
N-linked sugar-regulated protein folding and quality control in the ER
-
Tannous A., et al. N-linked sugar-regulated protein folding and quality control in the ER. Semin. Cell Dev. Biol. 2015, 41:79-89.
-
(2015)
Semin. Cell Dev. Biol.
, vol.41
, pp. 79-89
-
-
Tannous, A.1
-
61
-
-
84931091527
-
Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum
-
Shrimal S., et al. Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Semin. Cell Dev. Biol. 2015, 41:71-78.
-
(2015)
Semin. Cell Dev. Biol.
, vol.41
, pp. 71-78
-
-
Shrimal, S.1
-
62
-
-
0029024748
-
Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum
-
Hebert D.N., et al. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 1995, 81:425-433.
-
(1995)
Cell
, vol.81
, pp. 425-433
-
-
Hebert, D.N.1
-
63
-
-
77953642000
-
Protein sorting receptors in the early secretory pathway
-
Dancourt J., Barlowe C. Protein sorting receptors in the early secretory pathway. Annu. Rev. Biochem. 2010, 79:777-802.
-
(2010)
Annu. Rev. Biochem.
, vol.79
, pp. 777-802
-
-
Dancourt, J.1
Barlowe, C.2
-
64
-
-
34447339935
-
Substrate-specific requirements for UGT1-dependent release from calnexin
-
Soldà T., et al. Substrate-specific requirements for UGT1-dependent release from calnexin. Mol. Cell 2007, 27:238-249.
-
(2007)
Mol. Cell
, vol.27
, pp. 238-249
-
-
Soldà, T.1
-
65
-
-
27944464985
-
Persistent glycoprotein misfolding activates the glucosidase II/UGT1-driven calnexin cycle to delay aggregation and loss of folding competence
-
Molinari M., et al. Persistent glycoprotein misfolding activates the glucosidase II/UGT1-driven calnexin cycle to delay aggregation and loss of folding competence. Mol. Cell 2005, 20:503-512.
-
(2005)
Mol. Cell
, vol.20
, pp. 503-512
-
-
Molinari, M.1
-
66
-
-
0026500202
-
Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase
-
Sousa M.C., et al. Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. Biochemistry 1992, 31:97-105.
-
(1992)
Biochemistry
, vol.31
, pp. 97-105
-
-
Sousa, M.C.1
-
67
-
-
0029126624
-
The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase
-
Sousa M., Parodi A.J. The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase. EMBO J. 1995, 14:4196-4203.
-
(1995)
EMBO J.
, vol.14
, pp. 4196-4203
-
-
Sousa, M.1
Parodi, A.J.2
-
68
-
-
0037422614
-
UDP-Glc:glycoprotein glucosyltransferase recognizes structured and solvent accessible hydrophobic patches in molten globule-like folding intermediates
-
Caramelo J.J., et al. UDP-Glc:glycoprotein glucosyltransferase recognizes structured and solvent accessible hydrophobic patches in molten globule-like folding intermediates. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:86-91.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 86-91
-
-
Caramelo, J.J.1
-
69
-
-
8544242762
-
The endoplasmic reticulum glucosyltransferase recognizes nearly native glycoprotein folding intermediates
-
Caramelo J.J., et al. The endoplasmic reticulum glucosyltransferase recognizes nearly native glycoprotein folding intermediates. J. Biol. Chem. 2004, 279:46280-46285.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 46280-46285
-
-
Caramelo, J.J.1
-
70
-
-
25844518421
-
Synthetic substrates for an endoplasmic reticulum protein-folding sensor, UDP-glucose: glycoprotein glucosyltransferase
-
Totani K., et al. Synthetic substrates for an endoplasmic reticulum protein-folding sensor, UDP-glucose: glycoprotein glucosyltransferase. Angew. Chem. Int. Ed. Engl. 2005, 44:7950-7954.
-
(2005)
Angew. Chem. Int. Ed. Engl.
, vol.44
, pp. 7950-7954
-
-
Totani, K.1
-
71
-
-
84921858313
-
Reglucosylation by UDP-glucose:glycoprotein glucosyltransferase 1 delays glycoprotein secretion but not degradation
-
Tannous A., et al. Reglucosylation by UDP-glucose:glycoprotein glucosyltransferase 1 delays glycoprotein secretion but not degradation. Mol. Biol. Cell 2015, 26:390-405.
-
(2015)
Mol. Biol. Cell
, vol.26
, pp. 390-405
-
-
Tannous, A.1
-
72
-
-
38749122389
-
Endoplasmic reticulum (ER) mannosidase I is compartmentalized and required for N-glycan trimming to Man5-6GlcNAc2 in glycoprotein ER-associated degradation
-
Avezov E., et al. Endoplasmic reticulum (ER) mannosidase I is compartmentalized and required for N-glycan trimming to Man5-6GlcNAc2 in glycoprotein ER-associated degradation. Mol. Biol. Cell 2008, 19:216-225.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 216-225
-
-
Avezov, E.1
-
73
-
-
79960146847
-
Characterization of early EDEM1 protein maturation events and their functional implications
-
Tamura T., et al. Characterization of early EDEM1 protein maturation events and their functional implications. J. Biol. Chem. 2011, 286:24906-24915.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 24906-24915
-
-
Tamura, T.1
-
74
-
-
77952811195
-
EDEM1 accelerates the trimming of alpha1,2-linked mannose on the C branch of N-glycans
-
Hosokawa N., et al. EDEM1 accelerates the trimming of alpha1,2-linked mannose on the C branch of N-glycans. Glycobiology 2010, 20:567-575.
-
(2010)
Glycobiology
, vol.20
, pp. 567-575
-
-
Hosokawa, N.1
-
75
-
-
84901844066
-
Trimming of glucosylated N-glycans by human ER α1,2-mannosidase I
-
Aikawa J-I., et al. Trimming of glucosylated N-glycans by human ER α1,2-mannosidase I. J. Biochem. 2014, 155:375-384.
-
(2014)
J. Biochem.
, vol.155
, pp. 375-384
-
-
Aikawa, J.-I.1
-
76
-
-
84931571933
-
Glycan regulation of ER-associated degradation through compartmentalization
-
Benyair R., et al. Glycan regulation of ER-associated degradation through compartmentalization. Semin. Cell Dev. Biol. 2015, 41:99-109.
-
(2015)
Semin. Cell Dev. Biol.
, vol.41
, pp. 99-109
-
-
Benyair, R.1
-
77
-
-
48249117110
-
ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER
-
Ushioda R., et al. ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 2008, 321:569-572.
-
(2008)
Science
, vol.321
, pp. 569-572
-
-
Ushioda, R.1
-
78
-
-
79959357020
-
A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum
-
Gauss R., et al. A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum. Mol. Cell 2011, 42:782-793.
-
(2011)
Mol. Cell
, vol.42
, pp. 782-793
-
-
Gauss, R.1
-
79
-
-
0141706616
-
Endoplasmic reticulum-associated degradation of mammalian glycoproteins involves sugar chain trimming to Man6-5GlcNAc2
-
Frenkel Z., et al. Endoplasmic reticulum-associated degradation of mammalian glycoproteins involves sugar chain trimming to Man6-5GlcNAc2. J. Biol. Chem. 2003, 278:34119-34124.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 34119-34124
-
-
Frenkel, Z.1
-
80
-
-
77949889295
-
The sugar-binding ability of human OS-9 and its involvement in ER-associated degradation
-
Mikami K., et al. The sugar-binding ability of human OS-9 and its involvement in ER-associated degradation. Glycobiology 2010, 20:310-321.
-
(2010)
Glycobiology
, vol.20
, pp. 310-321
-
-
Mikami, K.1
-
81
-
-
67650535999
-
Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans
-
Hosokawa N., et al. Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans. J. Biol. Chem. 2009, 284:17061-17068.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 17061-17068
-
-
Hosokawa, N.1
-
82
-
-
78651394090
-
Mannose trimming is required for delivery of a glycoprotein from EDEM1 to XTP3-B and to late endoplasmic reticulum-associated degradation steps
-
Groisman B., et al. Mannose trimming is required for delivery of a glycoprotein from EDEM1 to XTP3-B and to late endoplasmic reticulum-associated degradation steps. J. Biol. Chem. 2011, 286:1292-1300.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 1292-1300
-
-
Groisman, B.1
-
83
-
-
24944478240
-
Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD
-
Szathmary R., et al. Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol. Cell 2005, 19:765-775.
-
(2005)
Mol. Cell
, vol.19
, pp. 765-775
-
-
Szathmary, R.1
-
84
-
-
78650250452
-
Structural basis for oligosaccharide recognition of misfolded glycoproteins by OS-9 in ER-associated degradation
-
Satoh T., et al. Structural basis for oligosaccharide recognition of misfolded glycoproteins by OS-9 in ER-associated degradation. Mol. Cell 2010, 40:905-916.
-
(2010)
Mol. Cell
, vol.40
, pp. 905-916
-
-
Satoh, T.1
-
85
-
-
24944552879
-
Yos9p detects and targets misfolded glycoproteins for ER-associated degradation
-
Kim W., et al. Yos9p detects and targets misfolded glycoproteins for ER-associated degradation. Mol. Cell 2005, 19:753-764.
-
(2005)
Mol. Cell
, vol.19
, pp. 753-764
-
-
Kim, W.1
-
86
-
-
33746587049
-
A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery
-
Gauss R., et al. A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nat. Cell Biol. 2006, 8:849-854.
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 849-854
-
-
Gauss, R.1
-
87
-
-
33746208871
-
A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation
-
Denic V., et al. A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 2006, 126:349-359.
-
(2006)
Cell
, vol.126
, pp. 349-359
-
-
Denic, V.1
-
88
-
-
84908072286
-
Key steps in ERAD of luminal ER proteins reconstituted with purified components
-
Stein A., et al. Key steps in ERAD of luminal ER proteins reconstituted with purified components. Cell 2014, 158:1375-1388.
-
(2014)
Cell
, vol.158
, pp. 1375-1388
-
-
Stein, A.1
-
89
-
-
84877975094
-
Futile protein folding cycles in the ER are terminated by the unfolded protein O-mannosylation pathway
-
Xu C., et al. Futile protein folding cycles in the ER are terminated by the unfolded protein O-mannosylation pathway. Science 2013, 340:978-981.
-
(2013)
Science
, vol.340
, pp. 978-981
-
-
Xu, C.1
-
90
-
-
53449083627
-
Role of HIV-1 Vpu protein for virus spread and pathogenesis
-
Nomaguchi M., et al. Role of HIV-1 Vpu protein for virus spread and pathogenesis. Microbes Infect. 2008, 10:960-967.
-
(2008)
Microbes Infect.
, vol.10
, pp. 960-967
-
-
Nomaguchi, M.1
-
91
-
-
0032012456
-
A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif
-
Margottin F., et al. A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol. Cell 1998, 1:565-574.
-
(1998)
Mol. Cell
, vol.1
, pp. 565-574
-
-
Margottin, F.1
-
92
-
-
84881150929
-
Deubiquitinases sharpen substrate discrimination during membrane protein degradation from the ER
-
Zhang Z-R., et al. Deubiquitinases sharpen substrate discrimination during membrane protein degradation from the ER. Cell 2013, 154:609-622.
-
(2013)
Cell
, vol.154
, pp. 609-622
-
-
Zhang, Z.-R.1
-
93
-
-
71449123070
-
Detection of sequential polyubiquitylation on a millisecond timescale
-
Pierce N.W., et al. Detection of sequential polyubiquitylation on a millisecond timescale. Nature 2009, 462:615-619.
-
(2009)
Nature
, vol.462
, pp. 615-619
-
-
Pierce, N.W.1
-
94
-
-
84898729879
-
Cleaning up in the endoplasmic reticulum: ubiquitin in charge
-
Christianson J.C., Ye Y. Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nat. Struct. Mol. Biol. 2014, 21:325-335.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 325-335
-
-
Christianson, J.C.1
Ye, Y.2
-
95
-
-
30344466977
-
The processivity of multiubiquitination by the APC determines the order of substrate degradation
-
Rape M., et al. The processivity of multiubiquitination by the APC determines the order of substrate degradation. Cell 2006, 124:89-103.
-
(2006)
Cell
, vol.124
, pp. 89-103
-
-
Rape, M.1
-
96
-
-
64749087257
-
Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase
-
Sato B.K., et al. Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. Mol. Cell 2009, 34:212-222.
-
(2009)
Mol. Cell
, vol.34
, pp. 212-222
-
-
Sato, B.K.1
-
97
-
-
77954904488
-
Serine residues in the cytosolic tail of the T-cell antigen receptor alpha-chain mediate ubiquitination and endoplasmic reticulum-associated degradation of the unassembled protein
-
Ishikura S., et al. Serine residues in the cytosolic tail of the T-cell antigen receptor alpha-chain mediate ubiquitination and endoplasmic reticulum-associated degradation of the unassembled protein. J. Biol. Chem. 2010, 285:23916-23924.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 23916-23924
-
-
Ishikura, S.1
-
98
-
-
84860750274
-
Ubiquitin-specific protease 25 functions in endoplasmic reticulum-associated degradation
-
Blount J.R., et al. Ubiquitin-specific protease 25 functions in endoplasmic reticulum-associated degradation. PLoS ONE 2012, 7:e36542.
-
(2012)
PLoS ONE
, vol.7
, pp. e36542
-
-
Blount, J.R.1
-
99
-
-
84875912087
-
Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells
-
Lee J-G., et al. Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat. Commun. 2013, 4:1568.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1568
-
-
Lee, J.-G.1
-
100
-
-
84875886251
-
Regulation of A20 and other OTU deubiquitinases by reversible oxidation
-
Kulathu Y., et al. Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nat. Commun. 2013, 4:1569.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1569
-
-
Kulathu, Y.1
-
101
-
-
84900399340
-
Polyglutamine (PolyQ) diseases: genetics to treatments
-
Fan H-C., et al. Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant. 2014, 23:441-458.
-
(2014)
Cell Transplant.
, vol.23
, pp. 441-458
-
-
Fan, H.-C.1
-
102
-
-
0025242929
-
Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis
-
Cheng S.H., et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 1990, 63:827-834.
-
(1990)
Cell
, vol.63
, pp. 827-834
-
-
Cheng, S.H.1
-
103
-
-
37349013379
-
A counterintuitive approach to treat enzyme deficiencies: use of enzyme inhibitors for restoring mutant enzyme activity
-
Fan J-Q. A counterintuitive approach to treat enzyme deficiencies: use of enzyme inhibitors for restoring mutant enzyme activity. Biol. Chem. 2008, 389:1-11.
-
(2008)
Biol. Chem.
, vol.389
, pp. 1-11
-
-
Fan, J.-Q.1
-
104
-
-
84890203542
-
Regulation of proteasome activity in health and disease
-
Schmidt M., Finley D. Regulation of proteasome activity in health and disease. Biochim. Biophys. Acta 2014, 1843:13-25.
-
(2014)
Biochim. Biophys. Acta
, vol.1843
, pp. 13-25
-
-
Schmidt, M.1
Finley, D.2
-
105
-
-
84910031803
-
Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases
-
Pratt W.B., et al. Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 2015, 55:353-371.
-
(2015)
Annu. Rev. Pharmacol. Toxicol.
, vol.55
, pp. 353-371
-
-
Pratt, W.B.1
-
106
-
-
77954196466
-
Ubr1 and Ubr2 function in a quality control pathway for degradation of unfolded cytosolic proteins
-
Nillegoda N.B., et al. Ubr1 and Ubr2 function in a quality control pathway for degradation of unfolded cytosolic proteins. Mol. Biol. Cell 2010, 21:2102-2116.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 2102-2116
-
-
Nillegoda, N.B.1
-
107
-
-
75749101057
-
Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1
-
Heck J.W., et al. Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:1106-1111.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 1106-1111
-
-
Heck, J.W.1
-
108
-
-
57049182407
-
Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1
-
Eisele F., Wolf D.H. Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Lett. 2008, 582:4143-4146.
-
(2008)
FEBS Lett.
, vol.582
, pp. 4143-4146
-
-
Eisele, F.1
Wolf, D.H.2
-
109
-
-
84871313656
-
The yeast ubr1 ubiquitin ligase participates in a prominent pathway that targets cytosolic thermosensitive mutants for degradation
-
Khosrow-Khavar F., et al. The yeast ubr1 ubiquitin ligase participates in a prominent pathway that targets cytosolic thermosensitive mutants for degradation. G3 2012, 2:619-628.
-
(2012)
G3
, vol.2
, pp. 619-628
-
-
Khosrow-Khavar, F.1
-
110
-
-
78650731442
-
Disorder targets misorder in nuclear quality control degradation: a disordered ubiquitin ligase directly recognizes its misfolded substrates
-
Rosenbaum J.C., et al. Disorder targets misorder in nuclear quality control degradation: a disordered ubiquitin ligase directly recognizes its misfolded substrates. Mol. Cell 2011, 41:93-106.
-
(2011)
Mol. Cell
, vol.41
, pp. 93-106
-
-
Rosenbaum, J.C.1
-
111
-
-
0031004769
-
Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70
-
Bercovich B., et al. Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J. Biol. Chem. 1997, 272:9002-9010.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 9002-9010
-
-
Bercovich, B.1
-
112
-
-
0033013126
-
Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions
-
Ballinger C.A., et al. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell. Biol. 1999, 19:4535-4545.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 4535-4545
-
-
Ballinger, C.A.1
-
113
-
-
77952851112
-
Chaperone-assisted degradation: multiple paths to destruction
-
Kettern N., et al. Chaperone-assisted degradation: multiple paths to destruction. Biol. Chem. 2010, 391:481-489.
-
(2010)
Biol. Chem.
, vol.391
, pp. 481-489
-
-
Kettern, N.1
-
114
-
-
84936139864
-
CRL2 aids elimination of truncated selenoproteins produced by failed UGA/Sec decoding
-
Lin H-C., et al. CRL2 aids elimination of truncated selenoproteins produced by failed UGA/Sec decoding. Science 2015, 349:91-95.
-
(2015)
Science
, vol.349
, pp. 91-95
-
-
Lin, H.-C.1
-
115
-
-
84901675787
-
Quality control: quality control at the plasma membrane: one mechanism does not fit all
-
Babst M. Quality control: quality control at the plasma membrane: one mechanism does not fit all. J. Cell Biol. 2014, 205:11-20.
-
(2014)
J. Cell Biol.
, vol.205
, pp. 11-20
-
-
Babst, M.1
-
116
-
-
84925285850
-
Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress
-
Fang N.N., et al. Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress. Nat. Cell Biol. 2014, 16:1227-1237.
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 1227-1237
-
-
Fang, N.N.1
|