-
1
-
-
84897000112
-
Structure of the yeast mitochondrial large ribosomal subunit
-
Amunts A, Brown A, Bai XC, Llacer JL, Hussain T, Emsley P, Long F, Murshudov G, Scheres SH, Ramakrishnan V 2014. Structure of the yeast mitochondrial large ribosomal subunit. Science 343:1485–1489. doi:10.1126/science.1249410
-
(2014)
Science
, vol.343
, pp. 1485-1489
-
-
Amunts, A.1
Brown, A.2
Bai, X.C.3
Llacer, J.L.4
Hussain, T.5
Emsley, P.6
Long, F.7
Murshudov, G.8
Scheres, S.H.9
Ramakrishnan, V.10
-
3
-
-
0034681490
-
Crystal structure of the ribonucleoprotein core of the signal recognition particle
-
Batey RT, Rambo RP, Lucast L, Rha B, Doudna JA. 2000. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287:1232–1239. doi:10.1126/science.287.5456.1232
-
(2000)
Science
, vol.287
, pp. 1232-1239
-
-
Batey, R.T.1
Rambo, R.P.2
Lucast, L.3
Rha, B.4
Doudna, J.A.5
-
4
-
-
79958809003
-
Structure of the no-go mRNA decay complex Dom34-Hbs1 bound to a stalled 80S ribosome
-
Becker T, Armache JP, Jarasch A, Anger AM, Villa E, Sieber H, Motaal BA, Mielke T, Berninghausen O, Beckmann R 2011. Structure of the no-go mRNA decay complex Dom34-Hbs1 bound to a stalled 80S ribosome. Nature Structural & Molecular Biology 18:715–720. doi:10.1038/nsmb.2057
-
(2011)
Nature Structural &Amp; Molecular Biology
, vol.18
, pp. 715-720
-
-
Becker, T.1
Armache, J.P.2
Jarasch, A.3
Anger, A.M.4
Villa, E.5
Sieber, H.6
Motaal, B.A.7
Mielke, T.8
Berninghausen, O.9
Beckmann, R.10
-
5
-
-
60849096653
-
A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel
-
Berndt U, Oellerer S, Zhang Y, Johnson AE, Rospert S. 2009. A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proceedings of the National Academy of Sciences of USA 106:1398–1403. doi:10.1073/pnas.0808584106
-
(2009)
Proceedings of the National Academy of Sciences of USA
, vol.106
, pp. 1398-1403
-
-
Berndt, U.1
Oellerer, S.2
Zhang, Y.3
Johnson, A.E.4
Rospert, S.5
-
6
-
-
79851505187
-
SecMstalled ribosomes adopt an altered geometry at the peptidyl transferase center
-
Bhushan S, Hoffmann T, Seidelt B, Frauenfeld J, Mielke T, Berninghausen O, Wilson DN, Beckmann R. 2011. SecMstalled ribosomes adopt an altered geometry at the peptidyl transferase center. PLOS Biology 9:e1000581 doi:10.1371/journal.pbio.1000581
-
(2011)
PLOS Biology
, vol.e1000581
, pp. 9
-
-
Bhushan, S.1
Hoffmann, T.2
Seidelt, B.3
Frauenfeld, J.4
Mielke, T.5
Berninghausen, O.6
Wilson, D.N.7
Beckmann, R.8
-
7
-
-
43249083239
-
Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel
-
Bornemann T, Jockel J, Rodnina MV, Wintermeyer W. 2008. Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nature Structural & Molecular Biology 15:494–499. doi:10.1038/nsmb.1402
-
(2008)
Nature Structural &Amp; Molecular Biology
, vol.15
, pp. 494-499
-
-
Bornemann, T.1
Jockel, J.2
Rodnina, M.V.3
Wintermeyer, W.4
-
8
-
-
84921777915
-
Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallographica. Section D
-
Brown A, Long F, Nicholls RA, Toots J, Emsley P, Murshudov G. 2015. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallographica. Section D, Biological Crystallography 71:136–153. doi:10.1107/S1399004714021683
-
(2015)
Biological Crystallography
, vol.71
, pp. 136-153
-
-
Brown, A.1
Long, F.2
Nicholls, R.A.3
Toots, J.4
Emsley, P.5
Murshudov, G.6
-
9
-
-
0033600728
-
Crystal structure of the conserved subdomain of human protein SRP54M at 2.1 A resolution:Evidence for the mechanism of signal peptide binding
-
Clemons WMJ, Gowda K, Black SD, Zwieb C, Ramakrishnan V. 1999. Crystal structure of the conserved subdomain of human protein SRP54M at 2.1 A resolution:evidence for the mechanism of signal peptide binding. Journal of Molecular Biology 292:697–705. doi:10.1006/jmbi.1999.3090
-
(1999)
Journal of Molecular Biology
, vol.292
, pp. 697-705
-
-
Clemons, W.1
Gowda, K.2
Black, S.D.3
Zwieb, C.4
Ramakrishnan, V.5
-
10
-
-
84895867879
-
Cotranslational folding inhibits translocation from within the ribosome-Sec61 translocon complex
-
Conti BJ, Elferich J, Yang Z, Shinde U, Skach WR. 2014. Cotranslational folding inhibits translocation from within the ribosome-Sec61 translocon complex. Nature Structural & Molecular Biology 21:228–235. doi:10.1038/nsmb.2779
-
(2014)
Nature Structural &Amp; Molecular Biology
, vol.21
, pp. 228-235
-
-
Conti, B.J.1
Elferich, J.2
Yang, Z.3
Shinde, U.4
Skach, W.R.5
-
11
-
-
79960923840
-
Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes
-
del Alamo M, Hogan DJ, Pechmann S, Albanese V, Brown PO, Frydman J. 2011. Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes. PLOS Biology 9:e1001100. doi:10.1371/journal.pbio.1001100
-
(2011)
PLOS Biology
, vol.e1001100
, pp. 9
-
-
Del Alamo, M.1
Hogan, D.J.2
Pechmann, S.3
Albanese, V.4
Brown, P.O.5
Frydman, J.6
-
13
-
-
55849105200
-
Structures of SRP54 and SRP19, the two proteins that organize the ribonucleic core of the signal recognition particle from Pyrococcus furiosus
-
Egea PF, Napetschnig J, Walter P, Stroud RM. 2008. Structures of SRP54 and SRP19, the two proteins that organize the ribonucleic core of the signal recognition particle from Pyrococcus furiosus. PLOS ONE 3:e3528 doi:10.1371/journal.pone.0003528.
-
(2008)
PLOS ONE
, vol.3
-
-
Egea, P.F.1
Napetschnig, J.2
Walter, P.3
Stroud, R.M.4
-
14
-
-
0347584006
-
Substrate twinning activates the signal recognition particle and its receptor
-
Egea PF, Shan SO, Napetschnig J, Savage DF, Walter P, Stroud RM. 2004. Substrate twinning activates the signal recognition particle and its receptor. Nature 427:215–221. doi:10.1038/nature02250
-
(2004)
Nature
, vol.427
, pp. 215-221
-
-
Egea, P.F.1
Shan, S.O.2
Napetschnig, J.3
Savage, D.F.4
Walter, P.5
Stroud, R.M.6
-
15
-
-
77949535720
-
Features and development of coot. Acta Crystallographica Section D
-
Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of coot. Acta Crystallographica Section D, Biological Crystallography 66:486–501. doi:10.1107/S0907444910007493
-
(2010)
Biological Crystallography
, vol.66
, pp. 486-501
-
-
Emsley, P.1
Lohkamp, B.2
Scott, W.G.3
Cowtan, K.4
-
16
-
-
0038719738
-
Signal recognition particle binds to ribosome-bound signal sequences with fluorescence-detected subnanomolar affinity that does not diminish as the nascent chain lengthens
-
Flanagan JJ, Chen JC, Miao Y, Shao Y, Lin J, Bock PE, Johnson AE. 2003. Signal recognition particle binds to ribosome-bound signal sequences with fluorescence-detected subnanomolar affinity that does not diminish as the nascent chain lengthens. The Journal of Biological Chemistry 278:18628–18637. doi:10.1074/jbcM300173200
-
(2003)
The Journal of Biological Chemistry
, vol.278
, pp. 18628-18637
-
-
Flanagan, J.J.1
Chen, J.C.2
Miao, Y.3
Shao, Y.4
Lin, J.5
Bock, P.E.6
Johnson, A.E.7
-
19
-
-
84897545031
-
SRP RNA remodeling by SRP68 explains its role in protein translocation
-
Grotwinkel JT, Wild K, Segnitz B, Sinning I. 2014. SRP RNA remodeling by SRP68 explains its role in protein translocation. Science 344:101–104. doi:10.1126/science.1249094
-
(2014)
Science
, vol.344
, pp. 101-104
-
-
Grotwinkel, J.T.1
Wild, K.2
Segnitz, B.3
Sinning, I.4
-
20
-
-
79952363483
-
Structural basis of signal-sequence recognition by the signal recognition particle
-
Hainzl T, Huang S, Merilainen G, Brannstrom K, Sauer-Eriksson AE. 2011. Structural basis of signal-sequence recognition by the signal recognition particle. Nature Structural & Molecular Biology 18:389–391. doi:10.1038/nsmb.1994
-
(2011)
Nature Structural &Amp; Molecular Biology
, vol.18
, pp. 389-391
-
-
Hainzl, T.1
Huang, S.2
Merilainen, G.3
Brannstrom, K.4
Sauer-Eriksson, A.E.5
-
21
-
-
1542319100
-
Structure of the signal recognition particle interacting with the elongation-arrested ribosome
-
Halic M, Becker T, Pool MR, Spahn CM, Grassucci RA, Frank J, Beckmann R. 2004. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427:808–814. doi:10.1038/nature02342
-
(2004)
Nature
, vol.427
, pp. 808-814
-
-
Halic, M.1
Becker, T.2
Pool, M.R.3
Spahn, C.M.4
Grassucci, R.A.5
Frank, J.6
Beckmann, R.7
-
22
-
-
13844266603
-
The signal recognition particle and its interactions during protein targeting
-
Halic M, Beckmann R. 2005. The signal recognition particle and its interactions during protein targeting. Current Opinion in Structural Biology 15:116–125. doi:10.1016/j.sbi.2005.01.013
-
(2005)
Current Opinion in Structural Biology
, vol.15
, pp. 116-125
-
-
Halic, M.1
Beckmann, R.2
-
23
-
-
33751325296
-
Following the signal sequence from ribosomal tunnel exit to signal recognition particle
-
Halic M, Blau M, Becker T, Mielke T, Pool MR, Wild K, Sinning I, Beckmann R. 2006. Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 444:507–511. doi:10.1038/nature05326
-
(2006)
Nature
, vol.444
, pp. 507-511
-
-
Halic, M.1
Blau, M.2
Becker, T.3
Mielke, T.4
Pool, M.R.5
Wild, K.6
Sinning, I.7
Beckmann, R.8
-
24
-
-
79960637590
-
Protein targeting and degradation are coupled for elimination of mislocalized proteins
-
Hessa T, Sharma A, Mariappan M, Eshleman HD, Gutierrez E, Hegde RS. 2011. Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 475:394–397. doi:10.1038/nature10181
-
(2011)
Nature
, vol.475
, pp. 394-397
-
-
Hessa, T.1
Sharma, A.2
Mariappan, M.3
Eshleman, H.D.4
Gutierrez, E.5
Hegde, R.S.6
-
25
-
-
84870817496
-
Dynamic switch of the signal recognition particle from scanning to targeting
-
Holtkamp W, Lee S, Bornemann T, Senyushkina T, Rodnina MV, Wintermeyer W. 2012. Dynamic switch of the signal recognition particle from scanning to targeting. Nature Structural & Molecular Biology 19:1332–1337 doi:10.1038/nsmb.2421
-
(2012)
Nature Structural &Amp; Molecular Biology
, vol.19
, pp. 1332-1337
-
-
Holtkamp, W.1
Lee, S.2
Bornemann, T.3
Senyushkina, T.4
Rodnina, M.V.5
Wintermeyer, W.6
-
26
-
-
62549134121
-
Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling
-
Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS. 2009. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223. doi:10.1126/science.1168978
-
(2009)
Science
, vol.324
, pp. 218-223
-
-
Ingolia, N.T.1
Ghaemmaghami, S.2
Newman, J.R.3
Weissman, J.S.4
-
27
-
-
84909607974
-
Principles of ER cotranslational translocation revealed by proximityspecific ribosome profiling
-
Jan CH, Williams CC, Weissman JS. 2014. Principles of ER cotranslational translocation revealed by proximityspecific ribosome profiling. Science 346:1257521. doi:10.1126/science.1257521
-
(2014)
Science
, vol.346
-
-
Jan, C.H.1
Williams, C.C.2
Weissman, J.S.3
-
28
-
-
77953025666
-
Recognition of a signal peptide by the signal recognition particle
-
Janda CY, Li J, Oubridge C, Hernandez H, Robinson CV, Nagai K. 2010. Recognition of a signal peptide by the signal recognition particle. Nature 465:507–510. doi:10.1038/nature08870
-
(2010)
Nature
, vol.465
, pp. 507-510
-
-
Janda, C.Y.1
Li, J.2
Oubridge, C.3
Hernandez, H.4
Robinson, C.V.5
Nagai, K.6
-
30
-
-
0032563163
-
Crystal structure of the signal sequence binding subunit of the signal recognition particle
-
Keenan RJ, Freymann DM, Walter P, Stroud RM. 1998. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94:181–191. doi:10.1016/S0092-8674(00)81418-X
-
(1998)
Cell
, vol.94
, pp. 181-191
-
-
Keenan, R.J.1
Freymann, D.M.2
Walter, P.3
Stroud, R.M.4
-
31
-
-
0035910270
-
Predicting transmembrane protein topology with a hidden Markov model:Application to complete genomes
-
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes. Journal of Molecular Biology 305:567–580 doi:10.1006/jmbi.2000.4315
-
(2001)
Journal of Molecular Biology
, vol.305
, pp. 567-580
-
-
Krogh, A.1
Larsson, B.2
Von Heijne, G.3
Sonnhammer, E.L.4
-
32
-
-
84894623755
-
Quantifying the local resolution of cryo-EM density maps
-
Kucukelbir A, Sigworth FJ, Tagare HD. 2014. Quantifying the local resolution of cryo-EM density maps. Nature Methods 11:63–65. doi:10.1038/nmeth.2727
-
(2014)
Nature Methods
, vol.11
, pp. 63-65
-
-
Kucukelbir, A.1
Sigworth, F.J.2
Tagare, H.D.3
-
33
-
-
42949161206
-
SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites
-
Lakkaraju AK, Mary C, Scherrer A, Johnson AE, Strub K. 2008. SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites. Cell 133:440–451. doi:10.1016/j.cell.2008.02.049
-
(2008)
Cell
, vol.133
, pp. 440-451
-
-
Lakkaraju, A.K.1
Mary, C.2
Scherrer, A.3
Johnson, A.E.4
Strub, K.5
-
35
-
-
0026533588
-
The methionine-rich domain of the 54 kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences
-
Lutcke H, High S, Romisch K, Ashford AJ, Dobberstein B. 1992. The methionine-rich domain of the 54 kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences. The EMBO Journal 11:1543–1551
-
(1992)
The EMBO Journal
, vol.11
, pp. 1543-1551
-
-
Lutcke, H.1
High, S.2
Romisch, K.3
Ashford, A.J.4
Dobberstein, B.5
-
36
-
-
77956183398
-
A ribosome-associating factor chaperones tail-anchored membrane proteins
-
Mariappan M, Li X, Stefanovic S, Sharma A, Mateja A, Keenan RJ, Hegde RS. 2010. A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature 466:1120–1124. doi:10.1038/nature09296
-
(2010)
Nature
, vol.466
, pp. 1120-1124
-
-
Mariappan, M.1
Li, X.2
Stefanovic, S.3
Sharma, A.4
Mateja, A.5
Keenan, R.J.6
Hegde, R.S.7
-
37
-
-
0034254190
-
Elongation arrest is a physiologically important function of signal recognition particle
-
Mason N, Ciufo LF, Brown JD. 2000. Elongation arrest is a physiologically important function of signal recognition particle. The EMBO Journal 19:4164–4174. doi:10.1093/emboj/19.15.4164
-
(2000)
The EMBO Journal
, vol.19
, pp. 4164-4174
-
-
Mason, N.1
Ciufo, L.F.2
Brown, J.D.3
-
38
-
-
84924362921
-
Protein targeting Structure of the Get3 targeting factor in complex with its membrane protein cargo
-
Mateja A, Paduch M, Chang HY, Szydlowska A, Kossiakoff AA, Hegde RS, Keenan RJ. 2015. Protein targeting Structure of the Get3 targeting factor in complex with its membrane protein cargo. Science 347:1152–1155 doi:10.1126/science.1261671
-
(2015)
Science
, vol.347
, pp. 1152-1155
-
-
Mateja, A.1
Paduch, M.2
Chang, H.Y.3
Szydlowska, A.4
Kossiakoff, A.A.5
Hegde, R.S.6
Keenan, R.J.7
-
39
-
-
70349272618
-
The structural basis of tail-anchored membrane protein recognition by Get3
-
Mateja A, Szlachcic A, Downing ME, Dobosz M, Mariappan M, Hegde RS, Keenan RJ. 2009. The structural basis of tail-anchored membrane protein recognition by Get3. Nature 461:361–366. doi:10.1038/nature08319
-
(2009)
Nature
, vol.461
, pp. 361-366
-
-
Mateja, A.1
Szlachcic, A.2
Downing, M.E.3
Dobosz, M.4
Mariappan, M.5
Hegde, R.S.6
Keenan, R.J.7
-
40
-
-
0027433308
-
GTP binding and hydrolysis by the signal recognition particle during initiation of protein translocation
-
Miller JD, Wilhelm H, Gierasch L, Gilmore R, Walter P. 1993. GTP binding and hydrolysis by the signal recognition particle during initiation of protein translocation. Nature 366:351–354. doi:10.1038/366351a0
-
(1993)
Nature
, vol.366
, pp. 351-354
-
-
Miller, J.D.1
Wilhelm, H.2
Gierasch, L.3
Gilmore, R.4
Walter, P.5
-
42
-
-
79953763877
-
REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica. Section D
-
Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA. 2011 REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica. Section D, Biological Crystallography 67:355–367. doi:10.1107/S0907444911001314
-
(2011)
Biological Crystallography
, vol.67
, pp. 355-367
-
-
Murshudov, G.N.1
Skubak, P.2
Lebedev, A.A.3
Pannu, N.S.4
Steiner, R.A.5
Nicholls, R.A.6
Winn, M.D.7
Long, F.8
Vagin, A.A.9
-
43
-
-
84860269955
-
Low-resolution refinement tools in REFMAC5. Acta Crystallographica Section D
-
Nicholls RA, Long F, Murshudov GN. 2012. Low-resolution refinement tools in REFMAC5. Acta Crystallographica Section D, Biological Crystallography 68:404–417. doi:10.1107/S090744491105606X.
-
(2012)
Biological Crystallography
, vol.68
, pp. 404-417
-
-
Nicholls, R.A.1
Long, F.2
Murshudov, G.N.3
-
44
-
-
85017331117
-
Real-time observation of signal recognition particle binding to actively translating ribosomes
-
Noriega TR, Chen J, Walter P, Puglisi JD. 2014a. Real-time observation of signal recognition particle binding to actively translating ribosomes. eLife 3:e04418. doi:10.7554/eLife.04418
-
(2014)
. Elife
, vol.3
-
-
Noriega, T.R.1
Chen, J.2
Walter, P.3
Puglisi, J.D.4
-
45
-
-
84904208463
-
Signal recognition particle-ribosome binding is sensitive to nascent chain length
-
Noriega TR, Tsai A, Elvekrog MM, Petrov A, Neher SB, Chen J, Bradshaw N, Puglisi JD, Walter P. 2014b. Signal recognition particle-ribosome binding is sensitive to nascent chain length. The Journal of Biological Chemistry 289:19294–19305. doi:10.1074/jbc.M114.563239
-
(2014)
The Journal of Biological Chemistry
, vol.289
, pp. 19294-19305
-
-
Noriega, T.R.1
Tsai, A.2
Elvekrog, M.M.3
Petrov, A.4
Neher, S.B.5
Chen, J.6
Bradshaw, N.7
Puglisi, J.D.8
Walter, P.9
-
46
-
-
0029068214
-
SRP samples nascent chains for the presence of signal sequences by interacting with ribosomes at a discrete step during translation elongation
-
Ogg SC, Walter P. 1995. SRP samples nascent chains for the presence of signal sequences by interacting with ribosomes at a discrete step during translation elongation. Cell 81:1075–1084. doi:10.1016/S0092-8674(05)80012-1
-
(1995)
Cell
, vol.81
, pp. 1075-1084
-
-
Ogg, S.C.1
Walter, P.2
-
47
-
-
84925553022
-
Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo
-
Pechmann S, Chartron JW, Frydman J. 2014. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nature Structural & Molecular Biology 21:1100–1105. doi:10.1038/nsmb.2919
-
(2014)
Nature Structural &Amp; Molecular Biology
, vol.21
, pp. 1100-1105
-
-
Pechmann, S.1
Chartron, J.W.2
Frydman, J.3
-
48
-
-
0034127485
-
Structural insights into substrate binding by the molecular chaperone DnaK
-
Pellecchia M, Montgomery DL, Stevens SY, Vander Kooi CW, Feng HP, Gierasch LM, Zuiderweg ER. 2000 Structural insights into substrate binding by the molecular chaperone DnaK. Nature Structural Biology 7:298–303 doi:10.1038/74062
-
(2000)
Nature Structural Biology
, vol.7
, pp. 298-303
-
-
Pellecchia, M.1
Montgomery, D.L.2
Stevens, S.Y.3
Vander Kooi, C.W.4
Feng, H.P.5
Gierasch, L.M.6
Zuiderweg, E.R.7
-
49
-
-
79955626576
-
Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes
-
Pisareva VP, Skabkin MA, Hellen CU, Pestova TV, Pisarev AV. 2011. Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. The EMBO Journal 30:1804–1817 doi:10.1038/emboj.2011.93
-
(2011)
The EMBO Journal
, vol.30
, pp. 1804-1817
-
-
Pisareva, V.P.1
Skabkin, M.A.2
Hellen, C.U.3
Pestova, T.V.4
Pisarev, A.V.5
-
50
-
-
55549102665
-
A precursor-specific role for Hsp40/Hsc70 during tail-anchored protein integration at the endoplasmic reticulum
-
Rabu C, Wipf P, Brodsky JL, High S. 2008. A precursor-specific role for Hsp40/Hsc70 during tail-anchored protein integration at the endoplasmic reticulum. The Journal of Biological Chemistry 283:27504–27513. doi:10.1074/jbc.M804591200
-
(2008)
The Journal of Biological Chemistry
, vol.283
, pp. 27504-27513
-
-
Rabu, C.1
Wipf, P.2
Brodsky, J.L.3
High, S.4
-
51
-
-
0344304454
-
Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication
-
Rosendal KR, Wild K, Montoya G, Sinning I. 2003. Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication. Proceedings of the National Academy of Sciences of USA 100:14701–14706. doi:10.1073/pnas.2436132100
-
(2003)
Proceedings of the National Academy of Sciences of USA
, vol.100
, pp. 14701-14706
-
-
Rosendal, K.R.1
Wild, K.2
Montoya, G.3
Sinning, I.4
-
52
-
-
84902330606
-
Regulation of cargo recognition, commitment, and unloading drives cotranslational protein targeting
-
Saraogi I, Akopian D, Shan SO. 2014. Regulation of cargo recognition, commitment, and unloading drives cotranslational protein targeting. The Journal of Cell Biology 205:693–706. doi:10.1083/jcb.201311028
-
(2014)
The Journal of Cell Biology
, vol.205
, pp. 693-706
-
-
Saraogi, I.1
Akopian, D.2
Shan, S.O.3
-
53
-
-
33751325833
-
Structure of the
-
Schaffitzel C, Oswald M, Berger I, Ishikawa T, Abrahams JP, Koerten HK, Koning RI, Ban N. 2006. Structure of the E. coli signal recognition particle bound to a translating ribosome. Nature 444:503–506. doi:10.1038/nature05182
-
(2006)
E. Coli Signal Recognition Particle Bound to a Translating Ribosome. Nature
, vol.444
, pp. 503-506
-
-
Schaffitzel, C.1
Oswald, M.2
Berger, I.3
Ishikawa, T.4
Abrahams, J.P.5
Koerten, H.K.6
Koning, R.I.7
Ban, N.8
-
54
-
-
84868444740
-
RELION:Implementation of a Bayesian approach to cryo-EM structure determination
-
Scheres SH. 2012. RELION:implementation of a Bayesian approach to cryo-EM structure determination. Journal of Structural Biology 180:519–530. doi:10.1016/j.jsb.2012.09.006
-
(2012)
Journal of Structural Biology
, vol.180
, pp. 519-530
-
-
Scheres, S.H.1
-
55
-
-
84920942671
-
Beam-induced motion correction for sub-megadalton cryo-EM particles
-
Scheres SH. 2014. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3:e03665 doi:10.7554/eLife.03665
-
(2014)
. Elife
, vol.3
-
-
Scheres, S.H.1
-
56
-
-
84866078359
-
Prevention of overfitting in cryo-EM structure determination
-
Scheres SH, Chen S. 2012. Prevention of overfitting in cryo-EM structure determination. Nature Methods 9:853–854. doi:10.1038/nmeth.2115
-
(2012)
Nature Methods
, vol.9
, pp. 853-854
-
-
Scheres, S.H.1
Chen, S.2
-
57
-
-
71549124362
-
Structural insight into nascent polypeptide chain-mediated translational stalling
-
Seidelt B, Innis CA, Wilson DN, Gartmann M, Armache JP, Villa E, Trabuco LG, Becker T, Mielke T, Schulten K, Steitz TA, Beckmann R. 2009. Structural insight into nascent polypeptide chain-mediated translational stalling Science 326:1412–1415. doi:10.1126/science.1177662
-
(2009)
Science
, vol.326
, pp. 1412-1415
-
-
Seidelt, B.1
Innis, C.A.2
Wilson, D.N.3
Gartmann, M.4
Armache, J.P.5
Villa, E.6
Trabuco, L.G.7
Becker, T.8
Mielke, T.9
Schulten, K.10
Steitz, T.A.11
Beckmann, R.12
-
58
-
-
14544302354
-
Co-translational protein targeting by the signal recognition particle
-
Shan SO, Walter P. 2005. Co-translational protein targeting by the signal recognition particle. FEBS Letters 579:921–926. doi:10.1016/j.febslet.2004.11.049
-
(2005)
FEBS Letters
, vol.579
, pp. 921-926
-
-
Shan, S.O.1
Walter, P.2
-
59
-
-
84455178968
-
A calmodulin-dependent translocation pathway for small secretory proteins
-
Shao S, Hegde RS. 2011a. A calmodulin-dependent translocation pathway for small secretory proteins. Cell 147:1576–1588. doi:10.1016/j.cell.2011.11.048
-
(2011)
Cell
, vol.147
, pp. 1576-1588
-
-
Shao, S.1
Hegde, R.S.2
-
60
-
-
80054041334
-
Membrane protein insertion at the endoplasmic reticulum
-
Shao S, Hegde RS. 2011b. Membrane protein insertion at the endoplasmic reticulum. Annual Review of Cell and Developmental Biology 27:25–56. doi:10.1146/annurev-cellbio-092910-154125
-
(2011)
Annual Review of Cell and Developmental Biology
, vol.27
, pp. 25-56
-
-
Shao, S.1
Hegde, R.S.2
-
61
-
-
84908047269
-
Reconstitution of a minimal ribosome-associated ubiquitination pathway with purified factors
-
Shao S, Hegde RS. 2014. Reconstitution of a minimal ribosome-associated ubiquitination pathway with purified factors. Molecular Cell 55:880–890. doi:10.1016/j.molcel.2014.07.006
-
(2014)
Molecular Cell
, vol.55
, pp. 880-890
-
-
Shao, S.1
Hegde, R.S.2
-
62
-
-
84878857004
-
Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation
-
Shao S, von der Malsburg K, Hegde RS. 2013. Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation. Molecular Cell 50:637–648. doi:10.1016/j.molcel.2013.04.015
-
(2013)
Molecular Cell
, vol.50
, pp. 637-648
-
-
Shao, S.1
Von Der Malsburg, K.2
Hegde, R.S.3
-
63
-
-
77954691102
-
In vitro dissection of protein translocation into the mammalian endoplasmic reticulum
-
Sharma A, Mariappan M, Appathurai S, Hegde RS. 2010. In vitro dissection of protein translocation into the mammalian endoplasmic reticulum. Methods in Molecular Biology 619:339–363. doi:10.1007/978-1-60327-412-8_20
-
(2010)
Methods in Molecular Biology
, vol.619
, pp. 339-363
-
-
Sharma, A.1
Mariappan, M.2
Appathurai, S.3
Hegde, R.S.4
-
64
-
-
77957935294
-
Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay
-
Shoemaker CJ, Eyler DE, Green R. 2010. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science 330:369–372. doi:10.1126/science.1192430
-
(2010)
Science
, vol.330
, pp. 369-372
-
-
Shoemaker, C.J.1
Eyler, D.E.2
Green, R.3
-
65
-
-
0022620481
-
Removal of the Alu structural domain from signal recognition particle leaves its protein translocation activity intact
-
Siegel V, Walter P. 1986. Removal of the Alu structural domain from signal recognition particle leaves its protein translocation activity intact. Nature 320:81–84. doi:10.1038/320081a0
-
(1986)
Nature
, vol.320
, pp. 81-84
-
-
Siegel, V.1
Walter, P.2
-
66
-
-
0024024901
-
The affinity of signal recognition particle for presecretory proteins is dependent on nascent chain length
-
Siegel V, Walter P. 1988. The affinity of signal recognition particle for presecretory proteins is dependent on nascent chain length. The EMBO Journal 7:1769–1775
-
(1988)
The EMBO Journal
, vol.7
, pp. 1769-1775
-
-
Siegel, V.1
Walter, P.2
-
67
-
-
33947218544
-
Identification of a targeting factor for posttranslational membrane protein insertion into the ER
-
Stefanovic S, Hegde RS. 2007. Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128:1147–1159. doi:10.1016/j.cell.2007.01.036
-
(2007)
Cell
, vol.128
, pp. 1147-1159
-
-
Stefanovic, S.1
Hegde, R.S.2
-
68
-
-
0025183758
-
Protein targeting signals
-
von Heijne G. 1990. Protein targeting signals. Current Opinion in Cell Biology 2:604–608. doi:10.1016/0955-0674(90)90100-S
-
(1990)
Current Opinion in Cell Biology
, vol.2
, pp. 604-608
-
-
Von Heijne, G.1
-
69
-
-
66149157000
-
Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome
-
Voorhees RM, Weixlbaumer A, Loakes D, Kelley AC, Ramakrishnan V. 2009. Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nature Structural & Molecular Biology 16:528–533. doi:10.1038/nsmb.1577
-
(2009)
Nature Structural &Amp; Molecular Biology
, vol.16
, pp. 528-533
-
-
Voorhees, R.M.1
Weixlbaumer, A.2
Loakes, D.3
Kelley, A.C.4
Ramakrishnan, V.5
-
70
-
-
84903310310
-
Structure of the mammalian ribosome-Sec61 complex to 3.4 A resolution
-
Voorhees RM, Fernandez IS, Scheres SH, Hegde RS. 2014. Structure of the mammalian ribosome-Sec61 complex to 3.4 A resolution. Cell 157:1632–1643. doi:10.1016/j.cell.2014.05.024
-
(2014)
Cell
, vol.157
, pp. 1632-1643
-
-
Voorhees, R.M.1
Fernandez, I.S.2
Scheres, S.H.3
Hegde, R.S.4
-
71
-
-
0019817924
-
Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in-vitro-assembled polysomes synthesizing secretory protein
-
Walter P, Blobel G. 1981. Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in-vitro-assembled polysomes synthesizing secretory protein. The Journal of Cell Biology 91:551–556. doi:10.1083/jcb.91.2.551.
-
(1981)
The Journal of Cell Biology
, vol.91
, pp. 551-556
-
-
Walter, P.1
Blobel, G.2
-
72
-
-
0019849075
-
Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein
-
Walter P, Ibrahimi I, Blobel G. 1981. Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein. The Journal of Cell Biology 91:545–550. doi:10.1083/jcb.91.2.545
-
(1981)
The Journal of Cell Biology
, vol.91
, pp. 545-550
-
-
Walter, P.1
Ibrahimi, I.2
Blobel, G.3
-
73
-
-
77957376226
-
A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum
-
Wang F, Brown EC, Mak G, Zhuang J, Denic V. 2010. A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum. Molecular Cell 40:159–171. doi:10.1016/j.molcel.2010.08.038
-
(2010)
Molecular Cell
, vol.40
, pp. 159-171
-
-
Wang, F.1
Brown, E.C.2
Mak, G.3
Zhuang, J.4
Denic, V.5
-
74
-
-
0034626729
-
Structure and assembly of the Alu domain of the mammalian signal recognition particle
-
Weichenrieder O, Wild K, Strub K, Cusack S. 2000. Structure and assembly of the Alu domain of the mammalian signal recognition particle. Nature 408:167–173. doi:10.1038/35041507
-
(2000)
Nature
, vol.408
, pp. 167-173
-
-
Weichenrieder, O.1
Wild, K.2
Strub, K.3
Cusack, S.4
-
75
-
-
79953106751
-
The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling
-
Wilson DN, Beckmann R. 2011. The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Current Opinion in Structural Biology 21:274–282. doi:10.1016/j.sbi.2011.01.007
-
(2011)
Current Opinion in Structural Biology
, vol.21
, pp. 274-282
-
-
Wilson, D.N.1
Beckmann, R.2
-
76
-
-
0024817509
-
Signal recognition particle mediates a transient elongation arrest of preprolactin in reticulocyte lysate
-
Wolin SL, Walter P. 1989. Signal recognition particle mediates a transient elongation arrest of preprolactin in reticulocyte lysate. The Journal of Cell Biology 109:2617–2622. doi:10.1083/jcb.109.6.2617
-
(1989)
The Journal of Cell Biology
, vol.109
, pp. 2617-2622
-
-
Wolin, S.L.1
Walter, P.2
-
77
-
-
84865238560
-
NAC functions as a modulator of SRP during the early steps of protein targeting to the endoplasmic reticulum
-
Zhang Y, Berndt U, Gölz H, Tais A, Oellerer S, Wölfle T, Fitzke E, Rospert S. 2012. NAC functions as a modulator of SRP during the early steps of protein targeting to the endoplasmic reticulum. Molecular Biology of the Cell 23:3027–3040. doi:10.1091/mbc.E12-02-0112
-
(2012)
. Molecular Biology of the Cell
, vol.23
, pp. 3027-3040
-
-
Zhang, Y.1
Berndt, U.2
Gölz, H.3
Tais, A.4
Oellerer, S.5
Wölfle, T.6
Fitzke, E.7
Rospert, S.8
-
78
-
-
84863288448
-
Translation elongation regulates substrate selection by the signal recognition particle
-
Zhang D, Shan SO. 2012. Translation elongation regulates substrate selection by the signal recognition particle The Journal of Biological Chemistry 287:7652–7660. doi:10.1074/jbc.M111.325001
-
(2012)
The Journal of Biological Chemistry
, vol.287
, pp. 7652-7660
-
-
Zhang, D.1
Shan, S.O.2
-
79
-
-
77952127782
-
Sequential checkpoints govern substrate selection during cotranslational protein targeting
-
Zhang X, Rashid R, Wang K, Shan SO. 2010. Sequential checkpoints govern substrate selection during cotranslational protein targeting. Science 328:757–760. doi:10.1126/science.1186743
-
(2010)
Science
, vol.328
, pp. 757-760
-
-
Zhang, X.1
Rashid, R.2
Wang, K.3
Shan, S.O.4
-
80
-
-
0025601549
-
The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence
-
Zopf D, Bernstein HD, Johnson AE, Walter P. 1990. The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. The EMBO Journal 9:4511–4517
-
(1990)
The EMBO Journal
, vol.9
, pp. 4511-4517
-
-
Zopf, D.1
Bernstein, H.D.2
Johnson, A.E.3
Walter, P.4
|