-
1
-
-
0001787422
-
Nonparametric entropy estimation: An overview
-
Beirlant, J., Dudewicz, E., Györfi, L., Van der Meulen, E., 1997. Nonparametric entropy estimation: An overview. Internat. J. Math. Statist. Sci. 6, 17-40.
-
(1997)
Internat. J. Math. Statist. Sci.
, vol.6
, pp. 17-40
-
-
Beirlant, J.1
Dudewicz, E.2
Györfi, L.3
Van Der Meulen, E.4
-
2
-
-
3042597440
-
Learning multi-label scene classification
-
DOI 10.1016/j.patcog.2004.03.009, PII S0031320304001074
-
Boutell, M., Luo, J., Shen, X., Brown, C, 2004. Learning multi-label scene classification. Pattern Recognition 37, 1757-1771. (Pubitemid 38804465)
-
(2004)
Pattern Recognition
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.R.1
Luo, J.2
Shen, X.3
Brown, C.M.4
-
3
-
-
49749095082
-
Document transformation for multi-label feature selection in text categorization
-
Chen, W., Yan, J., Zhang, B., Chen, Z., Yang, Q., 2007. Document transformation for multi-label feature selection in text categorization. In: Proc. Seventh IEEE Internat Conf. of Data Mining (ICDM'07), pp. 451-456.
-
(2007)
Proc. Seventh IEEE Internat Conf. of Data Mining (ICDM'07)
, pp. 451-456
-
-
Chen, W.1
Yan, J.2
Zhang, B.3
Chen, Z.4
Yang, Q.5
-
4
-
-
33646536577
-
Protein classification with multiple algorithms
-
Diplaris, S., Tsoumakas, G., Mitkas, P., Vlahavas, I., 2005. Protein classification with multiple algorithms. Adv. Inf. 3746, 448-456.
-
(2005)
Adv. Inf.
, vol.3746
, pp. 448-456
-
-
Diplaris, S.1
Tsoumakas, G.2
Mitkas, P.3
Vlahavas, I.4
-
5
-
-
79957967497
-
Feature selection for multi-label classification problems
-
Doquire, G., Verleysen, M., 2011. Feature selection for multi-label classification problems. Adv. Comput. Intell. 6691, 9-16.
-
(2011)
Adv. Comput. Intell.
, vol.6691
, pp. 9-16
-
-
Doquire, G.1
Verleysen, M.2
-
6
-
-
85139983802
-
Supervised and unsupervised discretization of continuous features
-
Morgan Kaufmann Publishers, Inc.
-
Dougherty, J., Kohavi, R., Sahami, M., 1995. Supervised and unsupervised discretization of continuous features. In: Internat. Worksh. Conf. on Machine Learning. Morgan Kaufmann Publishers, Inc., pp. 194-202.
-
(1995)
Internat. Worksh. Conf. on Machine Learning
, pp. 194-202
-
-
Dougherty, J.1
Kohavi, R.2
Sahami, M.3
-
8
-
-
83055191234
-
Correlated multi-label feature selection
-
ACM
-
Gu, Q., Li, Z., Han, J., 2011. Correlated multi-label feature selection. In: Proc. 20th ACM Internat. Conf. on Information and Knowledge Management. ACM, pp. 1087-1096.
-
(2011)
Proc. 20th ACM Internat. Conf. on Information and Knowledge Management
, pp. 1087-1096
-
-
Gu, Q.1
Li, Z.2
Han, J.3
-
9
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection. J. Machine Learn. Res. 3, 1157-1182.
-
(2003)
J. Machine Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
11
-
-
77956003201
-
Sample-spacings-based density and entropy estimators for spherically invariant multidimensional data
-
Lee, I., 2010. Sample-spacings-based density and entropy estimators for spherically invariant multidimensional data. Neural Comput. 22, 2208-2227.
-
(2010)
Neural Comput.
, vol.22
, pp. 2208-2227
-
-
Lee, I.1
-
12
-
-
84876811202
-
Rcvl: A new benchmark collection for text categorization research
-
Lewis, D., Yang, Y., Rose, T., Li, F., 2004. Rcvl: A new benchmark collection for text categorization research. J. Machine Learn. Res. 5, 361-397.
-
(2004)
J. Machine Learn. Res.
, vol.5
, pp. 361-397
-
-
Lewis, D.1
Yang, Y.2
Rose, T.3
Li, F.4
-
13
-
-
84937351341
-
Multivariate information transmission
-
McGill, W., 1954. Multivariate information transmission. IRE Trans. Inf. Theory 4, 93-111.
-
(1954)
IRE Trans. Inf. Theory
, vol.4
, pp. 93-111
-
-
McGill, W.1
-
16
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
DOI 10.1093/bioinformatics/btm344
-
Saeys, Y., Inza, I., Larranaga, P., 2007. A review of feature selection techniques in bioinformatics. Bioinformatics 23, 2507-2517. (Pubitemid 350048351)
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larranaga, P.3
-
17
-
-
0033905095
-
BoosTexter: A boosting-based system for text categorization
-
Schapire, R., Singer, Y, 2000. Boostexter: A boosting-based system for text categorization. Machine Learn. 39, 135-168. (Pubitemid 30594821)
-
(2000)
Machine Learning
, vol.39
, Issue.2
, pp. 135-168
-
-
Schapire, R.E.1
Singer, Y.2
-
18
-
-
0002442796
-
Machine learning in automated text categorization
-
Sebastiani, F., 2002. Machine learning in automated text categorization. ACM Comput. Surv. 34, 1-47.
-
(2002)
ACM Comput. Surv.
, vol.34
, pp. 1-47
-
-
Sebastiani, F.1
-
19
-
-
67650706774
-
Classification of imbalanced data: A review
-
Sun, Y., Wong, A., Kamel, M., 2009. Classification of imbalanced data: A review. Int. J. Pattern Recognition Artif. Intell. 23, 687.
-
(2009)
Int. J. Pattern Recognition Artif. Intell.
, vol.23
, pp. 687
-
-
Sun, Y.1
Wong, A.2
Kamel, M.3
-
20
-
-
84873447495
-
Multilabel classification of music into emotions
-
Philadelphia, PA, USA
-
Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I., 2008. Multilabel classification of music into emotions. In: Proc. Ninth Internat. Conf. Music Inform. Retrieval (ISMIR'08), Philadelphia, PA, USA.
-
(2008)
Proc. Ninth Internat. Conf. Music Inform. Retrieval (ISMIR'08)
-
-
Trohidis, K.1
Tsoumakas, G.2
Kalliris, G.3
Vlahavas, I.4
-
22
-
-
79955561512
-
Random k-labelsets for multi-label classification
-
Tsoumakas, G., Katakis, I., Vlahavas, I., 2011. Random k-labelsets for multi-label classification. IEEE Trans. Knowl. Data Eng. 23, 1079-1089.
-
(2011)
IEEE Trans. Knowl. Data Eng.
, vol.23
, pp. 1079-1089
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
23
-
-
38049123909
-
Random k-labelsets: An ensemble method for multilabel classification
-
Tsoumakas, G., Vlahavas, I., 2007. Random k-labelsets: An ensemble method for multilabel classification. Machine Learn. (ECML'07) 4701, 406-417.
-
(2007)
Machine Learn. (ECML'07)
, vol.4701
, pp. 406-417
-
-
Tsoumakas, G.1
Vlahavas, I.2
-
26
-
-
67650995440
-
Feature selection for multi-label naive bayes classification
-
Zhang, M., Pena, J., Robles, V., 2009. Feature selection for multi-label naive bayes classification. Inf. Sci. 179, 3218-3229.
-
(2009)
Inf. Sci.
, vol.179
, pp. 3218-3229
-
-
Zhang, M.1
Pena, J.2
Robles, V.3
-
27
-
-
33947681316
-
ML-KNN: A lazy learning approach to multi-label learning
-
DOI 10.1016/j.patcog.2006.12.019, PII S0031320307000027
-
Zhang, M., Zhou, Z., 2007. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition 40, 2038-2048. (Pubitemid 46497248)
-
(2007)
Pattern Recognition
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
|