-
1
-
-
27844439373
-
A framework for learning predictative structures from multiple tasks and unlabeled data
-
Ando, R., & Zhang, T. (2005). A framework for learning predictative structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6, 1817-1853.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1817-1853
-
-
Ando, R.1
Zhang, T.2
-
2
-
-
33645323768
-
Hierarchicalmultilabel prediction of gene function
-
Barutcuoglu, Z., Schapire, R. E., & Troyanskaya, O. G. (2006). Hierarchicalmultilabel prediction of gene function. Bioinformatics, 22(7), 830-836.
-
(2006)
Bioinformatics
, vol.22
, Issue.7
, pp. 830-836
-
-
Barutcuoglu, Z.1
Schapire, R.E.2
Troyanskaya, O.G.3
-
3
-
-
0141607824
-
Latent Dirichlet allocation
-
Blei, D.M., Ng, A., & Jordan, M. (2003). Latent Dirichlet allocation. Journal ofMachine Learning Research, 3, 993-1022.
-
(2003)
Journal ofMachine Learning Research
, vol.3
, pp. 993-1022
-
-
Blei, D.M.1
Ng, A.2
Jordan, M.3
-
4
-
-
3042597440
-
Learning multi-label scene classification
-
Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004). Learning multi-label scene classification. Pattern Recognition, 37(9), 1757-1771.
-
(2004)
Pattern Recognition
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.R.1
Luo, J.2
Shen, X.3
Brown, C.M.4
-
8
-
-
79955570175
-
On label dependencies in multi-label classification
-
Dembczynski, K., Waegeman, W., Cheng, W., & Hüllermeier, E. (2010a). On label dependencies in multi-label classification. In Proceedings of the 2nd Workshop on Learning from Multi-Label Data. http://cse.sev.edu.cn/conf/mld10.
-
(2010)
Proceedings of the 2nd Workshop on Learning from Multi-Label Data
-
-
Dembczynski, K.1
Waegeman, W.2
Cheng, W.3
Hüllermeier, E.4
-
9
-
-
84865261450
-
Regret analysis for performance metrics inmulti-label classication: The case of hamming and subset zero-one loss
-
Berlin: Springer
-
Dembczynski, K., Waegeman, W., Cheng, W., & Hüllermeier, E. (2010b). Regret analysis for performance metrics inmulti-label classication: The case of hamming and subset zero-one loss. In European Conference on Machine Learning. Berlin: Springer.
-
(2010)
European Conference on Machine Learning
-
-
Dembczynski, K.1
Waegeman, W.2
Cheng, W.3
Hüllermeier, E.4
-
10
-
-
76649137444
-
A kernelmethod formulti-labelled classification
-
T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Cambridge, MA: MIT Press
-
Elisseeff, A., & Weston, J. (2002). A kernelmethod formulti-labelled classification. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14 (pp. 681-688). Cambridge, MA: MIT Press.
-
(2002)
Advances in neural information processing systems
, vol.14
, pp. 681-688
-
-
Elisseeff, A.1
Weston, J.2
-
12
-
-
52949105710
-
Multilabel classification via calibrated label ranking
-
Fürnkranz, J., Hüllermeier, E., Lozamencía, E., & Brinker, K. (2008). Multilabel classification via calibrated label ranking. Machine Learning, 73(2), 133-153.
-
(2008)
Machine Learning
, vol.73
, Issue.2
, pp. 133-153
-
-
Fürnkranz, J.1
Hüllermeier, E.2
Lozamencía, E.3
Brinker, K.4
-
13
-
-
76749092270
-
The WEKA data mining software: An update
-
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. In SIGKDD Explorations, 11.
-
(2009)
SIGKDD Explorations
, pp. 11
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
14
-
-
0003684449
-
-
Springer-Verlag
-
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining, inference, and prediction. Springer-Verlag.
-
(2001)
The elements of statistical learning: Data mining, inference, and prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
15
-
-
77956528679
-
Multi-label prediction via compressed sensing
-
Y. Bengio, D. Schuurmans, J. D. Lafferty, C.K.I.Williams, & A. Culotta (Eds.), Cambridge, MA: MIT Press
-
Hsu, D., Kakade, S. M., Langford, J., & Zhang, T. (2009). Multi-label prediction via compressed sensing. In Y. Bengio, D. Schuurmans, J. D. Lafferty, C.K.I.Williams, & A. Culotta (Eds.), Advances in neural information processing systems, 22 (pp. 772-780). Cambridge, MA: MIT Press.
-
(2009)
Advances in neural information processing systems
, vol.22
, pp. 772-780
-
-
Hsu, D.1
Kakade, S.M.2
Langford, J.3
Zhang, T.4
-
16
-
-
77953216761
-
A shared-subspace learning framework for multi-label classification
-
Ji, S., Tang, L., Yu, S., & Ye, J. (2010). A shared-subspace learning framework for multi-label classification. ACM Transactions on Knowledge Discovery from Data, 4(2), 1-29.
-
(2010)
ACM Transactions on Knowledge Discovery from Data
, vol.4
, Issue.2
, pp. 1-29
-
-
Ji, S.1
Tang, L.2
Yu, S.3
Ye, J.4
-
18
-
-
67049088703
-
Multi-label classification using ensembles of pruned sets
-
Piscataway, NJ: IEEE
-
Read, J., Pfahringer, B., & Holmes, G. (2008). Multi-label classification using ensembles of pruned sets. In Proceedings of the 8th IEEE International Conference on Data Mining (pp. 995-1000). Piscataway, NJ: IEEE.
-
(2008)
Proceedings of the 8th IEEE International Conference on Data Mining
, pp. 995-1000
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
-
20
-
-
0033905095
-
Boostexter: A boosting-based system for text categorization
-
Schapire, R. E., & Singer, Y. (2000). Boostexter: A boosting-based system for text categorization. Machine Learning, 39(2/3), 135-168.
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
, pp. 135-168
-
-
Schapire, R.E.1
Singer, Y.2
-
21
-
-
34547172608
-
The challenge problem for automated detection of 101 semantic concepts in multimedia
-
New York: ACM
-
Snoek, C.G.M., Worring, M., van Gemert, J. C., Geusebroek, J. M., & Smeulders, A.W.M. (2006). The challenge problem for automated detection of 101 semantic concepts in multimedia. In Proceedings of the 14th Annual ACM International Conference on Multimedia (pp. 421-430). New York: ACM.
-
(2006)
Proceedings of the 14th Annual ACM International Conference on Multimedia
, pp. 421-430
-
-
Snoek, C.G.M.1
Worring, M.2
van Gemert, J.C.3
Geusebroek, J.M.4
Smeulders, A.W.M.5
-
22
-
-
84873447495
-
Multi-label classification of music into emotions
-
Philadelphia: Drexel University
-
Trohidis, K., Tsoumakas, G., Kalliris, G., & Vlahavas, I. (2008). Multi-label classification of music into emotions. In Proceedings of the 9th International Conference on Music Information Retrieval (pp. 325-330). Philadelphia: Drexel University.
-
(2008)
Proceedings of the 9th International Conference on Music Information Retrieval
, pp. 325-330
-
-
Trohidis, K.1
Tsoumakas, G.2
Kalliris, G.3
Vlahavas, I.4
-
23
-
-
77956163078
-
Mining multi-label data
-
O. Maimon & L. Rokach (Eds.), (2nd ed.). New York: Springer
-
Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In O. Maimon & L. Rokach (Eds.), Data mining and knowledge discovery handbook (2nd ed.). New York: Springer.
-
(2010)
Data mining and knowledge discovery handbook
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
25
-
-
52949141834
-
Decision trees for hierarchical multi-label classification
-
Vens, C., Struyf, J., Schietgat, L., Dzcaron;eroski, S., & Blockeel, H. (2008). Decision trees for hierarchical multi-label classification. Machine Learning, 73(2), 185-214.
-
(2008)
Machine Learning
, vol.73
, Issue.2
, pp. 185-214
-
-
Vens, C.1
Struyf, J.2
Schietgat, L.3
Dzcaron4
eroski, S.5
Blockeel, H.6
-
26
-
-
0001717058
-
Induction of model trees for predicting continuous classes
-
New York: Springer
-
Wang, Y., & Witten, I. H. (1997). Induction of model trees for predicting continuous classes. In European Conference on Machine Learning (pp. 128-137). New York: Springer.
-
(1997)
European Conference on Machine Learning
, pp. 128-137
-
-
Wang, Y.1
Witten, I.H.2
-
27
-
-
85156188079
-
Kernel dependency estimation
-
S. Becker, S. Thrün, & K. Obermayer (Eds.), Cambridge, MA: MIT Press
-
Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., & Vapnik, V. (2002). Kernel dependency estimation. In S. Becker, S. Thrün, & K. Obermayer (Eds.), Advances in neural information processing systems, 15 (pp. 873-880). Cambridge, MA: MIT Press.
-
(2002)
Advances in neural information processing systems
, vol.15
, pp. 873-880
-
-
Weston, J.1
Chapelle, O.2
Elisseeff, A.3
Schölkopf, B.4
Vapnik, V.5
-
28
-
-
33947681316
-
ML-kNN: A lazy learning approach to multi-label learning
-
Zhang, M., & Zhou, Z. (2007). ML-kNN: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7), 2038-2048.
-
(2007)
Pattern Recognition
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.1
Zhou, Z.2
|