-
1
-
-
84897109377
-
A review on multi-label learning algorithms
-
Aug.
-
M.-L. Zhang and Z.-H. Zhou, "A review on multi-label learning algorithms," IEEE Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 1819-1837, Aug. 2014.
-
(2014)
IEEE Trans. Knowl. Data Eng.
, vol.26
, Issue.8
, pp. 1819-1837
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
-
2
-
-
84912136436
-
Multi-label learning: A review of the state of the art and ongoing research
-
E. Gibaja and S. Ventura, "Multi-label learning: A review of the state of the art and ongoing research," Wiley Interdiscipl. Rev. Data Min. Knowl. Disc., vol. 6, no. 4, pp. 411-444, 2014.
-
(2014)
Wiley Interdiscipl. Rev. Data Min. Knowl. Disc.
, vol.6
, Issue.4
, pp. 411-444
-
-
Gibaja, E.1
Ventura, S.2
-
3
-
-
77955908068
-
Correlation-based pruning of stacked binary relevance models for multi-label learning
-
Bled, Slovenia
-
G. Tsoumakas et al., "Correlation-based pruning of stacked binary relevance models for multi-label learning," in Proc. MLD, Bled, Slovenia, 2009, pp. 101-116.
-
(2009)
Proc. MLD
, pp. 101-116
-
-
Tsoumakas, G.1
-
4
-
-
84859449983
-
MULTIBOOST: A multi-purpose boosting package
-
Mar.
-
D. Benbouzid, R. Busa-Fekete, N. Casagrande, F.-D. Collin, and B. Kégl, "MULTIBOOST: A multi-purpose boosting package," J. Mach. Learn. Res., vol. 13, pp. 549-553, Mar. 2012.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 549-553
-
-
Benbouzid, D.1
Busa-Fekete, R.2
Casagrande, N.3
Collin, F.-D.4
Kégl, B.5
-
5
-
-
33947681316
-
ML-KNN: A lazy learning approach to multi-label learning
-
M.-L. Zhang and Z.-H. Zhou, "ML-KNN: A lazy learning approach to multi-label learning," Pattern Recognit., vol. 40, no. 7, pp. 2038-2048, 2007.
-
(2007)
Pattern Recognit.
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
-
6
-
-
79955561512
-
Random k-labelsets for multi-label classification
-
Jul.
-
G. Tsoumakas, I. Katakis, and I. Vlahavas, "Random k-labelsets for multi-label classification," IEEE Trans. Knowl. Data Eng., vol. 23, no. 7, pp. 1079-1089, Jul. 2011.
-
(2011)
IEEE Trans. Knowl. Data Eng.
, vol.23
, Issue.7
, pp. 1079-1089
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
7
-
-
84904640573
-
MLSLR: Multilabel learning via sparse logistic regression
-
Oct.
-
H. Liu, S. Zhang, and X. Wu, "MLSLR: Multilabel learning via sparse logistic regression," Inf. Sci., vol. 281, pp. 310-320, Oct. 2014.
-
(2014)
Inf. Sci.
, vol.281
, pp. 310-320
-
-
Liu, H.1
Zhang, S.2
Wu, X.3
-
8
-
-
68949141664
-
Combining instance-based learning and logistic regression for multilabel classification
-
W. Cheng and E. Hullermeier, "Combining instance-based learning and logistic regression for multilabel classification," Mach. Learn., vol. 76, nos. 2-3, pp. 211-225, 2009.
-
(2009)
Mach. Learn.
, vol.76
, Issue.2-3
, pp. 211-225
-
-
Cheng, W.1
Hullermeier, E.2
-
9
-
-
77953216761
-
A shared-subspace learning framework for multi-label classification
-
S. Ji, L. Tang, S. Yu, and J. Ye, "A shared-subspace learning framework for multi-label classification," ACM Trans. Knowl. Disc. Data, vol. 4, no. 2, 2010, Art. ID 8.
-
(2010)
ACM Trans. Knowl. Disc. Data
, vol.4
, Issue.2
-
-
Ji, S.1
Tang, L.2
Yu, S.3
Ye, J.4
-
10
-
-
84921672079
-
Penalized partial least square discriminant analysis with-1-norm for multi-label data
-
H. Liu, Z. Ma, S. Zhang, and X. Wu, "Penalized partial least square discriminant analysis with-1-norm for multi-label data," Pattern Recognit., vol. 48, no. 5, pp. 1724-1733, 2015.
-
(2015)
Pattern Recognit.
, vol.48
, Issue.5
, pp. 1724-1733
-
-
Liu, H.1
Ma, Z.2
Zhang, S.3
Wu, X.4
-
11
-
-
83055191234
-
Correlated multi-label feature selection
-
Glasgow, U.K.
-
Q. Gu, Z. Li, and J. Han, "Correlated multi-label feature selection," in Proc. 20th ACM Int. Conf. Inf. Knowl. Manag., Glasgow, U.K., 2011, pp. 1087-1096.
-
(2011)
Proc. 20th ACM Int. Conf. Inf. Knowl. Manag.
, pp. 1087-1096
-
-
Gu, Q.1
Li, Z.2
Han, J.3
-
12
-
-
84870668654
-
Feature selection for multi-label classification using multivariate mutual information
-
J. Lee and D.-W. Kim, "Feature selection for multi-label classification using multivariate mutual information," Pattern Recognit. Lett., vol. 34, no. 3, pp. 349-357, 2013.
-
(2013)
Pattern Recognit. Lett.
, vol.34
, Issue.3
, pp. 349-357
-
-
Lee, J.1
Kim, D.-W.2
-
13
-
-
84903154900
-
From heuristic optimization to dictionary learning: A review and comprehensive comparison of image denoising algorithms
-
Jul.
-
L. Shao, R. Yan, X. Li, and Y. Liu, "From heuristic optimization to dictionary learning: A review and comprehensive comparison of image denoising algorithms," IEEE Trans. Cybern., vol. 44, no. 7, pp. 1001-1013, Jul. 2014.
-
(2014)
IEEE Trans. Cybern.
, vol.44
, Issue.7
, pp. 1001-1013
-
-
Shao, L.1
Yan, R.2
Li, X.3
Liu, Y.4
-
14
-
-
84869863663
-
Multivariate multilinear regression
-
Dec.
-
Y. Su, X. Gao, X. Li, and D. Tao, "Multivariate multilinear regression," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 6, pp. 1560-1573, Dec. 2012.
-
(2012)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.42
, Issue.6
, pp. 1560-1573
-
-
Su, Y.1
Gao, X.2
Li, X.3
Tao, D.4
-
15
-
-
84887601329
-
Sparse canonical correlation analysis: New formulation and algorithm
-
Dec.
-
D. Chu, L.-Z. Liao, M. K. Ng, and X. Zhang, "Sparse canonical correlation analysis: New formulation and algorithm," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12, pp. 3050-3065, Dec. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.12
, pp. 3050-3065
-
-
Chu, D.1
Liao, L.-Z.2
Ng, M.K.3
Zhang, X.4
-
16
-
-
80053635996
-
Sparse partial leastsquares regression and its applications to high-throughput data analysis
-
D. Lee, W. Lee, Y. Lee, and Y. Pawitan, "Sparse partial leastsquares regression and its applications to high-throughput data analysis," Chemometr. Intell. Lab. Syst., vol. 109, no. 1, pp. 1-8, 2011.
-
(2011)
Chemometr. Intell. Lab. Syst.
, vol.109
, Issue.1
, pp. 1-8
-
-
Lee, D.1
Lee, W.2
Lee, Y.3
Pawitan, Y.4
-
17
-
-
77956163078
-
Mining multi-label data
-
1st ed. New York, NY, USA: Springer
-
G. Tsoumakas, I. Katakis, and I. Vlahavas, "Mining multi-label data," in Data Mining and Knowledge Discovery Handbook, 1st ed. New York, NY, USA: Springer, 2010, pp. 667-685.
-
(2010)
Data Mining and Knowledge Discovery Handbook
, pp. 667-685
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
18
-
-
33748366796
-
Multilabel neural networks with applications to functional genomics and text categorization
-
Oct.
-
M.-L. Zhang and Z.-H. Zhou, "Multilabel neural networks with applications to functional genomics and text categorization," IEEE Trans. Knowl. Data Eng., vol. 18, no. 10, pp. 1338-1351, Oct. 2006.
-
(2006)
IEEE Trans. Knowl. Data Eng.
, vol.18
, Issue.10
, pp. 1338-1351
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
-
19
-
-
84906501832
-
Exposure fusion using boosting Laplacian pyramid
-
Sep.
-
J. Shen, Y. Zhao, S. Yan, and X. Li, "Exposure fusion using boosting Laplacian pyramid," IEEE Trans. Cybern., vol. 44, no. 9, pp. 1579-1590, Sep. 2014.
-
(2014)
IEEE Trans. Cybern.
, vol.44
, Issue.9
, pp. 1579-1590
-
-
Shen, J.1
Zhao, Y.2
Yan, S.3
Li, X.4
-
20
-
-
85027958625
-
Active learning with imbalanced multiple noisy labeling
-
May
-
J. Zhang, X. Wu, and V. S. Sheng, "Active learning with imbalanced multiple noisy labeling," IEEE Trans. Cybern., vol. 45, no. 5, pp. 1095-1107, May 2015.
-
(2015)
IEEE Trans. Cybern.
, vol.45
, Issue.5
, pp. 1095-1107
-
-
Zhang, J.1
Wu, X.2
Sheng, V.S.3
-
21
-
-
52949105710
-
Multilabel classification via calibrated label ranking
-
J. Furnkranz, E. Hullermeier, E. L. Mencía, and K. Brinker, "Multilabel classification via calibrated label ranking," Mach. Learn., vol. 73, no. 2, pp. 133-153, 2008.
-
(2008)
Mach. Learn.
, vol.73
, Issue.2
, pp. 133-153
-
-
Furnkranz, J.1
Hullermeier, E.2
Mencía, E.L.3
Brinker, K.4
-
22
-
-
77649237436
-
Efficient voting prediction for pairwise multilabel classification
-
E. L. Mencía, S.-H. Park, and J. Fürnkranz, "Efficient voting prediction for pairwise multilabel classification," Neurocomputing, vol. 73, nos. 7-9, pp. 1164-1176, 2010.
-
(2010)
Neurocomputing
, vol.73
, Issue.7-9
, pp. 1164-1176
-
-
Mencía, E.L.1
Park, S.-H.2
Fürnkranz, J.3
-
23
-
-
84896063365
-
Probabilistic multi-label classification with sparse feature learning
-
Beijing, China
-
Y. Guo and W. Xue, "Probabilistic multi-label classification with sparse feature learning," in Proc. 23rd Int. Joint Conf. Artif. Intell., Beijing, China, 2013, pp. 1373-1379.
-
(2013)
Proc. 23rd Int. Joint Conf. Artif. Intell.
, pp. 1373-1379
-
-
Guo, Y.1
Xue, W.2
-
24
-
-
80053440655
-
Multi-label classification on tree-and DAG-structured hierarchies
-
Bellevue, WA, USA
-
W. Bi and J. T. Kwok, "Multi-label classification on tree-and DAG-structured hierarchies," in Proc. ICML, Bellevue, WA, USA, 2011, pp. 17-24.
-
(2011)
Proc. ICML
, pp. 17-24
-
-
Bi, W.1
Kwok, J.T.2
-
25
-
-
84928376670
-
Multilabel classification through random graph ensembles
-
H. Su and J. Rousu, "Multilabel classification through random graph ensembles," Mach. Learn., vol. 99, no. 2, pp. 231-256, 2015.
-
(2015)
Mach. Learn.
, vol.99
, Issue.2
, pp. 231-256
-
-
Su, H.1
Rousu, J.2
-
26
-
-
84867116137
-
Multilabel classification with principal label space transformation
-
F. Tai and H.-T. Lin, "Multilabel classification with principal label space transformation," Neural Comput., vol. 24, no. 9, pp. 2508-2542, 2012.
-
(2012)
Neural Comput.
, vol.24
, Issue.9
, pp. 2508-2542
-
-
Tai, F.1
Lin, H.-T.2
-
27
-
-
77956528679
-
Multi-label prediction via compressed sensing
-
Vancouver, BC, Canada
-
D. J. Hsu, S. M. Kakade, J. Langford, and T. Zhang, "Multi-label prediction via compressed sensing," in Proc. NIPS, Vancouver, BC, Canada, 2009, pp. 772-780.
-
(2009)
Proc. NIPS
, pp. 772-780
-
-
Hsu, D.J.1
Kakade, S.M.2
Langford, J.3
Zhang, T.4
-
28
-
-
84897644389
-
Multi-label classification with Bayesian networkbased chain classifiers
-
May
-
L. E. Sucar et al., "Multi-label classification with Bayesian networkbased chain classifiers," Pattern Recognit. Lett., vol. 41, pp. 14-22, May 2014.
-
(2014)
Pattern Recognit. Lett.
, vol.41
, pp. 14-22
-
-
Sucar, L.E.1
-
29
-
-
84885572482
-
Multi-labelled classification using maximum entropy method
-
Salvador, Brazil
-
S. Zhu, X. Ji, W. Xu, and Y. Gong, "Multi-labelled classification using maximum entropy method," in Proc. ACM SIGIR, Salvador, Brazil, 2005, pp. 274-281.
-
(2005)
Proc. ACM SIGIR
, pp. 274-281
-
-
Zhu, S.1
Ji, X.2
Xu, W.3
Gong, Y.4
-
30
-
-
85027921685
-
ML-TREE: A tree-structure-based approach to multilabel learning
-
Mar.
-
Q. Wu, Y. Ye, H. Zhang, T. W. S. Chow, and S.-S. Ho, "ML-TREE: A tree-structure-based approach to multilabel learning," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 3, pp. 430-443, Mar. 2015.
-
(2015)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.26
, Issue.3
, pp. 430-443
-
-
Wu, Q.1
Ye, Y.2
Zhang, H.3
Chow, T.W.S.4
Ho, S.-S.5
-
31
-
-
78649325096
-
Canonical correlation analysis for multilabel classification: A least-squares formulation, extensions, and analysis
-
Jan.
-
L. Sun, S. Ji, and J. Ye, "Canonical correlation analysis for multilabel classification: A least-squares formulation, extensions, and analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1, pp. 194-200, Jan. 2011.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.1
, pp. 194-200
-
-
Sun, L.1
Ji, S.2
Ye, J.3
-
32
-
-
84893834607
-
A new supervised feature selection method for pattern classification
-
H. Liu, X. Wu, and S. Zhang, "A new supervised feature selection method for pattern classification," Comput. Intell., vol. 30, no. 2, pp. 342-361, 2014.
-
(2014)
Comput. Intell.
, vol.30
, Issue.2
, pp. 342-361
-
-
Liu, H.1
Wu, X.2
Zhang, S.3
-
33
-
-
84899519151
-
Image annotation by multiple-instance learning with discriminative feature mapping and selection
-
May
-
R. Hong et al., "Image annotation by multiple-instance learning with discriminative feature mapping and selection," IEEE Trans. Cybern., vol. 44, no. 5, pp. 669-680, May 2014.
-
(2014)
IEEE Trans. Cybern.
, vol.44
, Issue.5
, pp. 669-680
-
-
Hong, R.1
-
34
-
-
84866673280
-
Multi-label ReliefF and F-statistic feature selections for image annotation
-
Providence, RI, USA
-
H. Huang, C. Ding, D. Kong, and H. Zhao, "Multi-label ReliefF and F-statistic feature selections for image annotation," in Proc. CVPR, Providence, RI, USA, 2012, pp. 2352-2359.
-
(2012)
Proc. CVPR
, pp. 2352-2359
-
-
Huang, H.1
Ding, C.2
Kong, D.3
Zhao, H.4
-
35
-
-
84893607262
-
Two extensions to multi-label correlation-based feature selection: A case study in bioinformatics
-
Manchester, U.K.
-
S. Jungjit, A. A. Freitas, M. Michaelis, and J. Cinatl, "Two extensions to multi-label correlation-based feature selection: A case study in bioinformatics," in Proc. IEEE SMC, Manchester, U.K., 2013, pp. 1519-1524.
-
(2013)
Proc. IEEE SMC
, pp. 1519-1524
-
-
Jungjit, S.1
Freitas, A.A.2
Michaelis, M.3
Cinatl, J.4
-
36
-
-
84861617363
-
An extensive experimental comparison of methods for multi-label learning
-
G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Džeroski, "An extensive experimental comparison of methods for multi-label learning," Pattern Recognit., vol. 45, no. 9, pp. 3084-3104, 2012.
-
(2012)
Pattern Recognit.
, vol.45
, Issue.9
, pp. 3084-3104
-
-
Madjarov, G.1
Kocev, D.2
Gjorgjevikj, D.3
Džeroski, S.4
-
37
-
-
85027931612
-
Feature selection based on dependency margin
-
Jun.
-
Y. Liu, F. Tang, and Z. Zeng, "Feature selection based on dependency margin," IEEE Trans. Cybern., vol. 45, no. 6, pp. 1209-1221, Jun. 2015.
-
(2015)
IEEE Trans. Cybern.
, vol.45
, Issue.6
, pp. 1209-1221
-
-
Liu, Y.1
Tang, F.2
Zeng, Z.3
-
38
-
-
84890425291
-
Active learning with optimal instance subset selection
-
Apr.
-
Y. Fu, X. Zhu, and A. K. Elmagarmid, "Active learning with optimal instance subset selection," IEEE Trans. Cybern., vol. 43, no. 2, pp. 464-475, Apr. 2013.
-
(2013)
IEEE Trans. Cybern.
, vol.43
, Issue.2
, pp. 464-475
-
-
Fu, Y.1
Zhu, X.2
Elmagarmid, A.K.3
-
39
-
-
84865233213
-
Noisy data elimination using mutual k-nearest neighbor for classification mining
-
H. Liu and S. Zhang, "Noisy data elimination using mutual k-nearest neighbor for classification mining," J. Syst. Softw., vol. 85, no. 5, pp. 1067-1074, 2012.
-
(2012)
J. Syst. Softw.
, vol.85
, Issue.5
, pp. 1067-1074
-
-
Liu, H.1
Zhang, S.2
-
40
-
-
84886598638
-
Saliency detection by multipleinstance learning
-
Apr.
-
Q. Wang, Y. Yuan, P. Yan, and X. Li, "Saliency detection by multipleinstance learning," IEEE Trans. Cybern., vol. 43, no. 2, pp. 660-672, Apr. 2013.
-
(2013)
IEEE Trans. Cybern.
, vol.43
, Issue.2
, pp. 660-672
-
-
Wang, Q.1
Yuan, Y.2
Yan, P.3
Li, X.4
-
41
-
-
84896952500
-
A similarity-based classification framework for multiple-instance learning
-
Apr.
-
Y. Xiao, B. Liu, Z. Hao, and L. Cao, "A similarity-based classification framework for multiple-instance learning," IEEE Trans. Cybern., vol. 44, no. 4, pp. 500-515, Apr. 2014.
-
(2014)
IEEE Trans. Cybern.
, vol.44
, Issue.4
, pp. 500-515
-
-
Xiao, Y.1
Liu, B.2
Hao, Z.3
Cao, L.4
-
42
-
-
84907208692
-
Data uncertainty in face recognition
-
Oct.
-
Y. Xu et al., "Data uncertainty in face recognition," IEEE Trans. Cybern., vol. 44, no. 10, pp. 1950-1961, Oct. 2014.
-
(2014)
IEEE Trans. Cybern.
, vol.44
, Issue.10
, pp. 1950-1961
-
-
Xu, Y.1
-
43
-
-
85027931489
-
Texture classification and retrieval using shearlets and linear regression
-
Mar.
-
Y. Dong, D. Tao, X. Li, J. Ma, and J. Pu, "Texture classification and retrieval using shearlets and linear regression," IEEE Trans. Cybern, vol. 45, no. 3, pp. 358-369, Mar. 2015.
-
(2015)
IEEE Trans. Cybern
, vol.45
, Issue.3
, pp. 358-369
-
-
Dong, Y.1
Tao, D.2
Li, X.3
Ma, J.4
Pu, J.5
-
44
-
-
33846515112
-
Partial least squares: A versatile tool for the analysis of high-dimensional genomic data
-
A.-L. Boulesteix and K. Strimmer, "Partial least squares: A versatile tool for the analysis of high-dimensional genomic data," Briefings Bioinformat., vol. 8, no. 1, pp. 32-44, 2007.
-
(2007)
Briefings Bioinformat.
, vol.8
, Issue.1
, pp. 32-44
-
-
Boulesteix, A.-L.1
Strimmer, K.2
-
45
-
-
84857710417
-
Optimization with sparsity-inducing penalties
-
Jan.
-
F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, "Optimization with sparsity-inducing penalties," Found. Trends Mach. Learn., vol. 4, no. 1, pp. 1-106, Jan. 2012.
-
(2012)
Found. Trends Mach. Learn.
, vol.4
, Issue.1
, pp. 1-106
-
-
Bach, F.1
Jenatton, R.2
Mairal, J.3
Obozinski, G.4
-
46
-
-
84901250680
-
Joint embedding learning and sparse regression: A framework for unsupervised feature selection
-
Jun.
-
C. Hou, F. Nie, X. Li, D. Yi, and Y. Wu, "Joint embedding learning and sparse regression: A framework for unsupervised feature selection," IEEE Trans. Cybern, vol. 44, no. 6, pp. 793-804, Jun. 2014.
-
(2014)
IEEE Trans. Cybern
, vol.44
, Issue.6
, pp. 793-804
-
-
Hou, C.1
Nie, F.2
Li, X.3
Yi, D.4
Wu, Y.5
-
47
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
J. Friedman, T. Hastie, and R. Tibshirani, "Regularization paths for generalized linear models via coordinate descent," J. Stat. Softw., vol. 33, no. 1, pp. 1-22, 2010.
-
(2010)
J. Stat. Softw.
, vol.33
, Issue.1
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
49
-
-
74849083829
-
Effective and efficient multilabel classification in domains with large number of labels
-
Antwerp, Belgium
-
G. Tsoumakas, I. Katakis, and I. Vlahavas, "Effective and efficient multilabel classification in domains with large number of labels," in Proc. MMD, Antwerp, Belgium, 2008, pp. 1-15.
-
(2008)
Proc. MMD
, pp. 1-15
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
50
-
-
84880106608
-
A pruned problem transformation method for multi-label classification
-
Christchurch, New Zealand
-
J. Read, "A pruned problem transformation method for multi-label classification," in Proc. New Zealand Comput. Sci. Res. Student Conf., Christchurch, New Zealand, 2008, pp. 143-150.
-
(2008)
Proc. New Zealand Comput. Sci. Res. Student Conf.
, pp. 143-150
-
-
Read, J.1
-
51
-
-
83155175374
-
Classifier chains for multi-label classification
-
J. Read, B. Pfahringer, G. Holmes, and E. Frank, "Classifier chains for multi-label classification," Mach. Learn., vol. 85, no. 3, pp. 335-359, 2011.
-
(2011)
Mach. Learn.
, vol.85
, Issue.3
, pp. 335-359
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
-
52
-
-
80052236046
-
Mulan: A Java library for multi-label learning
-
Jul.
-
G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas, "Mulan: A Java library for multi-label learning," J. Mach. Learn. Res., vol. 12, pp. 2411-2414, Jul. 2011.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2411-2414
-
-
Tsoumakas, G.1
Spyromitros-Xioufis, E.2
Vilcek, J.3
Vlahavas, I.4
|