메뉴 건너뛰기




Volumn 45, Issue 6, 2015, Pages 1209-1221

Feature selection based on dependency margin

Author keywords

Conditionally independent; dependency margin; feature selection; forward greedy search; redundant feature

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); LEARNING SYSTEMS;

EID: 85027931612     PISSN: 21682267     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCYB.2014.2347372     Document Type: Article
Times cited : (99)

References (42)
  • 1
    • 30344453044 scopus 로고    scopus 로고
    • Evolving feature selection
    • Nov./Dec.
    • H. Liu et al., "Evolving feature selection," IEEE Intell. Syst., vol. 20, no. 6, pp. 64-76, Nov./Dec. 2005.
    • (2005) IEEE Intell. Syst. , vol.20 , Issue.6 , pp. 64-76
    • Liu, H.1
  • 2
    • 84904655780 scopus 로고    scopus 로고
    • Feature selection inspired classifier ensemble reduction
    • Aug.
    • R. Diao, F. Chao, T. Peng, N. Snooke, and Q. Shen, "Feature selection inspired classifier ensemble reduction," IEEE Trans. Cybern., vol. 44, no. 8, pp. 1259-1268, Aug. 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.8 , pp. 1259-1268
    • Diao, R.1    Chao, F.2    Peng, T.3    Snooke, N.4    Shen, Q.5
  • 3
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Jan.
    • L. Yu and H. Liu, "Efficient feature selection via analysis of relevance and redundancy," J. Mach. Learn. Res., vol. 5, pp. 1205-1224, Jan. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 5
    • 77955091406 scopus 로고    scopus 로고
    • Selecting discrete and continuous features based on neighborhood decision error minimization
    • Feb.
    • Q. Hu, W. Pedrycz, D. Yu, and J. Lang, "Selecting discrete and continuous features based on neighborhood decision error minimization," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, no. 1, pp. 137-150, Feb. 2010.
    • (2010) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.40 , Issue.1 , pp. 137-150
    • Hu, Q.1    Pedrycz, W.2    Yu, D.3    Lang, J.4
  • 6
    • 77953811631 scopus 로고    scopus 로고
    • On the complexity of discrete feature selection for optimal classification
    • Aug.
    • J. M. Peña and R. Nilsson, "On the complexity of discrete feature selection for optimal classification," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 8, pp. 1517-1522, Aug. 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.8 , pp. 1517-1522
    • Peña, J.M.1    Nilsson, R.2
  • 7
    • 84901261573 scopus 로고    scopus 로고
    • Extremely high-dimensional feature selection via feature generating samplings
    • Jun.
    • S. Li and D. Wei, "Extremely high-dimensional feature selection via feature generating samplings," IEEE Trans. Cybern., vol. 44, no. 6, pp. 737-747, Jun. 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.6 , pp. 737-747
    • Li, S.1    Wei, D.2
  • 8
    • 84887799080 scopus 로고    scopus 로고
    • Particle swarm optimization for feature selection in classification: A multi-objective approach
    • Dec.
    • B. Xue, M. Zhang, and W. N. Browne, "Particle swarm optimization for feature selection in classification: A multi-objective approach," IEEE Trans. Cybern., vol. 43, no. 6, pp. 1656-1671, Dec. 2013.
    • (2013) IEEE Trans. Cybern. , vol.43 , Issue.6 , pp. 1656-1671
    • Xue, B.1    Zhang, M.2    Browne, W.N.3
  • 9
    • 84901250680 scopus 로고    scopus 로고
    • Joint embedding learning and sparse regression: A framework for unsupervised feature selection
    • Jun.
    • C. Hou, F. Nie, X. Li, D. Yi, and Y. Wu, "Joint embedding learning and sparse regression: A framework for unsupervised feature selection," IEEE Trans. Cybern., vol. 44, no. 6, pp. 793-804, Jun. 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.6 , pp. 793-804
    • Hou, C.1    Nie, F.2    Li, X.3    Yi, D.4    Wu, Y.5
  • 10
    • 4344602134 scopus 로고    scopus 로고
    • Simultaneous feature selection and clustering using mixture models
    • Sep.
    • M. H. C. Law, M. A. T. Figueiredo, and A. K. Jain, "Simultaneous feature selection and clustering using mixture models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1154-1166, Sep. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.9 , pp. 1154-1166
    • Law, M.H.C.1    Figueiredo, M.A.T.2    Jain, A.K.3
  • 11
    • 80051962608 scopus 로고    scopus 로고
    • A variance minimization criterion to feature selection using laplacian regularization
    • Oct.
    • X. He, M. Ji, C. Zhang, and H. Bao, "A variance minimization criterion to feature selection using Laplacian regularization," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 10, pp. 2013-2025, Oct. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.10 , pp. 2013-2025
    • He, X.1    Ji, M.2    Zhang, C.3    Bao, H.4
  • 12
    • 44649111202 scopus 로고    scopus 로고
    • Locality sensitive semi-supervised feature selection
    • J. Zhao, K. Lu, and X. He, "Locality sensitive semi-supervised feature selection," Neurocomputing, vol. 71, nos. 10-12, pp. 1842-1849, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.10-12 , pp. 1842-1849
    • Zhao, J.1    Lu, K.2    He, X.3
  • 13
    • 27844550205 scopus 로고    scopus 로고
    • Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach
    • Jan.
    • L. Wolf and A. Shashua, "Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach," J. Mach. Learn. Res., vol. 6, pp. 1855-1887, Jan. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1855-1887
    • Wolf, L.1    Shashua, A.2
  • 14
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Apr.
    • H. Liu and L. Yu, "Toward integrating feature selection algorithms for classification and clustering," IEEE Trans. Knowl. Data Eng., vol. 17, no. 4, pp. 491-502, Apr. 2005.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 15
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artif. Intell., vol. 97, nos. 1-2, pp. 273-324, 1997.
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 16
    • 0002312061 scopus 로고
    • Feature selection and feature extraction for text categorization
    • San Francisco, CA, USA
    • D. D. Lewis, "Feature selection and feature extraction for text categorization," in Proc. Speech Nat. Lang. Workshop, San Francisco, CA, USA, 1992, pp. 212-217.
    • (1992) Proc. Speech Nat. Lang. Workshop , pp. 212-217
    • Lewis, D.D.1
  • 17
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • Aug.
    • H. Peng, F. Long, and C. H. Q. Ding, "Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.H.Q.3
  • 18
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • M. Dash and H. Liu, "Consistency-based search in feature selection," Artif. Intell., vol. 151, nos. 1-2, pp. 155-176, 2003.
    • (2003) Artif. Intell. , vol.151 , Issue.1-2 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 19
    • 46749140199 scopus 로고    scopus 로고
    • Neighborhood rough set based heterogeneous feature subset selection
    • Q. Hu, D. Yu, J. Liu, and C. Wu, "Neighborhood rough set based heterogeneous feature subset selection," Inform. Sci., vol. 178, no. 18, pp. 3577-3594, 2008.
    • (2008) Inform. Sci. , vol.178 , Issue.18 , pp. 3577-3594
    • Hu, Q.1    Yu, D.2    Liu, J.3    Wu, C.4
  • 20
    • 0142134982 scopus 로고    scopus 로고
    • On the selection and classification of independent features
    • Oct.
    • M. Bressan and J. Vitrià, "On the selection and classification of independent features," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 10, pp. 1312-1317, Oct. 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.10 , pp. 1312-1317
    • Bressan, M.1    Vitrià, J.2
  • 21
    • 84890382718 scopus 로고    scopus 로고
    • Fuzzy-rough simultaneous attribute selection and feature extraction algorithm
    • Aug.
    • P. Maji and P. Garai, "Fuzzy-rough simultaneous attribute selection and feature extraction algorithm," IEEE Trans. Cybern., vol. 43, no. 4, pp. 1166-1177, Aug. 2013.
    • (2013) IEEE Trans. Cybern. , vol.43 , Issue.4 , pp. 1166-1177
    • Maji, P.1    Garai, P.2
  • 24
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Jan.
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Jan. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 25
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • Stanford, CA, USA, Jun./Jul.
    • M. A. Hall, "Correlation-based feature selection for discrete and numeric class machine learning," in Proc. 17th Int. Conf. Mach. Learn. (ICML), Stanford, CA, USA, Jun./Jul. 2000, pp. 359-366.
    • (2000) Proc. 17th Int. Conf. Mach. Learn. (ICML) , pp. 359-366
    • Hall, M.A.1
  • 27
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Jan.
    • G. Forman, "An extensive empirical study of feature selection metrics for text classification," J. Mach. Learn. Res., vol. 3, pp. 1289-1305, Jan. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 28
    • 84856505051 scopus 로고    scopus 로고
    • Feature selection based on class-dependent densities for high-dimensional binary data
    • Mar.
    • K. Javed, H. A. Babri, and M. Saeed, "Feature selection based on class-dependent densities for high-dimensional binary data," IEEE Trans. Knowl. Data Eng., vol. 24, no. 3, pp. 465-477, Mar. 2012.
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , Issue.3 , pp. 465-477
    • Javed, K.1    Babri, H.A.2    Saeed, M.3
  • 30
    • 77951937407 scopus 로고    scopus 로고
    • Feature selection with redundancy constrained class separability
    • May
    • L. Zhou, L. Wang, and C. Shen, "Feature selection with redundancy constrained class separability," IEEE Trans. Neural Netw., vol. 21, no. 5, pp. 853-858, May 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.5 , pp. 853-858
    • Zhou, L.1    Wang, L.2    Shen, C.3
  • 31
    • 61349133540 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data-A pearson redundancy based filter
    • Berlin, Germany: Springer
    • J. Biesiada and W. Duch, "Feature selection for high-dimensional data-A Pearson redundancy based filter," in Computer Recognition Systems 2. Berlin, Germany: Springer, 2008, pp. 242-249.
    • (2008) Computer Recognition Systems 2 , pp. 242-249
    • Biesiada, J.1    Duch, W.2
  • 32
    • 84960463485 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • Washington, DC, USA, Aug.
    • C. Ding and H. Peng, "Minimum redundancy feature selection from microarray gene expression data," in Proc. IEEE Comput. Soc. Conf. Bioinformat. (CSB), Washington, DC, USA, Aug. 2003, pp. 523-528.
    • (2003) Proc. IEEE Comput. Soc. Conf. Bioinformat. (CSB) , pp. 523-528
    • Ding, C.1    Peng, H.2
  • 33
    • 70350001466 scopus 로고    scopus 로고
    • A Bayesian view of challenges in feature selection: Feature aggregation, multiple targets, redundancy and interaction
    • P. Antal, A. Millinghoffer, G. Hullám, C. Szalai, and A. Falus, "A Bayesian view of challenges in feature selection: Feature aggregation, multiple targets, redundancy and interaction," in Proc. Conf. Workshop J. Mach. Learn. Res., vol. 4. 2008, pp. 74-89.
    • (2008) Proc. Conf. Workshop J. Mach. Learn. Res. , vol.4 , pp. 74-89
    • Antal, P.1    Millinghoffer, A.2    Hullám, G.3    Szalai, C.4    Falus, A.5
  • 34
    • 85099325734 scopus 로고
    • Irrelevant features and the subset selection problem
    • New Brunswick, NJ, USA, Jul.
    • G. H. John, R. Kohavi, and K. Pfleger, "Irrelevant features and the subset selection problem," in Proc. 11th Int. Conf. Mach. Learn., New Brunswick, NJ, USA, Jul. 1994, pp. 121-129.
    • (1994) Proc. 11th Int. Conf. Mach. Learn. , pp. 121-129
    • John, G.H.1    Kohavi, R.2    Pfleger, K.3
  • 36
    • 63649163673 scopus 로고    scopus 로고
    • Relevant and redundant feature analysis with ensemble classification
    • Kolkata, India, Feb.
    • R. Duangsoithong and T. Windeatt, "Relevant and redundant feature analysis with ensemble classification," in Proc. 7th Int. Conf. Adv. Pattern Recognit. (ICAPR), Kolkata, India, Feb. 2009, pp. 247-250.
    • (2009) Proc. 7th Int. Conf. Adv. Pattern Recognit. (ICAPR) , pp. 247-250
    • Duangsoithong, R.1    Windeatt, T.2
  • 38
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of relieff and RReliefF
    • M. Robnik-Sikonja and I. Kononenko, "Theoretical and empirical analysis of ReliefF and RReliefF," Mach. Learn., vol. 53, nos. 1-2, pp. 23-69, 2003.
    • (2003) Mach. Learn. , vol.53 , Issue.1-2 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 40
    • 34247622378 scopus 로고    scopus 로고
    • Iterative relief for feature weighting: Algorithms, theories, and applications
    • Jun.
    • Y. Sun, "Iterative relief for feature weighting: Algorithms, theories, and applications," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 1035-1051, Jun. 2007.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , Issue.6 , pp. 1035-1051
    • Sun, Y.1
  • 41
    • 33947167478 scopus 로고    scopus 로고
    • Face description with local binary patterns: Application to face recognition
    • Dec.
    • T. Ahonen, A. Hadid, and M. Pietikäinen, "Face description with local binary patterns: Application to face recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 12, pp. 2037-2041, Dec. 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.12 , pp. 2037-2041
    • Ahonen, T.1    Hadid, A.2    Pietikäinen, M.3
  • 42
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • Jul.
    • T. Ojala, M. Pietikäinen, and T. Mäenpää, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971-987, Jul. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.7 , pp. 971-987
    • Ojala, T.1    Pietikäinen, M.2    Mäenpää, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.