-
1
-
-
0031954925
-
Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms
-
Wallin, E. & von Heijne, G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029-1038 (1998).
-
(1998)
Protein Sci
, vol.7
, pp. 1029-1038
-
-
Wallin, E.1
Von Heijne, G.2
-
2
-
-
77949732088
-
Prediction of the human membrane proteome
-
Fagerberg, L., Jonasson, K., von Heijne, G., Uhlen, M. & Berglund, L. Prediction of the human membrane proteome. Proteomics 10, 1141-1149 (2010).
-
(2010)
Proteomics
, vol.10
, pp. 1141-1149
-
-
Fagerberg, L.1
Jonasson, K.2
Von Heijne, G.3
Uhlen, M.4
Berglund, L.5
-
3
-
-
23044510444
-
Transmembrane helices before, during, and after insertion
-
White, S. H. & von Heijne, G. Transmembrane helices before, during, and after insertion. Curr. Opin. Struct. Biol. 15, 378-386 (2005).
-
(2005)
Curr. Opin. Struct. Biol
, vol.15
, pp. 378-386
-
-
White, S.H.1
Von Heijne, G.2
-
4
-
-
48249095616
-
How translocons select transmembrane helices
-
White, S. H. & von Heijne, G. How translocons select transmembrane helices. Annu. Rev. Biophys. 37, 23-42 (2008).
-
(2008)
Annu. Rev. Biophys
, vol.37
, pp. 23-42
-
-
White, S.H.1
Von Heijne, G.2
-
5
-
-
68749112707
-
Importing mitochondrial proteins: Machineries and mechanisms
-
Chacinska, A., Koehler, C. M., Milenkovic, D., Lithgow, T. & Pfanner, N. Importing mitochondrial proteins: machineries and mechanisms. Cell 138, 628-644 (2009).
-
(2009)
Cell
, vol.138
, pp. 628-644
-
-
Chacinska, A.1
Koehler, C.M.2
Milenkovic, D.3
Lithgow, T.4
Pfanner, N.5
-
6
-
-
18944372099
-
Biogenesis of peroxisomes. Topogenesis of the peroxisomal membrane and matrix proteins
-
Heiland, I. & Erdmann, R. Biogenesis of peroxisomes. Topogenesis of the peroxisomal membrane and matrix proteins. FEBS J. 272, 2362-2372 (2005).
-
(2005)
FEBS J
, vol.272
, pp. 2362-2372
-
-
Heiland, I.1
Erdmann, R.2
-
7
-
-
46249121083
-
Protein trafficking to plastids: One theme, many variations
-
Inaba, T. & Schnell, D. J. Protein trafficking to plastids: one theme, many variations. Biochem. J. 413, 15-28 (2008).
-
(2008)
Biochem. J
, vol.413
, pp. 15-28
-
-
Inaba, T.1
Schnell, D.J.2
-
8
-
-
80054041334
-
Membrane protein insertion at the endoplasmic reticulum
-
Shao, S. & Hegde, R. S. Membrane protein insertion at the endoplasmic reticulum. Annu. Rev. Cell Dev. Biol. 27, 25-56 (2011).
-
(2011)
Annu. Rev. Cell Dev. Biol
, vol.27
, pp. 25-56
-
-
Shao, S.1
Hegde, R.S.2
-
9
-
-
0016785996
-
Intracellular aspects of the process of protein synthesis
-
Palade, G. Intracellular aspects of the process of protein synthesis. Science 189, 347-358 (1975).
-
(1975)
Science
, vol.189
, pp. 347-358
-
-
Palade, G.1
-
10
-
-
28544442609
-
Protein translocation across biological membranes
-
Wickner, W. & Schekman, R. Protein translocation across biological membranes. Science 310, 1452-1456 (2005).
-
(2005)
Science
, vol.310
, pp. 1452-1456
-
-
Wickner, W.1
Schekman, R.2
-
11
-
-
36749001066
-
Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes
-
Rapoport, T. A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450, 663-669 (2007).
-
(2007)
Nature
, vol.450
, pp. 663-669
-
-
Rapoport, T.A.1
-
12
-
-
0016753216
-
Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma
-
Blobel, G. & Dobberstein, B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell Biol. 67, 835-851 (1975).
-
(1975)
J. Cell Biol
, vol.67
, pp. 835-851
-
-
Blobel, G.1
Dobberstein, B.2
-
13
-
-
0016752682
-
Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components
-
Blobel, G. & Dobberstein, B. Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J. Cell Biol. 67, 852-862 (1975).
-
(1975)
J. Cell Biol
, vol.67
, pp. 852-862
-
-
Blobel, G.1
Dobberstein, B.2
-
14
-
-
0019849075
-
Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein
-
Walter, P., Ibrahimi, I. & Blobel, G. Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein. J. Cell Biol. 91, 545-550 (1981).
-
(1981)
J. Cell Biol
, vol.91
, pp. 545-550
-
-
Walter, P.1
Ibrahimi, I.2
Blobel, G.3
-
15
-
-
0025949923
-
The signal recognition particle in S. cerevisiae
-
Hann, B. C. & Walter, P. The signal recognition particle in S. cerevisiae. Cell 67, 131-144 (1991).
-
(1991)
Cell
, vol.67
, pp. 131-144
-
-
Hann, B.C.1
Walter, P.2
-
16
-
-
0026466143
-
A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation
-
Gorlich, D., Prehn, S., Hartmann, E., Kalies, K. U. & Rapoport, T. A. A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 71, 489-503 (1992).
-
(1992)
Cell
, vol.71
, pp. 489-503
-
-
Gorlich, D.1
Prehn, S.2
Hartmann, E.3
Kalies, K.U.4
Rapoport, T.A.5
-
17
-
-
0027958547
-
Evolutionary conservation of components of the protein translocation complex
-
Hartmann, E. et al. Evolutionary conservation of components of the protein translocation complex. Nature 367, 654-657 (1994).
-
(1994)
Nature
, vol.367
, pp. 654-657
-
-
Hartmann, E.1
-
18
-
-
0028337335
-
Protein translocation: Common themes from bacteria to man
-
Jungnickel, B., Rapoport, T. A. & Hartmann, E. Protein translocation: common themes from bacteria to man. FEBS Lett. 346, 73-77 (1994).
-
(1994)
FEBS Lett
, vol.346
, pp. 73-77
-
-
Jungnickel, B.1
Rapoport, T.A.2
Hartmann, E.3
-
19
-
-
0025605808
-
An E. coli ribonucleoprotein containing 4.5S RNA resembles mammalian signal recognition particle
-
Poritz, M. A. et al. An E. coli ribonucleoprotein containing 4.5S RNA resembles mammalian signal recognition particle. Science 250, 1111-1117 (1990).
-
(1990)
Science
, vol.250
, pp. 1111-1117
-
-
Poritz, M.A.1
-
20
-
-
13144251232
-
Mitochondrial molecular chaperones: Their role in protein translocation
-
Stuart, R. A., Cyr, D. M., Craig, E. A. & Neupert, W. Mitochondrial molecular chaperones: their role in protein translocation. Trends Biochem. Sci. 19, 87-92 (1994).
-
(1994)
Trends Biochem. Sci
, vol.19
, pp. 87-92
-
-
Stuart, R.A.1
Cyr, D.M.2
Craig, E.A.3
Neupert, W.4
-
21
-
-
0032168004
-
Protein translocation into and across the chloroplastic envelope membranes
-
Soll, J. & Tien, R. Protein translocation into and across the chloroplastic envelope membranes. Plant Mol. Biol. 38, 191-207 (1998).
-
(1998)
Plant Mol. Biol
, vol.38
, pp. 191-207
-
-
Soll, J.1
Tien, R.2
-
22
-
-
0032728066
-
Posttranslational protein translocation across the membrane of the endoplasmic reticulum
-
Rapoport, T. A., Matlack, K. E., Plath, K., Misselwitz, B. & Staeck, O. Posttranslational protein translocation across the membrane of the endoplasmic reticulum. Biol. Chem. 380, 1143-1150 (1999).
-
(1999)
Biol. Chem
, vol.380
, pp. 1143-1150
-
-
Rapoport, T.A.1
Matlack, K.E.2
Plath, K.3
Misselwitz, B.4
Staeck, O.5
-
23
-
-
0035852327
-
Post-translational protein translocation into thylakoids by the Sec and ΔpH-dependent pathways
-
Mori, H. & Cline, K. Post-translational protein translocation into thylakoids by the Sec and ΔpH-dependent pathways. Biochim. Biophys. Acta 1541, 80-90 (2001).
-
(2001)
Biochim. Biophys. Acta
, vol.1541
, pp. 80-90
-
-
Mori, H.1
Cline, K.2
-
24
-
-
79955505833
-
Peroxisome assembly: Matrix and membrane protein biogenesis
-
Ma, C., Agrawal, G. & Subramani, S. Peroxisome assembly: matrix and membrane protein biogenesis. J. Cell Biol. 193, 7-16 (2011).
-
(2011)
J. Cell Biol
, vol.193
, pp. 7-16
-
-
Ma, C.1
Agrawal, G.2
Subramani, S.3
-
25
-
-
0034923677
-
The signal recognition particle
-
Keenan, R. J., Freymann, D. M., Stroud, R. M. & Walter, P. The signal recognition particle. Annu. Rev. Biochem. 70, 755-775 (2001).
-
(2001)
Annu. Rev. Biochem
, vol.70
, pp. 755-775
-
-
Keenan, R.J.1
Freymann, D.M.2
Stroud, R.M.3
Walter, P.4
-
26
-
-
70349595267
-
Protein targeting by the signal recognition particle
-
Grudnik, P., Bange, G. & Sinning, I. Protein targeting by the signal recognition particle. Biol. Chem. 390, 775-782 (2009).
-
(2009)
Biol. Chem
, vol.390
, pp. 775-782
-
-
Grudnik, P.1
Bange, G.2
Sinning, I.3
-
27
-
-
0009499348
-
Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum
-
Walter, P. & Blobel, G. Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 77, 7112-7116 (1980).
-
(1980)
Proc. Natl Acad. Sci. USA
, vol.77
, pp. 7112-7116
-
-
Walter, P.1
Blobel, G.2
-
28
-
-
0019964240
-
Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum
-
Walter, P. & Blobel, G. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature 299, 691-698 (1982).
-
(1982)
Nature
, vol.299
, pp. 691-698
-
-
Walter, P.1
Blobel, G.2
-
29
-
-
1542319100
-
Structure of the signal recognition particle interacting with the elongation-arrested ribosome
-
Halic, M. et al. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427, 808-814 (2004).
-
(2004)
Nature
, vol.427
, pp. 808-814
-
-
Halic, M.1
-
30
-
-
0025601549
-
The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence
-
Zopf, D., Bernstein, H. D., Johnson, A. E. & Walter, P. The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J. 9, 4511-4517 (1990).
-
(1990)
EMBO J
, vol.9
, pp. 4511-4517
-
-
Zopf, D.1
Bernstein, H.D.2
Johnson, A.E.3
Walter, P.4
-
31
-
-
0025853753
-
The signal sequence interacts with the methionine-rich domain of the 54-kD protein of signal recognition particle
-
High, S. & Dobberstein, B. The signal sequence interacts with the methionine-rich domain of the 54-kD protein of signal recognition particle. J. Cell Biol. 113, 229-233 (1991).
-
(1991)
J. Cell Biol
, vol.113
, pp. 229-233
-
-
High, S.1
Dobberstein, B.2
-
32
-
-
0020413603
-
Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor
-
Gilmore, R., Walter, P. & Blobel, G. Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor. J. Cell Biol. 95, 470-477 (1982).
-
(1982)
J. Cell Biol
, vol.95
, pp. 470-477
-
-
Gilmore, R.1
Walter, P.2
Blobel, G.3
-
33
-
-
0019947629
-
Secretory protein translocation across membranes-the role of the 'docking protein'
-
Meyer, D. I., Krause, E. & Dobberstein, B. Secretory protein translocation across membranes-the role of the 'docking protein'. Nature 297, 647-650 (1982).
-
(1982)
Nature
, vol.297
, pp. 647-650
-
-
Meyer, D.I.1
Krause, E.2
Dobberstein, B.3
-
34
-
-
0025854858
-
A protein-conducting channel in the endoplasmic reticulum
-
Simon, S. M. & Blobel, G. A protein-conducting channel in the endoplasmic reticulum. Cell 65, 371-380 (1991).
-
(1991)
Cell
, vol.65
, pp. 371-380
-
-
Simon, S.M.1
Blobel, G.2
-
35
-
-
0023567026
-
A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum
-
Deshaies, R. J. & Schekman, R. A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum. J. Cell Biol. 105, 633-645 (1987).
-
(1987)
J. Cell Biol
, vol.105
, pp. 633-645
-
-
Deshaies, R.J.1
Schekman, R.2
-
36
-
-
71549167617
-
Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome
-
Becker, T. et al. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326, 1369-1373 (2009).
-
(2009)
Science
, vol.326
, pp. 1369-1373
-
-
Becker, T.1
-
37
-
-
0033638455
-
The structure of ribosome-channel complexes engaged in protein translocation
-
Menetret, J. F. et al. The structure of ribosome-channel complexes engaged in protein translocation. Mol. Cell 6, 1219-1232 (2000).
-
(2000)
Mol. Cell
, vol.6
, pp. 1219-1232
-
-
Menetret, J.F.1
-
38
-
-
0035798359
-
Architecture of the protein-conducting channel associated with the translating 80S ribosome
-
Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361-372 (2001).
-
(2001)
Cell
, vol.107
, pp. 361-372
-
-
Beckmann, R.1
-
39
-
-
0031472242
-
The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins
-
Ulbrandt, N. D., Newitt, J. A. & Bernstein, H. D. The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88, 187-196 (1997).
-
(1997)
Cell
, vol.88
, pp. 187-196
-
-
Ulbrandt, N.D.1
Newitt, J.A.2
Bernstein, H.D.3
-
40
-
-
33646138730
-
Mba1, a membrane-associated ribosome receptor in mitochondria
-
Ott, M. et al. Mba1, a membrane-associated ribosome receptor in mitochondria. EMBO J. 25, 1603-1610 (2006).
-
(2006)
EMBO J
, vol.25
, pp. 1603-1610
-
-
Ott, M.1
-
41
-
-
0037205751
-
Transient interaction of cpSRP54 with elongating nascent chains of the chloroplast-encoded D1 protein; 'cpSRP54 caught in the act
-
Nilsson, R. & Van Wijk, K. J. Transient interaction of cpSRP54 with elongating nascent chains of the chloroplast-encoded D1 protein; 'cpSRP54 caught in the act'. FEBS Lett. 524, 127-133 (2002).
-
(2002)
FEBS Lett
, vol.524
, pp. 127-133
-
-
Nilsson, R.1
Van Wijk, K.J.2
-
42
-
-
0027401769
-
A class of membrane proteins with a C-terminal anchor
-
Kutay, U., Hartmann, E. & Rapoport, T. A. A class of membrane proteins with a C-terminal anchor. Trends Cell Biol. 3, 72-75 (1993).
-
(1993)
Trends Cell Biol
, vol.3
, pp. 72-75
-
-
Kutay, U.1
Hartmann, E.2
Rapoport, T.A.3
-
43
-
-
0028837490
-
Transport route for synaptobrevin via a novel pathway of insertion into the endoplasmic reticulum membrane
-
Kutay, U., Ahnert-Hilger, G., Hartmann, E., Wiedenmann, B. & Rapoport, T. A. Transport route for synaptobrevin via a novel pathway of insertion into the endoplasmic reticulum membrane. EMBO J. 14, 217-223 (1995).
-
(1995)
EMBO J
, vol.14
, pp. 217-223
-
-
Kutay, U.1
Ahnert-Hilger, G.2
Hartmann, E.3
Wiedenmann, B.4
Rapoport, T.A.5
-
44
-
-
23044492259
-
Transmembrane topogenesis of a tail-anchored protein is modulated by membrane lipid composition
-
Brambillasca, S. et al. Transmembrane topogenesis of a tail-anchored protein is modulated by membrane lipid composition. EMBO J. 24, 2533-2542 (2005).
-
(2005)
EMBO J
, vol.24
, pp. 2533-2542
-
-
Brambillasca, S.1
-
45
-
-
0037474291
-
Translocation of the C terminus of a tail-anchored protein across the endoplasmic reticulum membrane in yeast mutants defective in signal peptide-driven translocation
-
Yabal, M. et al. Translocation of the C terminus of a tail-anchored protein across the endoplasmic reticulum membrane in yeast mutants defective in signal peptide-driven translocation. J. Biol. Chem. 278, 3489-3496 (2003).
-
(2003)
J. Biol. Chem
, vol.278
, pp. 3489-3496
-
-
Yabal, M.1
-
46
-
-
0036786921
-
Tail-anchored protein insertion into yeast ER requires a novel posttranslational mechanism which is independent of the SEC machinery
-
Steel, G. J., Brownsword, J. & Stirling, C. J. Tail-anchored protein insertion into yeast ER requires a novel posttranslational mechanism which is independent of the SEC machinery. Biochemistry 41, 11914-11920 (2002).
-
(2002)
Biochemistry
, vol.41
, pp. 11914-11920
-
-
Steel, G.J.1
Brownsword, J.2
Stirling, C.J.3
-
47
-
-
0037424360
-
Bipartite signals mediate subcellular targeting of tail-anchored membrane proteins in Saccharomyces cerevisiae
-
Beilharz, T., Egan, B., Silver, P. A., Hofmann, K. & Lithgow, T. Bipartite signals mediate subcellular targeting of tail-anchored membrane proteins in Saccharomyces cerevisiae. J. Biol. Chem. 278, 8219-8223 (2003).
-
(2003)
J. Biol. Chem
, vol.278
, pp. 8219-8223
-
-
Beilharz, T.1
Egan, B.2
Silver, P.A.3
Hofmann, K.4
Lithgow, T.5
-
48
-
-
35948944937
-
A bioinformatics approach to identifying tail-anchored proteins in the human genome
-
Kalbfleisch, T., Cambon, A. & Wattenberg, B. W. A bioinformatics approach to identifying tail-anchored proteins in the human genome. Traffic 8, 1687-1694 (2007).
-
(2007)
Traffic
, vol.8
, pp. 1687-1694
-
-
Kalbfleisch, T.1
Cambon, A.2
Wattenberg, B.W.3
-
49
-
-
70649100508
-
Subcellular distribution of tail-anchored proteins in Arabidopsis
-
Kriechbaumer, V. et al. Subcellular distribution of tail-anchored proteins in Arabidopsis. Traffic 10, 1753-1764 (2009).
-
(2009)
Traffic
, vol.10
, pp. 1753-1764
-
-
Kriechbaumer, V.1
-
50
-
-
69649091942
-
The role of cytosolic proteins in the insertion of tail-anchored proteins into phospholipid bilayers
-
Colombo, S. F., Longhi, R. & Borgese, N. The role of cytosolic proteins in the insertion of tail-anchored proteins into phospholipid bilayers. J. Cell Sci. 122, 2383-2392 (2009).
-
(2009)
J. Cell Sci
, vol.122
, pp. 2383-2392
-
-
Colombo, S.F.1
Longhi, R.2
Borgese, N.3
-
51
-
-
33845307248
-
Unassisted translocation of large polypeptide domains across phospholipid bilayers
-
Brambillasca, S., Yabal, M., Makarow, M. & Borgese, N. Unassisted translocation of large polypeptide domains across phospholipid bilayers. J. Cell Biol. 175, 767-777 (2006).
-
(2006)
J. Cell Biol
, vol.175
, pp. 767-777
-
-
Brambillasca, S.1
Yabal, M.2
Makarow, M.3
Borgese, N.4
-
52
-
-
34250183921
-
Post-translational integration of tail-anchored proteins is facilitated by defined molecular chaperones
-
Abell, B. M., Rabu, C., Leznicki, P., Young, J. C. & High, S. Post-translational integration of tail-anchored proteins is facilitated by defined molecular chaperones. J. Cell Sci. 120, 1743-1751 (2007).
-
(2007)
J. Cell Sci
, vol.120
, pp. 1743-1751
-
-
Abell, B.M.1
Rabu, C.2
Leznicki, P.3
Young, J.C.4
High, S.5
-
53
-
-
3543016171
-
Signal recognition particle mediates post-translational targeting in eukaryotes
-
Abell, B. M., Pool, M. R., Schlenker, O., Sinning, I. & High, S. Signal recognition particle mediates post-translational targeting in eukaryotes. EMBO J. 23, 2755-2764 (2004).
-
(2004)
EMBO J
, vol.23
, pp. 2755-2764
-
-
Abell, B.M.1
Pool, M.R.2
Schlenker, O.3
Sinning, I.4
High, S.5
-
54
-
-
0037458710
-
Tail-anchored and signal-anchored proteins utilize overlapping pathways during membrane insertion
-
Abell, B. M. et al. Tail-anchored and signal-anchored proteins utilize overlapping pathways during membrane insertion. J. Biol. Chem. 278, 5669-5678 (2003).
-
(2003)
J. Biol. Chem
, vol.278
, pp. 5669-5678
-
-
Abell, B.M.1
-
55
-
-
33947218544
-
Identification of a targeting factor for posttranslational membrane protein insertion into the ER
-
Stefanovic, S. & Hegde, R. S. Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128, 1147-1159 (2007).
-
(2007)
Cell
, vol.128
, pp. 1147-1159
-
-
Stefanovic, S.1
Hegde, R.S.2
-
56
-
-
46749104133
-
Distinct targeting pathways for the membrane insertion of tail-anchored (TA) proteins
-
Favaloro, V., Spasic, M., Schwappach, B. & Dobberstein, B. Distinct targeting pathways for the membrane insertion of tail-anchored (TA) proteins. J. Cell Sci. 121, 1832-1840 (2008).
-
(2008)
J. Cell Sci
, vol.121
, pp. 1832-1840
-
-
Favaloro, V.1
Spasic, M.2
Schwappach, B.3
Dobberstein, B.4
-
57
-
-
0030587453
-
Isolation of the ATP-binding human homolog of the ArsA component of the bacterial arsenite transporter
-
Kurdi-Haidar, B. et al. Isolation of the ATP-binding human homolog of the ArsA component of the bacterial arsenite transporter. Genomics 36, 486-491 (1996).
-
(1996)
Genomics
, vol.36
, pp. 486-491
-
-
Kurdi-Haidar, B.1
-
58
-
-
0023038352
-
Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon
-
Chen, C. M., Misra, T. K., Silver, S. & Rosen, B. P. Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J. Biol. Chem. 261, 15030-15038 (1986).
-
(1986)
J. Biol. Chem
, vol.261
, pp. 15030-15038
-
-
Chen, C.M.1
Misra, T.K.2
Silver, S.3
Rosen, B.P.4
-
59
-
-
33745333930
-
Targeted disruption of the mouse Asna1 gene results in embryonic lethality
-
Mukhopadhyay, R., Ho, Y. S., Swiatek, P. J., Rosen, B. P. & Bhattacharjee, H. Targeted disruption of the mouse Asna1 gene results in embryonic lethality. FEBS Lett. 580, 3889-3894 (2006).
-
(2006)
FEBS Lett
, vol.580
, pp. 3889-3894
-
-
Mukhopadhyay, R.1
Ho, Y.S.2
Swiatek, P.J.3
Rosen, B.P.4
Bhattacharjee, H.5
-
60
-
-
33748901612
-
The conserved ATPase Get3/Arr4 modulates the activity of membrane-associated proteins in Saccharomyces cerevisiae
-
Auld, K. L. et al. The conserved ATPase Get3/Arr4 modulates the activity of membrane-associated proteins in Saccharomyces cerevisiae. Genetics 174, 215-227 (2006).
-
(2006)
Genetics
, vol.174
, pp. 215-227
-
-
Auld, K.L.1
-
61
-
-
26844489762
-
Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile
-
Schuldiner, M. et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507-519 (2005).
-
(2005)
Cell
, vol.123
, pp. 507-519
-
-
Schuldiner, M.1
-
62
-
-
33846675810
-
ASNA-1 positively regulates insulin secretion in C. elegans and mammalian cells
-
Kao, G. et al. ASNA-1 positively regulates insulin secretion in C. elegans and mammalian cells. Cell 128, 577-587 (2007).
-
(2007)
Cell
, vol.128
, pp. 577-587
-
-
Kao, G.1
-
63
-
-
0037412034
-
The Saccharomyces cerevisiae Arr4p is involved in metal and heat tolerance
-
Shen, J., Hsu, C. M., Kang, B. K., Rosen, B. P. & Bhattacharjee, H. The Saccharomyces cerevisiae Arr4p is involved in metal and heat tolerance. Biometals 16, 369-378 (2003).
-
(2003)
Biometals
, vol.16
, pp. 369-378
-
-
Shen, J.1
Hsu, C.M.2
Kang, B.K.3
Rosen, B.P.4
Bhattacharjee, H.5
-
64
-
-
0037050004
-
Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry
-
Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180-183 (2002).
-
(2002)
Nature
, vol.415
, pp. 180-183
-
-
Ho, Y.1
-
65
-
-
49549086224
-
The GET complex mediates insertion of tail-anchored proteins into the ER membrane
-
Schuldiner, M. et al. The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134, 634-645 (2008).
-
(2008)
Cell
, vol.134
, pp. 634-645
-
-
Schuldiner, M.1
-
66
-
-
63449128473
-
Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum
-
Jonikas, M. C. et al. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323, 1693-1697 (2009).
-
(2009)
Science
, vol.323
, pp. 1693-1697
-
-
Jonikas, M.C.1
-
67
-
-
75649111192
-
The genetic landscape of a cell
-
Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425-431 (2010).
-
(2010)
Science
, vol.327
, pp. 425-431
-
-
Costanzo, M.1
-
68
-
-
70349318145
-
Genomewide analysis reveals novel pathways affecting endoplasmic reticulum homeostasis, protein modification and quality control
-
Copic, A. et al. Genomewide analysis reveals novel pathways affecting endoplasmic reticulum homeostasis, protein modification and quality control. Genetics 182, 757-769 (2009).
-
(2009)
Genetics
, vol.182
, pp. 757-769
-
-
Copic, A.1
-
69
-
-
75849130606
-
Structural insights into tail-anchored protein binding and membrane insertion by Get3
-
Bozkurt, G. et al. Structural insights into tail-anchored protein binding and membrane insertion by Get3. Proc. Natl Acad. Sci. USA 106, 21131-21136 (2009).
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 21131-21136
-
-
Bozkurt, G.1
-
70
-
-
77951246542
-
The crystal structures of yeast Get3 suggest a mechanism for tail-anchored protein membrane insertion
-
Hu, J., Li, J., Qian, X., Denic, V. & Sha, B. The crystal structures of yeast Get3 suggest a mechanism for tail-anchored protein membrane insertion. PLoS ONE 4, e8061 (2009).
-
(2009)
PLoS ONE
, vol.4
-
-
Hu, J.1
Li, J.2
Qian, X.3
Denic, V.4
Sha, B.5
-
71
-
-
70349272618
-
The structural basis of tail-anchored membrane protein recognition by Get3
-
Mateja, A. et al. The structural basis of tail-anchored membrane protein recognition by Get3. Nature 461, 361-366 (2009).
-
(2009)
Nature
, vol.461
, pp. 361-366
-
-
Mateja, A.1
-
72
-
-
70349299919
-
Model for eukaryotic tail-anchored protein binding based on the structure of Get3
-
Suloway, C. J., Chartron, J. W., Zaslaver, M. & Clemons, W. M. Jr. Model for eukaryotic tail-anchored protein binding based on the structure of Get3. Proc. Natl Acad. Sci. USA 106, 14849-14854 (2009).
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 14849-14854
-
-
Suloway, C.J.1
Chartron, J.W.2
Zaslaver, M.3
Clemons Jr., W.M.4
-
73
-
-
73049094404
-
Structural insight into the membrane insertion of tail-anchored proteins by Get3
-
Yamagata, A. et al. Structural insight into the membrane insertion of tail-anchored proteins by Get3. Genes Cells 15, 29-41 (2010).
-
(2010)
Genes Cells
, vol.15
, pp. 29-41
-
-
Yamagata, A.1
-
74
-
-
0032563163
-
Crystal structure of the signal sequence binding subunit of the signal recognition particle
-
Keenan, R. J., Freymann, D. M., Walter, P. & Stroud, R. M. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94, 181-191 (1998).
-
(1998)
Cell
, vol.94
, pp. 181-191
-
-
Keenan, R.J.1
Freymann, D.M.2
Walter, P.3
Stroud, R.M.4
-
75
-
-
77953025666
-
Recognition of a signal peptide by the signal recognition particle
-
Janda, C. Y. et al. Recognition of a signal peptide by the signal recognition particle. Nature 465, 507-510 (2010).
-
(2010)
Nature
, vol.465
, pp. 507-510
-
-
Janda, C.Y.1
-
76
-
-
79952363483
-
Structural basis of signal-sequence recognition by the signal recognition particle
-
Hainzl, T., Huang, S., Merilainen, G., Brannstrom, K. & Sauer-Eriksson, A. E. Structural basis of signal-sequence recognition by the signal recognition particle. Nature Struct. Mol. Biol. 18, 389-391 (2011).
-
(2011)
Nature Struct. Mol. Biol
, vol.18
, pp. 389-391
-
-
Hainzl, T.1
Huang, S.2
Merilainen, G.3
Brannstrom, K.4
Sauer-Eriksson, A.E.5
-
77
-
-
34547937485
-
How tails guide tail-anchored proteins to their destinations
-
Borgese, N., Brambillasca, S. & Colombo, S. How tails guide tail-anchored proteins to their destinations. Curr. Opin. Cell Biol. 19, 368-375 (2007).
-
(2007)
Curr. Opin. Cell Biol
, vol.19
, pp. 368-375
-
-
Borgese, N.1
Brambillasca, S.2
Colombo, S.3
-
78
-
-
77956183398
-
A ribosome-associating factor chaperones tail-anchored membrane proteins
-
Mariappan, M. et al. A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature 466, 1120-1124 (2010).
-
(2010)
Nature
, vol.466
, pp. 1120-1124
-
-
Mariappan, M.1
-
79
-
-
77957376226
-
A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum
-
Wang, F., Brown, E. C., Mak, G., Zhuang, J. & Denic, V. A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum. Mol. Cell 40, 159-171 (2010).
-
(2010)
Mol. Cell
, vol.40
, pp. 159-171
-
-
Wang, F.1
Brown, E.C.2
Mak, G.3
Zhuang, J.4
Denic, V.5
-
80
-
-
77955437784
-
Structural characterization of the Get4/Get5 complex and its interaction with Get3
-
Chartron, J. W., Suloway, C. J. M., Zaslaver, M. a. & Clemons, W. M. Structural characterization of the Get4/Get5 complex and its interaction with Get3. Proc. Natl Acad. Sci. USA 107, 12127-12132 (2010).
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 12127-12132
-
-
Chartron, J.W.1
Suloway, C.J.M.2
Zaslaver, M.A.3
Clemons, W.M.4
-
81
-
-
77954352789
-
Bat3 promotes the membrane integration of tail-anchored proteins
-
Leznicki, P., Clancy, A., Schwappach, B. & High, S. Bat3 promotes the membrane integration of tail-anchored proteins. J. Cell Sci. 123, 2170-2178 (2010).
-
(2010)
J. Cell Sci
, vol.123
, pp. 2170-2178
-
-
Leznicki, P.1
Clancy, A.2
Schwappach, B.3
High, S.4
-
82
-
-
33745934813
-
Human SGT interacts with Bag-6/Bat-3/Scythe and cells with reduced levels of either protein display persistence of few misaligned chromosomes and mitotic arrest
-
Winnefeld, M. et al. Human SGT interacts with Bag-6/Bat-3/Scythe and cells with reduced levels of either protein display persistence of few misaligned chromosomes and mitotic arrest. Exp. Cell Res. 312, 2500-2514 (2006).
-
(2006)
Exp. Cell Res
, vol.312
, pp. 2500-2514
-
-
Winnefeld, M.1
-
83
-
-
79960637590
-
Protein targeting and degradation are coupled for elimination of mislocalized proteins
-
Hessa, T. et al. Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 475, 394-397 (2011).
-
(2011)
Nature
, vol.475
, pp. 394-397
-
-
Hessa, T.1
-
84
-
-
79959347089
-
A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation
-
Wang, Q. et al. A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol. Cell 42, 758-770 (2011).
-
(2011)
Mol. Cell
, vol.42
, pp. 758-770
-
-
Wang, Q.1
-
85
-
-
77955878748
-
BAG-6 is essential for selective elimination of defective proteasomal substrates
-
Minami, R. et al. BAG-6 is essential for selective elimination of defective proteasomal substrates. J. Cell Biol. 190, 637-650 (2010).
-
(2010)
J. Cell Biol
, vol.190
, pp. 637-650
-
-
Minami, R.1
-
86
-
-
33646537802
-
Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes
-
Fleischer, T. C., Weaver, C. M., McAfee, K. J., Jennings, J. L. & Link, A. J. Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev. 20, 1294-1307 (2006).
-
(2006)
Genes Dev
, vol.20
, pp. 1294-1307
-
-
Fleischer, T.C.1
Weaver, C.M.2
McAfee, K.J.3
Jennings, J.L.4
Link, A.J.5
-
87
-
-
0030067832
-
Coding sequence-dependent ribosomal arrest at termination of translation
-
Cao, J. & Geballe, A. P. Coding sequence-dependent ribosomal arrest at termination of translation. Mol. Cell. Biol. 16, 603-608 (1996).
-
(1996)
Mol. Cell. Biol
, vol.16
, pp. 603-608
-
-
Cao, J.1
Geballe, A.P.2
-
88
-
-
60849096653
-
A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel
-
Berndt, U., Oellerer, S., Zhang, Y., Johnson, A. E. & Rospert, S. A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc. Natl Acad. Sci. USA 106, 1398-1403 (2009).
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 1398-1403
-
-
Berndt, U.1
Oellerer, S.2
Zhang, Y.3
Johnson, A.E.4
Rospert, S.5
-
89
-
-
43249083239
-
Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel
-
Bornemann, T., Jockel, J., Rodnina, M. V. & Wintermeyer, W. Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nature Struct. Mol. Biol. 15, 494-499 (2008).
-
(2008)
Nature Struct. Mol. Biol
, vol.15
, pp. 494-499
-
-
Bornemann, T.1
Jockel, J.2
Rodnina, M.V.3
Wintermeyer, W.4
-
90
-
-
0031471055
-
Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration
-
Liao, S., Lin, J., Do, H. & Johnson, A. E. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90, 31-41 (1997).
-
(1997)
Cell
, vol.90
, pp. 31-41
-
-
Liao, S.1
Lin, J.2
Do, H.3
Johnson, A.E.4
-
91
-
-
80053991771
-
Polytopic membrane protein folding at L17 in the ribosome tunnel initiates cyclical changes at the translocon
-
Lin, P. J., Jongsma, C. G., Pool, M. R. & Johnson, A. E. Polytopic membrane protein folding at L17 in the ribosome tunnel initiates cyclical changes at the translocon. J. Cell Biol. 195, 55-70 (2011).
-
(2011)
J. Cell Biol
, vol.195
, pp. 55-70
-
-
Lin, P.J.1
Jongsma, C.G.2
Pool, M.R.3
Johnson, A.E.4
-
92
-
-
80053971494
-
Transmembrane segments of nascent polytopic membrane proteins control cytosol/ER targeting during membrane integration
-
Lin, P. J., Jongsma, C. G., Liao, S. & Johnson, A. E. Transmembrane segments of nascent polytopic membrane proteins control cytosol/ER targeting during membrane integration. J. Cell Biol. 195, 41-54 (2011).
-
(2011)
J. Cell Biol
, vol.195
, pp. 41-54
-
-
Lin, P.J.1
Jongsma, C.G.2
Liao, S.3
Johnson, A.E.4
-
93
-
-
66149134063
-
Studying membrane proteins through the eyes of the genetic code revealed a strong uracil bias in their coding mRNAs
-
Prilusky, J. & Bibi, E. Studying membrane proteins through the eyes of the genetic code revealed a strong uracil bias in their coding mRNAs. Proc. Natl Acad. Sci. USA 106, 6662-6666 (2009).
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 6662-6666
-
-
Prilusky, J.1
Bibi, E.2
-
94
-
-
79952066011
-
Translation-independent localization of mRNA in E. coli
-
Nevo-Dinur, K., Nussbaum-Shochat, A., Ben-Yehuda, S. & Amster-Choder, O. Translation-independent localization of mRNA in E. coli. Science 331, 1081-1084 (2011).
-
(2011)
Science
, vol.331
, pp. 1081-1084
-
-
Nevo-Dinur, K.1
Nussbaum-Shochat, A.2
Ben-Yehuda, S.3
Amster-Choder, O.4
-
95
-
-
80052407064
-
The mechanism of membrane-associated steps in tail-anchored protein insertion
-
Mariappan, M. et al. The mechanism of membrane-associated steps in tail-anchored protein insertion. Nature 477, 61-66 (2011).
-
(2011)
Nature
, vol.477
, pp. 61-66
-
-
Mariappan, M.1
-
96
-
-
80052271259
-
The mechanism of tail-anchored protein insertion into the ER membrane
-
Wang, F., Whynot, A., Tung, M. & Denic, V. The mechanism of tail-anchored protein insertion into the ER membrane. Mol. Cell 43, 738-750 (2011).
-
(2011)
Mol. Cell
, vol.43
, pp. 738-750
-
-
Wang, F.1
Whynot, A.2
Tung, M.3
Denic, V.4
-
97
-
-
80051474125
-
Structural basis for tail-anchored membrane protein biogenesis by the Get3-receptor complex
-
Stefer, S. et al. Structural basis for tail-anchored membrane protein biogenesis by the Get3-receptor complex. Science 333, 758-762 (2011).
-
(2011)
Science
, vol.333
, pp. 758-762
-
-
Stefer, S.1
-
98
-
-
0347584006
-
Substrate twinning activates the signal recognition particle and its receptor
-
Egea, P. F. et al. Substrate twinning activates the signal recognition particle and its receptor. Nature 427, 215-221 (2004).
-
(2004)
Nature
, vol.427
, pp. 215-221
-
-
Egea, P.F.1
-
99
-
-
0346373753
-
Heterodimeric GTPase core of the SRP targeting complex
-
Focia, P. J., Shepotinovskaya, I. V., Seidler, J. A. & Freymann, D. M. Heterodimeric GTPase core of the SRP targeting complex. Science 303, 373-377 (2004).
-
(2004)
Science
, vol.303
, pp. 373-377
-
-
Focia, P.J.1
Shepotinovskaya, I.V.2
Seidler, J.A.3
Freymann, D.M.4
-
100
-
-
79951826865
-
The crystal structure of the signal recognition particle in complex with its receptor
-
Ataide, S. F. et al. The crystal structure of the signal recognition particle in complex with its receptor. Science 331, 881-886 (2011).
-
(2011)
Science
, vol.331
, pp. 881-886
-
-
Ataide, S.F.1
-
101
-
-
0034697967
-
The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain
-
Heinrich, S. U., Mothes, W., Brunner, J. & Rapoport, T. A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233-244 (2000).
-
(2000)
Cell
, vol.102
, pp. 233-244
-
-
Heinrich, S.U.1
Mothes, W.2
Brunner, J.3
Rapoport, T.A.4
-
102
-
-
0347192985
-
X-ray structure of a protein-conducting channel
-
Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36-44 (2004).
-
(2004)
Nature
, vol.427
, pp. 36-44
-
-
Van Den Berg, B.1
-
103
-
-
54049151196
-
Conformational transition of Sec machinery inferred from bacterial SecYE structures
-
Tsukazaki, T. et al. Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455, 988-991 (2008).
-
(2008)
Nature
, vol.455
, pp. 988-991
-
-
Tsukazaki, T.1
-
104
-
-
18544380083
-
Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY
-
Cannon, K. S., Or, E., Clemons, W. M. Jr, Shibata, Y. & Rapoport, T. A. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J. Cell Biol. 169, 219-225 (2005).
-
(2005)
J. Cell Biol
, vol.169
, pp. 219-225
-
-
Cannon, K.S.1
Or, E.2
Clemons Jr., W.M.3
Shibata, Y.4
Rapoport, T.A.5
-
105
-
-
0028102530
-
PrlA and PrlG suppressors reduce the requirement for signal sequence recognition
-
Flower, A. M., Doebele, R. C. & Silhavy, T. J. PrlA and PrlG suppressors reduce the requirement for signal sequence recognition. J. Bacteriol. 176, 5607-5614 (1994).
-
(1994)
J. Bacteriol
, vol.176
, pp. 5607-5614
-
-
Flower, A.M.1
Doebele, R.C.2
Silhavy, T.J.3
-
106
-
-
0027219902
-
PrlA suppressor mutations cluster in regions corresponding to three distinct topological domains
-
Osborne, R. S. & Silhavy, T. J. PrlA suppressor mutations cluster in regions corresponding to three distinct topological domains. EMBO J. 12, 3391-3398 (1993).
-
(1993)
EMBO J
, vol.12
, pp. 3391-3398
-
-
Osborne, R.S.1
Silhavy, T.J.2
-
107
-
-
0029096050
-
A posttargeting signal sequence recognition event in the endoplasmic reticulum membrane
-
Jungnickel, B. & Rapoport, T. A. A posttargeting signal sequence recognition event in the endoplasmic reticulum membrane. Cell 82, 261-270 (1995).
-
(1995)
Cell
, vol.82
, pp. 261-270
-
-
Jungnickel, B.1
Rapoport, T.A.2
-
108
-
-
0027936633
-
Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane
-
Mothes, W., Prehn, S. & Rapoport, T. A. Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. EMBO J. 13, 3973-3982 (1994).
-
(1994)
EMBO J
, vol.13
, pp. 3973-3982
-
-
Mothes, W.1
Prehn, S.2
Rapoport, T.A.3
-
109
-
-
0029002962
-
The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer
-
Martoglio, B., Hofmann, M. W., Brunner, J. & Dobberstein, B. The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer. Cell 81, 207-214 (1995).
-
(1995)
Cell
, vol.81
, pp. 207-214
-
-
Martoglio, B.1
Hofmann, M.W.2
Brunner, J.3
Dobberstein, B.4
-
110
-
-
0342995731
-
The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process
-
Do, H., Falcone, D., Lin, J., Andrews, D. W. & Johnson, A. E. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 85, 369-378 (1996).
-
(1996)
Cell
, vol.85
, pp. 369-378
-
-
Do, H.1
Falcone, D.2
Lin, J.3
Andrews, D.W.4
Johnson, A.E.5
-
111
-
-
0026326816
-
Requirement of GTP hydrolysis for dissociation of the signal recognition particle from its receptor
-
Connolly, T., Rapiejko, P. J. & Gilmore, R. Requirement of GTP hydrolysis for dissociation of the signal recognition particle from its receptor. Science 252, 1171-1173 (1991).
-
(1991)
Science
, vol.252
, pp. 1171-1173
-
-
Connolly, T.1
Rapiejko, P.J.2
Gilmore, R.3
-
112
-
-
77952127782
-
Sequential checkpoints govern substrate selection during cotranslational protein targeting
-
Zhang, X., Rashid, R., Wang, K. & Shan, S. O. Sequential checkpoints govern substrate selection during cotranslational protein targeting. Science 328, 757-760 (2010).
-
(2010)
Science
, vol.328
, pp. 757-760
-
-
Zhang, X.1
Rashid, R.2
Wang, K.3
Shan, S.O.4
-
113
-
-
77951209587
-
Crystal structure of Get4-Get5 complex and its interactions with Sgt2 Get3, and Ydj1
-
Chang, Y.-W. et al. Crystal structure of Get4-Get5 complex and its interactions with Sgt2, Get3, and Ydj1. J. Biol. Chem. 285, 9962-9970 (2010).
-
(2010)
J. Biol. Chem
, vol.285
, pp. 9962-9970
-
-
Chang, Y.-W.1
-
114
-
-
77951296574
-
The structure of Get4 reveals an α-solenoid fold adapted for multiple interactions in tail-anchored protein biogenesis
-
Bozkurt, G. et al. The structure of Get4 reveals an α-solenoid fold adapted for multiple interactions in tail-anchored protein biogenesis. FEBS Lett. 584, 1509-1514 (2010).
-
(2010)
FEBS Lett
, vol.584
, pp. 1509-1514
-
-
Bozkurt, G.1
-
115
-
-
80053210242
-
A structural model of SGT2 and its interactions with chaperones and GET4/GET5
-
Chartron, J. W., Gonzalez, G. M. & Clemons, W. M. Jr. A structural model of SGT2 and its interactions with chaperones and GET4/GET5. J. Biol. Chem. 286, 34325-34334 (2011).
-
(2011)
J. Biol. Chem
, vol.286
, pp. 34325-34334
-
-
Chartron, J.W.1
Gonzalez, G.M.2
Clemons Jr., W.M.3
-
116
-
-
77954378286
-
Remote origins of tail-anchored proteins
-
Borgese, N. & Righi, M. Remote origins of tail-anchored proteins. Traffic 11, 877-885 (2010).
-
(2010)
Traffic
, vol.11
, pp. 877-885
-
-
Borgese, N.1
Righi, M.2
-
117
-
-
80051672009
-
A conserved archaeal pathway for tail-anchored membrane protein insertion
-
Sherrill, J., Mariappan, M., Dominik, P., Hegde, R. S. & Keenan, R. J. A conserved archaeal pathway for tail-anchored membrane protein insertion. Traffic 12, 1119-1123 (2011).
-
(2011)
Traffic
, vol.12
, pp. 1119-1123
-
-
Sherrill, J.1
Mariappan, M.2
Dominik, P.3
Hegde, R.S.4
Keenan, R.J.5
-
118
-
-
79953137111
-
WRB is the receptor for TRC40/Asna1-mediated insertion of tail-anchored proteins into the ER membrane
-
Vilardi, F., Lorenz, H. & Dobberstein, B. WRB is the receptor for TRC40/Asna1-mediated insertion of tail-anchored proteins into the ER membrane. J. Cell Sci. 124, 1301-1307 (2011).
-
(2011)
J. Cell Sci
, vol.124
, pp. 1301-1307
-
-
Vilardi, F.1
Lorenz, H.2
Dobberstein, B.3
|