메뉴 건너뛰기




Volumn 47, Issue 2, 2017, Pages 499-510

Learning Instance Correlation Functions for Multilabel Classification

Author keywords

instance based learning; k nearest neighbors (kNNs); multilabel classification; partial least square (PLS) regression; 1 norm

Indexed keywords

MAPPING; TEXT PROCESSING;

EID: 84958593324     PISSN: 21682267     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCYB.2016.2519683     Document Type: Article
Times cited : (58)

References (52)
  • 1
    • 84897109377 scopus 로고    scopus 로고
    • A review on multi-label learning algorithms
    • Aug.
    • M.-L. Zhang and Z.-H. Zhou, "A review on multi-label learning algorithms," IEEE Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 1819-1837, Aug. 2014.
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.8 , pp. 1819-1837
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 2
    • 84912136436 scopus 로고    scopus 로고
    • Multi-label learning: A review of the state of the art and ongoing research
    • E. Gibaja and S. Ventura, "Multi-label learning: A review of the state of the art and ongoing research," Wiley Interdiscipl. Rev. Data Min. Knowl. Disc., vol. 6, no. 4, pp. 411-444, 2014.
    • (2014) Wiley Interdiscipl. Rev. Data Min. Knowl. Disc. , vol.6 , Issue.4 , pp. 411-444
    • Gibaja, E.1    Ventura, S.2
  • 3
    • 77955908068 scopus 로고    scopus 로고
    • Correlation-based pruning of stacked binary relevance models for multi-label learning
    • Bled, Slovenia
    • G. Tsoumakas et al., "Correlation-based pruning of stacked binary relevance models for multi-label learning," in Proc. MLD, Bled, Slovenia, 2009, pp. 101-116.
    • (2009) Proc. MLD , pp. 101-116
    • Tsoumakas, G.1
  • 5
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • M.-L. Zhang and Z.-H. Zhou, "ML-KNN: A lazy learning approach to multi-label learning," Pattern Recognit., vol. 40, no. 7, pp. 2038-2048, 2007.
    • (2007) Pattern Recognit. , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 6
    • 79955561512 scopus 로고    scopus 로고
    • Random k-labelsets for multi-label classification
    • Jul.
    • G. Tsoumakas, I. Katakis, and I. Vlahavas, "Random k-labelsets for multi-label classification," IEEE Trans. Knowl. Data Eng., vol. 23, no. 7, pp. 1079-1089, Jul. 2011.
    • (2011) IEEE Trans. Knowl. Data Eng. , vol.23 , Issue.7 , pp. 1079-1089
    • Tsoumakas, G.1    Katakis, I.2    Vlahavas, I.3
  • 7
    • 84904640573 scopus 로고    scopus 로고
    • MLSLR: Multilabel learning via sparse logistic regression
    • Oct.
    • H. Liu, S. Zhang, and X. Wu, "MLSLR: Multilabel learning via sparse logistic regression," Inf. Sci., vol. 281, pp. 310-320, Oct. 2014.
    • (2014) Inf. Sci. , vol.281 , pp. 310-320
    • Liu, H.1    Zhang, S.2    Wu, X.3
  • 8
    • 68949141664 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multilabel classification
    • W. Cheng and E. Hullermeier, "Combining instance-based learning and logistic regression for multilabel classification," Mach. Learn., vol. 76, nos. 2-3, pp. 211-225, 2009.
    • (2009) Mach. Learn. , vol.76 , Issue.2-3 , pp. 211-225
    • Cheng, W.1    Hullermeier, E.2
  • 9
    • 77953216761 scopus 로고    scopus 로고
    • A shared-subspace learning framework for multi-label classification
    • S. Ji, L. Tang, S. Yu, and J. Ye, "A shared-subspace learning framework for multi-label classification," ACM Trans. Knowl. Disc. Data, vol. 4, no. 2, 2010, Art. ID 8.
    • (2010) ACM Trans. Knowl. Disc. Data , vol.4 , Issue.2
    • Ji, S.1    Tang, L.2    Yu, S.3    Ye, J.4
  • 10
    • 84921672079 scopus 로고    scopus 로고
    • Penalized partial least square discriminant analysis with-1-norm for multi-label data
    • H. Liu, Z. Ma, S. Zhang, and X. Wu, "Penalized partial least square discriminant analysis with-1-norm for multi-label data," Pattern Recognit., vol. 48, no. 5, pp. 1724-1733, 2015.
    • (2015) Pattern Recognit. , vol.48 , Issue.5 , pp. 1724-1733
    • Liu, H.1    Ma, Z.2    Zhang, S.3    Wu, X.4
  • 12
    • 84870668654 scopus 로고    scopus 로고
    • Feature selection for multi-label classification using multivariate mutual information
    • J. Lee and D.-W. Kim, "Feature selection for multi-label classification using multivariate mutual information," Pattern Recognit. Lett., vol. 34, no. 3, pp. 349-357, 2013.
    • (2013) Pattern Recognit. Lett. , vol.34 , Issue.3 , pp. 349-357
    • Lee, J.1    Kim, D.-W.2
  • 13
    • 84903154900 scopus 로고    scopus 로고
    • From heuristic optimization to dictionary learning: A review and comprehensive comparison of image denoising algorithms
    • Jul.
    • L. Shao, R. Yan, X. Li, and Y. Liu, "From heuristic optimization to dictionary learning: A review and comprehensive comparison of image denoising algorithms," IEEE Trans. Cybern., vol. 44, no. 7, pp. 1001-1013, Jul. 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.7 , pp. 1001-1013
    • Shao, L.1    Yan, R.2    Li, X.3    Liu, Y.4
  • 15
    • 84887601329 scopus 로고    scopus 로고
    • Sparse canonical correlation analysis: New formulation and algorithm
    • Dec.
    • D. Chu, L.-Z. Liao, M. K. Ng, and X. Zhang, "Sparse canonical correlation analysis: New formulation and algorithm," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12, pp. 3050-3065, Dec. 2013.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , Issue.12 , pp. 3050-3065
    • Chu, D.1    Liao, L.-Z.2    Ng, M.K.3    Zhang, X.4
  • 16
    • 80053635996 scopus 로고    scopus 로고
    • Sparse partial leastsquares regression and its applications to high-throughput data analysis
    • D. Lee, W. Lee, Y. Lee, and Y. Pawitan, "Sparse partial leastsquares regression and its applications to high-throughput data analysis," Chemometr. Intell. Lab. Syst., vol. 109, no. 1, pp. 1-8, 2011.
    • (2011) Chemometr. Intell. Lab. Syst. , vol.109 , Issue.1 , pp. 1-8
    • Lee, D.1    Lee, W.2    Lee, Y.3    Pawitan, Y.4
  • 18
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • Oct.
    • M.-L. Zhang and Z.-H. Zhou, "Multilabel neural networks with applications to functional genomics and text categorization," IEEE Trans. Knowl. Data Eng., vol. 18, no. 10, pp. 1338-1351, Oct. 2006.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 19
    • 84906501832 scopus 로고    scopus 로고
    • Exposure fusion using boosting Laplacian pyramid
    • Sep.
    • J. Shen, Y. Zhao, S. Yan, and X. Li, "Exposure fusion using boosting Laplacian pyramid," IEEE Trans. Cybern., vol. 44, no. 9, pp. 1579-1590, Sep. 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.9 , pp. 1579-1590
    • Shen, J.1    Zhao, Y.2    Yan, S.3    Li, X.4
  • 20
    • 85027958625 scopus 로고    scopus 로고
    • Active learning with imbalanced multiple noisy labeling
    • May
    • J. Zhang, X. Wu, and V. S. Sheng, "Active learning with imbalanced multiple noisy labeling," IEEE Trans. Cybern., vol. 45, no. 5, pp. 1095-1107, May 2015.
    • (2015) IEEE Trans. Cybern. , vol.45 , Issue.5 , pp. 1095-1107
    • Zhang, J.1    Wu, X.2    Sheng, V.S.3
  • 21
    • 52949105710 scopus 로고    scopus 로고
    • Multilabel classification via calibrated label ranking
    • J. Furnkranz, E. Hullermeier, E. L. Mencía, and K. Brinker, "Multilabel classification via calibrated label ranking," Mach. Learn., vol. 73, no. 2, pp. 133-153, 2008.
    • (2008) Mach. Learn. , vol.73 , Issue.2 , pp. 133-153
    • Furnkranz, J.1    Hullermeier, E.2    Mencía, E.L.3    Brinker, K.4
  • 22
    • 77649237436 scopus 로고    scopus 로고
    • Efficient voting prediction for pairwise multilabel classification
    • E. L. Mencía, S.-H. Park, and J. Fürnkranz, "Efficient voting prediction for pairwise multilabel classification," Neurocomputing, vol. 73, nos. 7-9, pp. 1164-1176, 2010.
    • (2010) Neurocomputing , vol.73 , Issue.7-9 , pp. 1164-1176
    • Mencía, E.L.1    Park, S.-H.2    Fürnkranz, J.3
  • 23
    • 84896063365 scopus 로고    scopus 로고
    • Probabilistic multi-label classification with sparse feature learning
    • Beijing, China
    • Y. Guo and W. Xue, "Probabilistic multi-label classification with sparse feature learning," in Proc. 23rd Int. Joint Conf. Artif. Intell., Beijing, China, 2013, pp. 1373-1379.
    • (2013) Proc. 23rd Int. Joint Conf. Artif. Intell. , pp. 1373-1379
    • Guo, Y.1    Xue, W.2
  • 24
    • 80053440655 scopus 로고    scopus 로고
    • Multi-label classification on tree-and DAG-structured hierarchies
    • Bellevue, WA, USA
    • W. Bi and J. T. Kwok, "Multi-label classification on tree-and DAG-structured hierarchies," in Proc. ICML, Bellevue, WA, USA, 2011, pp. 17-24.
    • (2011) Proc. ICML , pp. 17-24
    • Bi, W.1    Kwok, J.T.2
  • 25
    • 84928376670 scopus 로고    scopus 로고
    • Multilabel classification through random graph ensembles
    • H. Su and J. Rousu, "Multilabel classification through random graph ensembles," Mach. Learn., vol. 99, no. 2, pp. 231-256, 2015.
    • (2015) Mach. Learn. , vol.99 , Issue.2 , pp. 231-256
    • Su, H.1    Rousu, J.2
  • 26
    • 84867116137 scopus 로고    scopus 로고
    • Multilabel classification with principal label space transformation
    • F. Tai and H.-T. Lin, "Multilabel classification with principal label space transformation," Neural Comput., vol. 24, no. 9, pp. 2508-2542, 2012.
    • (2012) Neural Comput. , vol.24 , Issue.9 , pp. 2508-2542
    • Tai, F.1    Lin, H.-T.2
  • 27
    • 77956528679 scopus 로고    scopus 로고
    • Multi-label prediction via compressed sensing
    • Vancouver, BC, Canada
    • D. J. Hsu, S. M. Kakade, J. Langford, and T. Zhang, "Multi-label prediction via compressed sensing," in Proc. NIPS, Vancouver, BC, Canada, 2009, pp. 772-780.
    • (2009) Proc. NIPS , pp. 772-780
    • Hsu, D.J.1    Kakade, S.M.2    Langford, J.3    Zhang, T.4
  • 28
    • 84897644389 scopus 로고    scopus 로고
    • Multi-label classification with Bayesian networkbased chain classifiers
    • May
    • L. E. Sucar et al., "Multi-label classification with Bayesian networkbased chain classifiers," Pattern Recognit. Lett., vol. 41, pp. 14-22, May 2014.
    • (2014) Pattern Recognit. Lett. , vol.41 , pp. 14-22
    • Sucar, L.E.1
  • 29
    • 84885572482 scopus 로고    scopus 로고
    • Multi-labelled classification using maximum entropy method
    • Salvador, Brazil
    • S. Zhu, X. Ji, W. Xu, and Y. Gong, "Multi-labelled classification using maximum entropy method," in Proc. ACM SIGIR, Salvador, Brazil, 2005, pp. 274-281.
    • (2005) Proc. ACM SIGIR , pp. 274-281
    • Zhu, S.1    Ji, X.2    Xu, W.3    Gong, Y.4
  • 30
    • 85027921685 scopus 로고    scopus 로고
    • ML-TREE: A tree-structure-based approach to multilabel learning
    • Mar.
    • Q. Wu, Y. Ye, H. Zhang, T. W. S. Chow, and S.-S. Ho, "ML-TREE: A tree-structure-based approach to multilabel learning," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 3, pp. 430-443, Mar. 2015.
    • (2015) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , Issue.3 , pp. 430-443
    • Wu, Q.1    Ye, Y.2    Zhang, H.3    Chow, T.W.S.4    Ho, S.-S.5
  • 31
    • 78649325096 scopus 로고    scopus 로고
    • Canonical correlation analysis for multilabel classification: A least-squares formulation, extensions, and analysis
    • Jan.
    • L. Sun, S. Ji, and J. Ye, "Canonical correlation analysis for multilabel classification: A least-squares formulation, extensions, and analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1, pp. 194-200, Jan. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.1 , pp. 194-200
    • Sun, L.1    Ji, S.2    Ye, J.3
  • 32
    • 84893834607 scopus 로고    scopus 로고
    • A new supervised feature selection method for pattern classification
    • H. Liu, X. Wu, and S. Zhang, "A new supervised feature selection method for pattern classification," Comput. Intell., vol. 30, no. 2, pp. 342-361, 2014.
    • (2014) Comput. Intell. , vol.30 , Issue.2 , pp. 342-361
    • Liu, H.1    Wu, X.2    Zhang, S.3
  • 33
    • 84899519151 scopus 로고    scopus 로고
    • Image annotation by multiple-instance learning with discriminative feature mapping and selection
    • May
    • R. Hong et al., "Image annotation by multiple-instance learning with discriminative feature mapping and selection," IEEE Trans. Cybern., vol. 44, no. 5, pp. 669-680, May 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.5 , pp. 669-680
    • Hong, R.1
  • 34
    • 84866673280 scopus 로고    scopus 로고
    • Multi-label ReliefF and F-statistic feature selections for image annotation
    • Providence, RI, USA
    • H. Huang, C. Ding, D. Kong, and H. Zhao, "Multi-label ReliefF and F-statistic feature selections for image annotation," in Proc. CVPR, Providence, RI, USA, 2012, pp. 2352-2359.
    • (2012) Proc. CVPR , pp. 2352-2359
    • Huang, H.1    Ding, C.2    Kong, D.3    Zhao, H.4
  • 35
    • 84893607262 scopus 로고    scopus 로고
    • Two extensions to multi-label correlation-based feature selection: A case study in bioinformatics
    • Manchester, U.K.
    • S. Jungjit, A. A. Freitas, M. Michaelis, and J. Cinatl, "Two extensions to multi-label correlation-based feature selection: A case study in bioinformatics," in Proc. IEEE SMC, Manchester, U.K., 2013, pp. 1519-1524.
    • (2013) Proc. IEEE SMC , pp. 1519-1524
    • Jungjit, S.1    Freitas, A.A.2    Michaelis, M.3    Cinatl, J.4
  • 36
    • 84861617363 scopus 로고    scopus 로고
    • An extensive experimental comparison of methods for multi-label learning
    • G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Džeroski, "An extensive experimental comparison of methods for multi-label learning," Pattern Recognit., vol. 45, no. 9, pp. 3084-3104, 2012.
    • (2012) Pattern Recognit. , vol.45 , Issue.9 , pp. 3084-3104
    • Madjarov, G.1    Kocev, D.2    Gjorgjevikj, D.3    Džeroski, S.4
  • 37
    • 85027931612 scopus 로고    scopus 로고
    • Feature selection based on dependency margin
    • Jun.
    • Y. Liu, F. Tang, and Z. Zeng, "Feature selection based on dependency margin," IEEE Trans. Cybern., vol. 45, no. 6, pp. 1209-1221, Jun. 2015.
    • (2015) IEEE Trans. Cybern. , vol.45 , Issue.6 , pp. 1209-1221
    • Liu, Y.1    Tang, F.2    Zeng, Z.3
  • 38
    • 84890425291 scopus 로고    scopus 로고
    • Active learning with optimal instance subset selection
    • Apr.
    • Y. Fu, X. Zhu, and A. K. Elmagarmid, "Active learning with optimal instance subset selection," IEEE Trans. Cybern., vol. 43, no. 2, pp. 464-475, Apr. 2013.
    • (2013) IEEE Trans. Cybern. , vol.43 , Issue.2 , pp. 464-475
    • Fu, Y.1    Zhu, X.2    Elmagarmid, A.K.3
  • 39
    • 84865233213 scopus 로고    scopus 로고
    • Noisy data elimination using mutual k-nearest neighbor for classification mining
    • H. Liu and S. Zhang, "Noisy data elimination using mutual k-nearest neighbor for classification mining," J. Syst. Softw., vol. 85, no. 5, pp. 1067-1074, 2012.
    • (2012) J. Syst. Softw. , vol.85 , Issue.5 , pp. 1067-1074
    • Liu, H.1    Zhang, S.2
  • 40
    • 84886598638 scopus 로고    scopus 로고
    • Saliency detection by multipleinstance learning
    • Apr.
    • Q. Wang, Y. Yuan, P. Yan, and X. Li, "Saliency detection by multipleinstance learning," IEEE Trans. Cybern., vol. 43, no. 2, pp. 660-672, Apr. 2013.
    • (2013) IEEE Trans. Cybern. , vol.43 , Issue.2 , pp. 660-672
    • Wang, Q.1    Yuan, Y.2    Yan, P.3    Li, X.4
  • 41
    • 84896952500 scopus 로고    scopus 로고
    • A similarity-based classification framework for multiple-instance learning
    • Apr.
    • Y. Xiao, B. Liu, Z. Hao, and L. Cao, "A similarity-based classification framework for multiple-instance learning," IEEE Trans. Cybern., vol. 44, no. 4, pp. 500-515, Apr. 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.4 , pp. 500-515
    • Xiao, Y.1    Liu, B.2    Hao, Z.3    Cao, L.4
  • 42
    • 84907208692 scopus 로고    scopus 로고
    • Data uncertainty in face recognition
    • Oct.
    • Y. Xu et al., "Data uncertainty in face recognition," IEEE Trans. Cybern., vol. 44, no. 10, pp. 1950-1961, Oct. 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.10 , pp. 1950-1961
    • Xu, Y.1
  • 43
    • 85027931489 scopus 로고    scopus 로고
    • Texture classification and retrieval using shearlets and linear regression
    • Mar.
    • Y. Dong, D. Tao, X. Li, J. Ma, and J. Pu, "Texture classification and retrieval using shearlets and linear regression," IEEE Trans. Cybern, vol. 45, no. 3, pp. 358-369, Mar. 2015.
    • (2015) IEEE Trans. Cybern , vol.45 , Issue.3 , pp. 358-369
    • Dong, Y.1    Tao, D.2    Li, X.3    Ma, J.4    Pu, J.5
  • 44
    • 33846515112 scopus 로고    scopus 로고
    • Partial least squares: A versatile tool for the analysis of high-dimensional genomic data
    • A.-L. Boulesteix and K. Strimmer, "Partial least squares: A versatile tool for the analysis of high-dimensional genomic data," Briefings Bioinformat., vol. 8, no. 1, pp. 32-44, 2007.
    • (2007) Briefings Bioinformat. , vol.8 , Issue.1 , pp. 32-44
    • Boulesteix, A.-L.1    Strimmer, K.2
  • 46
    • 84901250680 scopus 로고    scopus 로고
    • Joint embedding learning and sparse regression: A framework for unsupervised feature selection
    • Jun.
    • C. Hou, F. Nie, X. Li, D. Yi, and Y. Wu, "Joint embedding learning and sparse regression: A framework for unsupervised feature selection," IEEE Trans. Cybern, vol. 44, no. 6, pp. 793-804, Jun. 2014.
    • (2014) IEEE Trans. Cybern , vol.44 , Issue.6 , pp. 793-804
    • Hou, C.1    Nie, F.2    Li, X.3    Yi, D.4    Wu, Y.5
  • 47
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • J. Friedman, T. Hastie, and R. Tibshirani, "Regularization paths for generalized linear models via coordinate descent," J. Stat. Softw., vol. 33, no. 1, pp. 1-22, 2010.
    • (2010) J. Stat. Softw. , vol.33 , Issue.1 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 49
    • 74849083829 scopus 로고    scopus 로고
    • Effective and efficient multilabel classification in domains with large number of labels
    • Antwerp, Belgium
    • G. Tsoumakas, I. Katakis, and I. Vlahavas, "Effective and efficient multilabel classification in domains with large number of labels," in Proc. MMD, Antwerp, Belgium, 2008, pp. 1-15.
    • (2008) Proc. MMD , pp. 1-15
    • Tsoumakas, G.1    Katakis, I.2    Vlahavas, I.3
  • 50
    • 84880106608 scopus 로고    scopus 로고
    • A pruned problem transformation method for multi-label classification
    • Christchurch, New Zealand
    • J. Read, "A pruned problem transformation method for multi-label classification," in Proc. New Zealand Comput. Sci. Res. Student Conf., Christchurch, New Zealand, 2008, pp. 143-150.
    • (2008) Proc. New Zealand Comput. Sci. Res. Student Conf. , pp. 143-150
    • Read, J.1
  • 51
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • J. Read, B. Pfahringer, G. Holmes, and E. Frank, "Classifier chains for multi-label classification," Mach. Learn., vol. 85, no. 3, pp. 335-359, 2011.
    • (2011) Mach. Learn. , vol.85 , Issue.3 , pp. 335-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.