메뉴 건너뛰기




Volumn 34, Issue 3, 2013, Pages 349-357

Feature selection for multi-label classification using multivariate mutual information

Author keywords

Label dependency; Multi label feature selection; Multivariate feature selection; Multivariate mutual information

Indexed keywords

FEATURE EXTRACTION; TEXT PROCESSING;

EID: 84870668654     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2012.10.005     Document Type: Article
Times cited : (288)

References (27)
  • 2
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • DOI 10.1016/j.patcog.2004.03.009, PII S0031320304001074
    • Boutell, M., Luo, J., Shen, X., Brown, C, 2004. Learning multi-label scene classification. Pattern Recognition 37, 1757-1771. (Pubitemid 38804465)
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 4
    • 33646536577 scopus 로고    scopus 로고
    • Protein classification with multiple algorithms
    • Diplaris, S., Tsoumakas, G., Mitkas, P., Vlahavas, I., 2005. Protein classification with multiple algorithms. Adv. Inf. 3746, 448-456.
    • (2005) Adv. Inf. , vol.3746 , pp. 448-456
    • Diplaris, S.1    Tsoumakas, G.2    Mitkas, P.3    Vlahavas, I.4
  • 5
    • 79957967497 scopus 로고    scopus 로고
    • Feature selection for multi-label classification problems
    • Doquire, G., Verleysen, M., 2011. Feature selection for multi-label classification problems. Adv. Comput. Intell. 6691, 9-16.
    • (2011) Adv. Comput. Intell. , vol.6691 , pp. 9-16
    • Doquire, G.1    Verleysen, M.2
  • 6
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • Morgan Kaufmann Publishers, Inc.
    • Dougherty, J., Kohavi, R., Sahami, M., 1995. Supervised and unsupervised discretization of continuous features. In: Internat. Worksh. Conf. on Machine Learning. Morgan Kaufmann Publishers, Inc., pp. 194-202.
    • (1995) Internat. Worksh. Conf. on Machine Learning , pp. 194-202
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 9
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection. J. Machine Learn. Res. 3, 1157-1182.
    • (2003) J. Machine Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 11
    • 77956003201 scopus 로고    scopus 로고
    • Sample-spacings-based density and entropy estimators for spherically invariant multidimensional data
    • Lee, I., 2010. Sample-spacings-based density and entropy estimators for spherically invariant multidimensional data. Neural Comput. 22, 2208-2227.
    • (2010) Neural Comput. , vol.22 , pp. 2208-2227
    • Lee, I.1
  • 12
    • 84876811202 scopus 로고    scopus 로고
    • Rcvl: A new benchmark collection for text categorization research
    • Lewis, D., Yang, Y., Rose, T., Li, F., 2004. Rcvl: A new benchmark collection for text categorization research. J. Machine Learn. Res. 5, 361-397.
    • (2004) J. Machine Learn. Res. , vol.5 , pp. 361-397
    • Lewis, D.1    Yang, Y.2    Rose, T.3    Li, F.4
  • 13
    • 84937351341 scopus 로고
    • Multivariate information transmission
    • McGill, W., 1954. Multivariate information transmission. IRE Trans. Inf. Theory 4, 93-111.
    • (1954) IRE Trans. Inf. Theory , vol.4 , pp. 93-111
    • McGill, W.1
  • 16
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • DOI 10.1093/bioinformatics/btm344
    • Saeys, Y., Inza, I., Larranaga, P., 2007. A review of feature selection techniques in bioinformatics. Bioinformatics 23, 2507-2517. (Pubitemid 350048351)
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 17
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • Schapire, R., Singer, Y, 2000. Boostexter: A boosting-based system for text categorization. Machine Learn. 39, 135-168. (Pubitemid 30594821)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 18
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani, F., 2002. Machine learning in automated text categorization. ACM Comput. Surv. 34, 1-47.
    • (2002) ACM Comput. Surv. , vol.34 , pp. 1-47
    • Sebastiani, F.1
  • 23
    • 38049123909 scopus 로고    scopus 로고
    • Random k-labelsets: An ensemble method for multilabel classification
    • Tsoumakas, G., Vlahavas, I., 2007. Random k-labelsets: An ensemble method for multilabel classification. Machine Learn. (ECML'07) 4701, 406-417.
    • (2007) Machine Learn. (ECML'07) , vol.4701 , pp. 406-417
    • Tsoumakas, G.1    Vlahavas, I.2
  • 26
    • 67650995440 scopus 로고    scopus 로고
    • Feature selection for multi-label naive bayes classification
    • Zhang, M., Pena, J., Robles, V., 2009. Feature selection for multi-label naive bayes classification. Inf. Sci. 179, 3218-3229.
    • (2009) Inf. Sci. , vol.179 , pp. 3218-3229
    • Zhang, M.1    Pena, J.2    Robles, V.3
  • 27
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • DOI 10.1016/j.patcog.2006.12.019, PII S0031320307000027
    • Zhang, M., Zhou, Z., 2007. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition 40, 2038-2048. (Pubitemid 46497248)
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.