메뉴 건너뛰기




Volumn 4, Issue JULY 2015, 2015, Pages 1-21

Structures of the scanning and engaged states of the mammalian srp-ribosome complex

Author keywords

[No Author keywords available]

Indexed keywords

GUANOSINE TRIPHOSPHATASE; SIGNAL RECOGNITION PARTICLE; MACROMOLECULE;

EID: 84937403604     PISSN: None     EISSN: 2050084X     Source Type: Journal    
DOI: 10.7554/eLife.07975     Document Type: Article
Times cited : (111)

References (80)
  • 3
    • 0034681490 scopus 로고    scopus 로고
    • Crystal structure of the ribonucleoprotein core of the signal recognition particle
    • Batey RT, Rambo RP, Lucast L, Rha B, Doudna JA. 2000. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287:1232–1239. doi:10.1126/science.287.5456.1232
    • (2000) Science , vol.287 , pp. 1232-1239
    • Batey, R.T.1    Rambo, R.P.2    Lucast, L.3    Rha, B.4    Doudna, J.A.5
  • 5
  • 7
    • 43249083239 scopus 로고    scopus 로고
    • Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel
    • Bornemann T, Jockel J, Rodnina MV, Wintermeyer W. 2008. Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nature Structural & Molecular Biology 15:494–499. doi:10.1038/nsmb.1402
    • (2008) Nature Structural &Amp; Molecular Biology , vol.15 , pp. 494-499
    • Bornemann, T.1    Jockel, J.2    Rodnina, M.V.3    Wintermeyer, W.4
  • 8
    • 84921777915 scopus 로고    scopus 로고
    • Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallographica. Section D
    • Brown A, Long F, Nicholls RA, Toots J, Emsley P, Murshudov G. 2015. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallographica. Section D, Biological Crystallography 71:136–153. doi:10.1107/S1399004714021683
    • (2015) Biological Crystallography , vol.71 , pp. 136-153
    • Brown, A.1    Long, F.2    Nicholls, R.A.3    Toots, J.4    Emsley, P.5    Murshudov, G.6
  • 9
    • 0033600728 scopus 로고    scopus 로고
    • Crystal structure of the conserved subdomain of human protein SRP54M at 2.1 A resolution:Evidence for the mechanism of signal peptide binding
    • Clemons WMJ, Gowda K, Black SD, Zwieb C, Ramakrishnan V. 1999. Crystal structure of the conserved subdomain of human protein SRP54M at 2.1 A resolution:evidence for the mechanism of signal peptide binding. Journal of Molecular Biology 292:697–705. doi:10.1006/jmbi.1999.3090
    • (1999) Journal of Molecular Biology , vol.292 , pp. 697-705
    • Clemons, W.1    Gowda, K.2    Black, S.D.3    Zwieb, C.4    Ramakrishnan, V.5
  • 10
  • 11
    • 79960923840 scopus 로고    scopus 로고
    • Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes
    • del Alamo M, Hogan DJ, Pechmann S, Albanese V, Brown PO, Frydman J. 2011. Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes. PLOS Biology 9:e1001100. doi:10.1371/journal.pbio.1001100
    • (2011) PLOS Biology , vol.e1001100 , pp. 9
    • Del Alamo, M.1    Hogan, D.J.2    Pechmann, S.3    Albanese, V.4    Brown, P.O.5    Frydman, J.6
  • 13
    • 55849105200 scopus 로고    scopus 로고
    • Structures of SRP54 and SRP19, the two proteins that organize the ribonucleic core of the signal recognition particle from Pyrococcus furiosus
    • Egea PF, Napetschnig J, Walter P, Stroud RM. 2008. Structures of SRP54 and SRP19, the two proteins that organize the ribonucleic core of the signal recognition particle from Pyrococcus furiosus. PLOS ONE 3:e3528 doi:10.1371/journal.pone.0003528.
    • (2008) PLOS ONE , vol.3
    • Egea, P.F.1    Napetschnig, J.2    Walter, P.3    Stroud, R.M.4
  • 14
    • 0347584006 scopus 로고    scopus 로고
    • Substrate twinning activates the signal recognition particle and its receptor
    • Egea PF, Shan SO, Napetschnig J, Savage DF, Walter P, Stroud RM. 2004. Substrate twinning activates the signal recognition particle and its receptor. Nature 427:215–221. doi:10.1038/nature02250
    • (2004) Nature , vol.427 , pp. 215-221
    • Egea, P.F.1    Shan, S.O.2    Napetschnig, J.3    Savage, D.F.4    Walter, P.5    Stroud, R.M.6
  • 15
    • 77949535720 scopus 로고    scopus 로고
    • Features and development of coot. Acta Crystallographica Section D
    • Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of coot. Acta Crystallographica Section D, Biological Crystallography 66:486–501. doi:10.1107/S0907444910007493
    • (2010) Biological Crystallography , vol.66 , pp. 486-501
    • Emsley, P.1    Lohkamp, B.2    Scott, W.G.3    Cowtan, K.4
  • 16
    • 0038719738 scopus 로고    scopus 로고
    • Signal recognition particle binds to ribosome-bound signal sequences with fluorescence-detected subnanomolar affinity that does not diminish as the nascent chain lengthens
    • Flanagan JJ, Chen JC, Miao Y, Shao Y, Lin J, Bock PE, Johnson AE. 2003. Signal recognition particle binds to ribosome-bound signal sequences with fluorescence-detected subnanomolar affinity that does not diminish as the nascent chain lengthens. The Journal of Biological Chemistry 278:18628–18637. doi:10.1074/jbcM300173200
    • (2003) The Journal of Biological Chemistry , vol.278 , pp. 18628-18637
    • Flanagan, J.J.1    Chen, J.C.2    Miao, Y.3    Shao, Y.4    Lin, J.5    Bock, P.E.6    Johnson, A.E.7
  • 17
    • 0346373753 scopus 로고    scopus 로고
    • Heterodimeric GTPase core of the SRP targeting complex
    • Focia PJ, Shepotinovskaya IV, Seidler JA, Freymann DM. 2004. Heterodimeric GTPase core of the SRP targeting complex. Science 303:373–377. doi:10.1126/science.1090827
    • (2004) Science , vol.303 , pp. 373-377
    • Focia, P.J.1    Shepotinovskaya, I.V.2    Seidler, J.A.3    Freymann, D.M.4
  • 19
    • 84897545031 scopus 로고    scopus 로고
    • SRP RNA remodeling by SRP68 explains its role in protein translocation
    • Grotwinkel JT, Wild K, Segnitz B, Sinning I. 2014. SRP RNA remodeling by SRP68 explains its role in protein translocation. Science 344:101–104. doi:10.1126/science.1249094
    • (2014) Science , vol.344 , pp. 101-104
    • Grotwinkel, J.T.1    Wild, K.2    Segnitz, B.3    Sinning, I.4
  • 21
    • 1542319100 scopus 로고    scopus 로고
    • Structure of the signal recognition particle interacting with the elongation-arrested ribosome
    • Halic M, Becker T, Pool MR, Spahn CM, Grassucci RA, Frank J, Beckmann R. 2004. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427:808–814. doi:10.1038/nature02342
    • (2004) Nature , vol.427 , pp. 808-814
    • Halic, M.1    Becker, T.2    Pool, M.R.3    Spahn, C.M.4    Grassucci, R.A.5    Frank, J.6    Beckmann, R.7
  • 22
    • 13844266603 scopus 로고    scopus 로고
    • The signal recognition particle and its interactions during protein targeting
    • Halic M, Beckmann R. 2005. The signal recognition particle and its interactions during protein targeting. Current Opinion in Structural Biology 15:116–125. doi:10.1016/j.sbi.2005.01.013
    • (2005) Current Opinion in Structural Biology , vol.15 , pp. 116-125
    • Halic, M.1    Beckmann, R.2
  • 23
    • 33751325296 scopus 로고    scopus 로고
    • Following the signal sequence from ribosomal tunnel exit to signal recognition particle
    • Halic M, Blau M, Becker T, Mielke T, Pool MR, Wild K, Sinning I, Beckmann R. 2006. Following the signal sequence from ribosomal tunnel exit to signal recognition particle. Nature 444:507–511. doi:10.1038/nature05326
    • (2006) Nature , vol.444 , pp. 507-511
    • Halic, M.1    Blau, M.2    Becker, T.3    Mielke, T.4    Pool, M.R.5    Wild, K.6    Sinning, I.7    Beckmann, R.8
  • 24
    • 79960637590 scopus 로고    scopus 로고
    • Protein targeting and degradation are coupled for elimination of mislocalized proteins
    • Hessa T, Sharma A, Mariappan M, Eshleman HD, Gutierrez E, Hegde RS. 2011. Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 475:394–397. doi:10.1038/nature10181
    • (2011) Nature , vol.475 , pp. 394-397
    • Hessa, T.1    Sharma, A.2    Mariappan, M.3    Eshleman, H.D.4    Gutierrez, E.5    Hegde, R.S.6
  • 26
    • 62549134121 scopus 로고    scopus 로고
    • Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling
    • Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS. 2009. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223. doi:10.1126/science.1168978
    • (2009) Science , vol.324 , pp. 218-223
    • Ingolia, N.T.1    Ghaemmaghami, S.2    Newman, J.R.3    Weissman, J.S.4
  • 27
    • 84909607974 scopus 로고    scopus 로고
    • Principles of ER cotranslational translocation revealed by proximityspecific ribosome profiling
    • Jan CH, Williams CC, Weissman JS. 2014. Principles of ER cotranslational translocation revealed by proximityspecific ribosome profiling. Science 346:1257521. doi:10.1126/science.1257521
    • (2014) Science , vol.346
    • Jan, C.H.1    Williams, C.C.2    Weissman, J.S.3
  • 28
    • 77953025666 scopus 로고    scopus 로고
    • Recognition of a signal peptide by the signal recognition particle
    • Janda CY, Li J, Oubridge C, Hernandez H, Robinson CV, Nagai K. 2010. Recognition of a signal peptide by the signal recognition particle. Nature 465:507–510. doi:10.1038/nature08870
    • (2010) Nature , vol.465 , pp. 507-510
    • Janda, C.Y.1    Li, J.2    Oubridge, C.3    Hernandez, H.4    Robinson, C.V.5    Nagai, K.6
  • 30
    • 0032563163 scopus 로고    scopus 로고
    • Crystal structure of the signal sequence binding subunit of the signal recognition particle
    • Keenan RJ, Freymann DM, Walter P, Stroud RM. 1998. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94:181–191. doi:10.1016/S0092-8674(00)81418-X
    • (1998) Cell , vol.94 , pp. 181-191
    • Keenan, R.J.1    Freymann, D.M.2    Walter, P.3    Stroud, R.M.4
  • 31
    • 0035910270 scopus 로고    scopus 로고
    • Predicting transmembrane protein topology with a hidden Markov model:Application to complete genomes
    • Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes. Journal of Molecular Biology 305:567–580 doi:10.1006/jmbi.2000.4315
    • (2001) Journal of Molecular Biology , vol.305 , pp. 567-580
    • Krogh, A.1    Larsson, B.2    Von Heijne, G.3    Sonnhammer, E.L.4
  • 32
    • 84894623755 scopus 로고    scopus 로고
    • Quantifying the local resolution of cryo-EM density maps
    • Kucukelbir A, Sigworth FJ, Tagare HD. 2014. Quantifying the local resolution of cryo-EM density maps. Nature Methods 11:63–65. doi:10.1038/nmeth.2727
    • (2014) Nature Methods , vol.11 , pp. 63-65
    • Kucukelbir, A.1    Sigworth, F.J.2    Tagare, H.D.3
  • 33
    • 42949161206 scopus 로고    scopus 로고
    • SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites
    • Lakkaraju AK, Mary C, Scherrer A, Johnson AE, Strub K. 2008. SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites. Cell 133:440–451. doi:10.1016/j.cell.2008.02.049
    • (2008) Cell , vol.133 , pp. 440-451
    • Lakkaraju, A.K.1    Mary, C.2    Scherrer, A.3    Johnson, A.E.4    Strub, K.5
  • 35
    • 0026533588 scopus 로고
    • The methionine-rich domain of the 54 kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences
    • Lutcke H, High S, Romisch K, Ashford AJ, Dobberstein B. 1992. The methionine-rich domain of the 54 kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences. The EMBO Journal 11:1543–1551
    • (1992) The EMBO Journal , vol.11 , pp. 1543-1551
    • Lutcke, H.1    High, S.2    Romisch, K.3    Ashford, A.J.4    Dobberstein, B.5
  • 36
  • 37
    • 0034254190 scopus 로고    scopus 로고
    • Elongation arrest is a physiologically important function of signal recognition particle
    • Mason N, Ciufo LF, Brown JD. 2000. Elongation arrest is a physiologically important function of signal recognition particle. The EMBO Journal 19:4164–4174. doi:10.1093/emboj/19.15.4164
    • (2000) The EMBO Journal , vol.19 , pp. 4164-4174
    • Mason, N.1    Ciufo, L.F.2    Brown, J.D.3
  • 38
    • 84924362921 scopus 로고    scopus 로고
    • Protein targeting Structure of the Get3 targeting factor in complex with its membrane protein cargo
    • Mateja A, Paduch M, Chang HY, Szydlowska A, Kossiakoff AA, Hegde RS, Keenan RJ. 2015. Protein targeting Structure of the Get3 targeting factor in complex with its membrane protein cargo. Science 347:1152–1155 doi:10.1126/science.1261671
    • (2015) Science , vol.347 , pp. 1152-1155
    • Mateja, A.1    Paduch, M.2    Chang, H.Y.3    Szydlowska, A.4    Kossiakoff, A.A.5    Hegde, R.S.6    Keenan, R.J.7
  • 40
    • 0027433308 scopus 로고
    • GTP binding and hydrolysis by the signal recognition particle during initiation of protein translocation
    • Miller JD, Wilhelm H, Gierasch L, Gilmore R, Walter P. 1993. GTP binding and hydrolysis by the signal recognition particle during initiation of protein translocation. Nature 366:351–354. doi:10.1038/366351a0
    • (1993) Nature , vol.366 , pp. 351-354
    • Miller, J.D.1    Wilhelm, H.2    Gierasch, L.3    Gilmore, R.4    Walter, P.5
  • 43
    • 84860269955 scopus 로고    scopus 로고
    • Low-resolution refinement tools in REFMAC5. Acta Crystallographica Section D
    • Nicholls RA, Long F, Murshudov GN. 2012. Low-resolution refinement tools in REFMAC5. Acta Crystallographica Section D, Biological Crystallography 68:404–417. doi:10.1107/S090744491105606X.
    • (2012) Biological Crystallography , vol.68 , pp. 404-417
    • Nicholls, R.A.1    Long, F.2    Murshudov, G.N.3
  • 44
    • 85017331117 scopus 로고    scopus 로고
    • Real-time observation of signal recognition particle binding to actively translating ribosomes
    • Noriega TR, Chen J, Walter P, Puglisi JD. 2014a. Real-time observation of signal recognition particle binding to actively translating ribosomes. eLife 3:e04418. doi:10.7554/eLife.04418
    • (2014) . Elife , vol.3
    • Noriega, T.R.1    Chen, J.2    Walter, P.3    Puglisi, J.D.4
  • 46
    • 0029068214 scopus 로고
    • SRP samples nascent chains for the presence of signal sequences by interacting with ribosomes at a discrete step during translation elongation
    • Ogg SC, Walter P. 1995. SRP samples nascent chains for the presence of signal sequences by interacting with ribosomes at a discrete step during translation elongation. Cell 81:1075–1084. doi:10.1016/S0092-8674(05)80012-1
    • (1995) Cell , vol.81 , pp. 1075-1084
    • Ogg, S.C.1    Walter, P.2
  • 47
    • 84925553022 scopus 로고    scopus 로고
    • Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo
    • Pechmann S, Chartron JW, Frydman J. 2014. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nature Structural & Molecular Biology 21:1100–1105. doi:10.1038/nsmb.2919
    • (2014) Nature Structural &Amp; Molecular Biology , vol.21 , pp. 1100-1105
    • Pechmann, S.1    Chartron, J.W.2    Frydman, J.3
  • 49
    • 79955626576 scopus 로고    scopus 로고
    • Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes
    • Pisareva VP, Skabkin MA, Hellen CU, Pestova TV, Pisarev AV. 2011. Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. The EMBO Journal 30:1804–1817 doi:10.1038/emboj.2011.93
    • (2011) The EMBO Journal , vol.30 , pp. 1804-1817
    • Pisareva, V.P.1    Skabkin, M.A.2    Hellen, C.U.3    Pestova, T.V.4    Pisarev, A.V.5
  • 50
    • 55549102665 scopus 로고    scopus 로고
    • A precursor-specific role for Hsp40/Hsc70 during tail-anchored protein integration at the endoplasmic reticulum
    • Rabu C, Wipf P, Brodsky JL, High S. 2008. A precursor-specific role for Hsp40/Hsc70 during tail-anchored protein integration at the endoplasmic reticulum. The Journal of Biological Chemistry 283:27504–27513. doi:10.1074/jbc.M804591200
    • (2008) The Journal of Biological Chemistry , vol.283 , pp. 27504-27513
    • Rabu, C.1    Wipf, P.2    Brodsky, J.L.3    High, S.4
  • 51
    • 0344304454 scopus 로고    scopus 로고
    • Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication
    • Rosendal KR, Wild K, Montoya G, Sinning I. 2003. Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication. Proceedings of the National Academy of Sciences of USA 100:14701–14706. doi:10.1073/pnas.2436132100
    • (2003) Proceedings of the National Academy of Sciences of USA , vol.100 , pp. 14701-14706
    • Rosendal, K.R.1    Wild, K.2    Montoya, G.3    Sinning, I.4
  • 52
    • 84902330606 scopus 로고    scopus 로고
    • Regulation of cargo recognition, commitment, and unloading drives cotranslational protein targeting
    • Saraogi I, Akopian D, Shan SO. 2014. Regulation of cargo recognition, commitment, and unloading drives cotranslational protein targeting. The Journal of Cell Biology 205:693–706. doi:10.1083/jcb.201311028
    • (2014) The Journal of Cell Biology , vol.205 , pp. 693-706
    • Saraogi, I.1    Akopian, D.2    Shan, S.O.3
  • 54
    • 84868444740 scopus 로고    scopus 로고
    • RELION:Implementation of a Bayesian approach to cryo-EM structure determination
    • Scheres SH. 2012. RELION:implementation of a Bayesian approach to cryo-EM structure determination. Journal of Structural Biology 180:519–530. doi:10.1016/j.jsb.2012.09.006
    • (2012) Journal of Structural Biology , vol.180 , pp. 519-530
    • Scheres, S.H.1
  • 55
    • 84920942671 scopus 로고    scopus 로고
    • Beam-induced motion correction for sub-megadalton cryo-EM particles
    • Scheres SH. 2014. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3:e03665 doi:10.7554/eLife.03665
    • (2014) . Elife , vol.3
    • Scheres, S.H.1
  • 56
    • 84866078359 scopus 로고    scopus 로고
    • Prevention of overfitting in cryo-EM structure determination
    • Scheres SH, Chen S. 2012. Prevention of overfitting in cryo-EM structure determination. Nature Methods 9:853–854. doi:10.1038/nmeth.2115
    • (2012) Nature Methods , vol.9 , pp. 853-854
    • Scheres, S.H.1    Chen, S.2
  • 58
    • 14544302354 scopus 로고    scopus 로고
    • Co-translational protein targeting by the signal recognition particle
    • Shan SO, Walter P. 2005. Co-translational protein targeting by the signal recognition particle. FEBS Letters 579:921–926. doi:10.1016/j.febslet.2004.11.049
    • (2005) FEBS Letters , vol.579 , pp. 921-926
    • Shan, S.O.1    Walter, P.2
  • 59
    • 84455178968 scopus 로고    scopus 로고
    • A calmodulin-dependent translocation pathway for small secretory proteins
    • Shao S, Hegde RS. 2011a. A calmodulin-dependent translocation pathway for small secretory proteins. Cell 147:1576–1588. doi:10.1016/j.cell.2011.11.048
    • (2011) Cell , vol.147 , pp. 1576-1588
    • Shao, S.1    Hegde, R.S.2
  • 60
    • 80054041334 scopus 로고    scopus 로고
    • Membrane protein insertion at the endoplasmic reticulum
    • Shao S, Hegde RS. 2011b. Membrane protein insertion at the endoplasmic reticulum. Annual Review of Cell and Developmental Biology 27:25–56. doi:10.1146/annurev-cellbio-092910-154125
    • (2011) Annual Review of Cell and Developmental Biology , vol.27 , pp. 25-56
    • Shao, S.1    Hegde, R.S.2
  • 61
    • 84908047269 scopus 로고    scopus 로고
    • Reconstitution of a minimal ribosome-associated ubiquitination pathway with purified factors
    • Shao S, Hegde RS. 2014. Reconstitution of a minimal ribosome-associated ubiquitination pathway with purified factors. Molecular Cell 55:880–890. doi:10.1016/j.molcel.2014.07.006
    • (2014) Molecular Cell , vol.55 , pp. 880-890
    • Shao, S.1    Hegde, R.S.2
  • 62
    • 84878857004 scopus 로고    scopus 로고
    • Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation
    • Shao S, von der Malsburg K, Hegde RS. 2013. Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation. Molecular Cell 50:637–648. doi:10.1016/j.molcel.2013.04.015
    • (2013) Molecular Cell , vol.50 , pp. 637-648
    • Shao, S.1    Von Der Malsburg, K.2    Hegde, R.S.3
  • 63
    • 77954691102 scopus 로고    scopus 로고
    • In vitro dissection of protein translocation into the mammalian endoplasmic reticulum
    • Sharma A, Mariappan M, Appathurai S, Hegde RS. 2010. In vitro dissection of protein translocation into the mammalian endoplasmic reticulum. Methods in Molecular Biology 619:339–363. doi:10.1007/978-1-60327-412-8_20
    • (2010) Methods in Molecular Biology , vol.619 , pp. 339-363
    • Sharma, A.1    Mariappan, M.2    Appathurai, S.3    Hegde, R.S.4
  • 64
    • 77957935294 scopus 로고    scopus 로고
    • Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay
    • Shoemaker CJ, Eyler DE, Green R. 2010. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science 330:369–372. doi:10.1126/science.1192430
    • (2010) Science , vol.330 , pp. 369-372
    • Shoemaker, C.J.1    Eyler, D.E.2    Green, R.3
  • 65
    • 0022620481 scopus 로고
    • Removal of the Alu structural domain from signal recognition particle leaves its protein translocation activity intact
    • Siegel V, Walter P. 1986. Removal of the Alu structural domain from signal recognition particle leaves its protein translocation activity intact. Nature 320:81–84. doi:10.1038/320081a0
    • (1986) Nature , vol.320 , pp. 81-84
    • Siegel, V.1    Walter, P.2
  • 66
    • 0024024901 scopus 로고
    • The affinity of signal recognition particle for presecretory proteins is dependent on nascent chain length
    • Siegel V, Walter P. 1988. The affinity of signal recognition particle for presecretory proteins is dependent on nascent chain length. The EMBO Journal 7:1769–1775
    • (1988) The EMBO Journal , vol.7 , pp. 1769-1775
    • Siegel, V.1    Walter, P.2
  • 67
    • 33947218544 scopus 로고    scopus 로고
    • Identification of a targeting factor for posttranslational membrane protein insertion into the ER
    • Stefanovic S, Hegde RS. 2007. Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128:1147–1159. doi:10.1016/j.cell.2007.01.036
    • (2007) Cell , vol.128 , pp. 1147-1159
    • Stefanovic, S.1    Hegde, R.S.2
  • 68
    • 0025183758 scopus 로고
    • Protein targeting signals
    • von Heijne G. 1990. Protein targeting signals. Current Opinion in Cell Biology 2:604–608. doi:10.1016/0955-0674(90)90100-S
    • (1990) Current Opinion in Cell Biology , vol.2 , pp. 604-608
    • Von Heijne, G.1
  • 70
    • 84903310310 scopus 로고    scopus 로고
    • Structure of the mammalian ribosome-Sec61 complex to 3.4 A resolution
    • Voorhees RM, Fernandez IS, Scheres SH, Hegde RS. 2014. Structure of the mammalian ribosome-Sec61 complex to 3.4 A resolution. Cell 157:1632–1643. doi:10.1016/j.cell.2014.05.024
    • (2014) Cell , vol.157 , pp. 1632-1643
    • Voorhees, R.M.1    Fernandez, I.S.2    Scheres, S.H.3    Hegde, R.S.4
  • 71
    • 0019817924 scopus 로고
    • Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in-vitro-assembled polysomes synthesizing secretory protein
    • Walter P, Blobel G. 1981. Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in-vitro-assembled polysomes synthesizing secretory protein. The Journal of Cell Biology 91:551–556. doi:10.1083/jcb.91.2.551.
    • (1981) The Journal of Cell Biology , vol.91 , pp. 551-556
    • Walter, P.1    Blobel, G.2
  • 72
    • 0019849075 scopus 로고
    • Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein
    • Walter P, Ibrahimi I, Blobel G. 1981. Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein. The Journal of Cell Biology 91:545–550. doi:10.1083/jcb.91.2.545
    • (1981) The Journal of Cell Biology , vol.91 , pp. 545-550
    • Walter, P.1    Ibrahimi, I.2    Blobel, G.3
  • 73
    • 77957376226 scopus 로고    scopus 로고
    • A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum
    • Wang F, Brown EC, Mak G, Zhuang J, Denic V. 2010. A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum. Molecular Cell 40:159–171. doi:10.1016/j.molcel.2010.08.038
    • (2010) Molecular Cell , vol.40 , pp. 159-171
    • Wang, F.1    Brown, E.C.2    Mak, G.3    Zhuang, J.4    Denic, V.5
  • 74
    • 0034626729 scopus 로고    scopus 로고
    • Structure and assembly of the Alu domain of the mammalian signal recognition particle
    • Weichenrieder O, Wild K, Strub K, Cusack S. 2000. Structure and assembly of the Alu domain of the mammalian signal recognition particle. Nature 408:167–173. doi:10.1038/35041507
    • (2000) Nature , vol.408 , pp. 167-173
    • Weichenrieder, O.1    Wild, K.2    Strub, K.3    Cusack, S.4
  • 75
    • 79953106751 scopus 로고    scopus 로고
    • The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling
    • Wilson DN, Beckmann R. 2011. The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Current Opinion in Structural Biology 21:274–282. doi:10.1016/j.sbi.2011.01.007
    • (2011) Current Opinion in Structural Biology , vol.21 , pp. 274-282
    • Wilson, D.N.1    Beckmann, R.2
  • 76
    • 0024817509 scopus 로고
    • Signal recognition particle mediates a transient elongation arrest of preprolactin in reticulocyte lysate
    • Wolin SL, Walter P. 1989. Signal recognition particle mediates a transient elongation arrest of preprolactin in reticulocyte lysate. The Journal of Cell Biology 109:2617–2622. doi:10.1083/jcb.109.6.2617
    • (1989) The Journal of Cell Biology , vol.109 , pp. 2617-2622
    • Wolin, S.L.1    Walter, P.2
  • 78
    • 84863288448 scopus 로고    scopus 로고
    • Translation elongation regulates substrate selection by the signal recognition particle
    • Zhang D, Shan SO. 2012. Translation elongation regulates substrate selection by the signal recognition particle The Journal of Biological Chemistry 287:7652–7660. doi:10.1074/jbc.M111.325001
    • (2012) The Journal of Biological Chemistry , vol.287 , pp. 7652-7660
    • Zhang, D.1    Shan, S.O.2
  • 79
    • 77952127782 scopus 로고    scopus 로고
    • Sequential checkpoints govern substrate selection during cotranslational protein targeting
    • Zhang X, Rashid R, Wang K, Shan SO. 2010. Sequential checkpoints govern substrate selection during cotranslational protein targeting. Science 328:757–760. doi:10.1126/science.1186743
    • (2010) Science , vol.328 , pp. 757-760
    • Zhang, X.1    Rashid, R.2    Wang, K.3    Shan, S.O.4
  • 80
    • 0025601549 scopus 로고
    • The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence
    • Zopf D, Bernstein HD, Johnson AE, Walter P. 1990. The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. The EMBO Journal 9:4511–4517 
    • (1990) The EMBO Journal , vol.9 , pp. 4511-4517
    • Zopf, D.1    Bernstein, H.D.2    Johnson, A.E.3    Walter, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.