-
1
-
-
55349138530
-
-
University of California, Irvine, Available at
-
Asuncion, A., Newman, DJ., 2007. UCI Repository of Ma-chine Learning Databases, Department of Information and Computer Science. University of California, Irvine, Available at: http://www.ics.uci.edu/∼mlearn/ MLRepository.html.
-
(2007)
UCI Repository of Ma-chine Learning Databases, Department of Information and Computer Science
-
-
Asuncion, A.1
Newman, D.J.2
-
3
-
-
0036104537
-
Advances in instance selection for instance-based learning algorithms
-
DOI 10.1023/A:1014043630878
-
Brighton, H., Mellish, C, 2002. Advances in instance selection for instance-based learning algorithms. Data Mining and Knowledge Discovery 6, 153-172. (Pubitemid 37113870)
-
(2002)
Data Mining and Knowledge Discovery
, vol.6
, Issue.2
, pp. 153-172
-
-
Brighton, H.1
Mellish, C.2
-
4
-
-
68049121093
-
Anomaly detection: A survey
-
Chandola, V., Banerjee, A., Kumar, V., 2009. Anomaly detection: a survey. ACM Computing Surveys 41 (3), 1-58.
-
(2009)
ACM Computing Surveys
, vol.41
, Issue.3
, pp. 1-58
-
-
Chandola, V.1
Banerjee, A.2
Kumar, V.3
-
6
-
-
33750379261
-
Fast and versatile algorithm for nearest neighbor search based on a lower bound tree
-
Chen, Y.S., Hung, Y.P., Yen, T.F., Fuh, CS., 2007. Fast and versatile algorithm for nearest neighbor search based on a lower bound tree. Pattern Recognition 40, 360-375.
-
(2007)
Pattern Recognition
, vol.40
, pp. 360-375
-
-
Chen, Y.S.1
Hung, Y.P.2
Yen, T.F.3
Fuh, C.S.4
-
9
-
-
60649120005
-
Data preparation using data quality matrices for classification mining
-
Davidson, I., Tayi, G., 2009. Data preparation using data quality matrices for classification mining. European Journal of Operational Research 197, 764-772.
-
(2009)
European Journal of Operational Research
, vol.197
, pp. 764-772
-
-
Davidson, I.1
Tayi, G.2
-
10
-
-
2442514312
-
K-nearest-neighbor consistency in data clustering: Incorporating local information into global optimization
-
Ding, C.H.Q., He, X., 2004. K-nearest-neighbor consistency in data clustering: incorporating local information into global optimization. In: Proceedings of ACM Symposium on Applied Computing (SAC), pp. 584-589.
-
(2004)
Proceedings of ACM Symposium on Applied Computing (SAC)
, pp. 584-589
-
-
Ding, C.H.Q.1
He, X.2
-
11
-
-
0036709369
-
Locally adaptive metric nearest-neighbor classification
-
DOI 10.1109/TPAMI.2002.1033219
-
Domeniconi, C, Peng, J., Gunopulos, D., 2002. Locally adaptive metric nearest-neighbor classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (9), 1281-1285. (Pubitemid 35242588)
-
(2002)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.24
, Issue.9
, pp. 1281-1285
-
-
Domeniconi, C.1
Peng, J.2
Gunopulos, D.3
-
12
-
-
0003922190
-
-
Wiley, New York
-
Duda, R.O., Hart, P.E., Stork, D.G., 2001. Pattern Classification, 2nd ed. Wiley, New York.
-
(2001)
Pattern Classification, 2nd Ed
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
13
-
-
67349169047
-
A novel template reduction approach forthe k-nearest neighbor method
-
Fayed, H.A., Atiya, A.F., 2009. A novel template reduction approach forthe k-nearest neighbor method. IEEE Transactions on Neural Networks 20 (5), 890-896.
-
(2009)
IEEE Transactions on Neural Networks
, vol.20
, Issue.5
, pp. 890-896
-
-
Fayed, H.A.1
Atiya, A.F.2
-
14
-
-
77649341794
-
Efficient mutual nearest neighbor query processing for moving object trajectories
-
Gao, Y., Zheng, B., Chen, G., Li, Q., Chen, C, Chen, G., 2010. Efficient mutual nearest neighbor query processing for moving object trajectories. Information Sciences 180, 2170-2195.
-
(2010)
Information Sciences
, vol.180
, pp. 2170-2195
-
-
Gao, Y.1
Zheng, B.2
Chen, G.3
Li, Q.4
Chen, C.5
Chen, G.6
-
15
-
-
79952229665
-
Pattern classification with missing data: A review
-
Garcia-Laencina, P.J., Sancho-Gomez, J.L., Figueiras-Vidal, A.R., 2010. Pattern classification with missing data: a review. Neural Computing & Applications 19, 263-282.
-
(2010)
Neural Computing & Applications
, vol.19
, pp. 263-282
-
-
Garcia-Laencina, P.J.1
Sancho-Gomez, J.L.2
Figueiras-Vidal, A.R.3
-
16
-
-
0018492515
-
Condensed nearest neighbor rule using the concept of mutual nearest neighborhood
-
Gowda, K.C., Krishna, G., 1979. The condensed nearest neighbor rule using the concept of mutual nearest neighborhood. IEEE Transactions on Information Theory 25 (4), 488-490. (Pubitemid 9477344)
-
(1979)
IEEE Trans Inf Theory
, vol.25
, Issue.4
, pp. 488-490
-
-
Gowda K.Chidananda1
Krishna, G.2
-
18
-
-
67549091208
-
A method of learning weighted similarity function to improve the performance of nearest neighbor
-
Jahromi, M.Z., Parvinnia, E., John, R., 2009. A method of learning weighted similarity function to improve the performance of nearest neighbor. Information Sciences 179, 2964-2973.
-
(2009)
Information Sciences
, vol.179
, pp. 2964-2973
-
-
Jahromi, M.Z.1
Parvinnia, E.2
John, R.3
-
19
-
-
33745772192
-
Ranking outliers using symmetric neighborhood relationship
-
DOI 10.1007/11731139/68, Advances in Knowledge Discovery and Data Mining - 10th Pacific-Asia Conference, PAKDD 2006, Proceedings
-
Jin, W., Tung, A.K.H., Han, J., Wang, W., 2006. Ranking outliers using symmetric neighborhood relationship. In: Proceedings ofthe 10th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), pp. 577-593. (Pubitemid 44019461)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.3918
, pp. 577-593
-
-
Jin, W.1
Tung, A.K.H.2
Han, J.3
Wang, W.4
-
21
-
-
77953022494
-
Selection of a representative sample
-
Lee, H.K.H., Taddy, M., Gray, G.A., 2010. Selection of a representative sample. Journal of Classification 27, 41-53.
-
(2010)
Journal of Classification
, vol.27
, pp. 41-53
-
-
Lee, H.K.H.1
Taddy, M.2
Gray, G.A.3
-
22
-
-
1242352526
-
Selective sampling for nearest neighbor classifiers
-
Lindenbaum, M., Markovitch, S., Rusakov, D., 2004. Selective sampling for nearest neighbor classifiers. Machine Learning 54, 125-152.
-
(2004)
Machine Learning
, vol.54
, pp. 125-152
-
-
Lindenbaum, M.1
Markovitch, S.2
Rusakov, D.3
-
23
-
-
77951255156
-
Ensemble gene selection for cancer classification
-
Liu, H., Liu, L, Zhang, H., 2010. Ensemble gene selection for cancer classification. Pattern Recognition 43 (8), 2763-2772.
-
(2010)
Pattern Recognition
, vol.43
, Issue.8
, pp. 2763-2772
-
-
Liu, H.1
Liu, L.2
Zhang, H.3
-
24
-
-
62349118015
-
Feature selection with dynamic mutual information
-
Liu, H., Sun, J., Liu, L., Zhang, H., 2009. Feature selection with dynamic mutual information. Pattern Recognition 42, 1330-1339.
-
(2009)
Pattern Recognition
, vol.42
, pp. 1330-1339
-
-
Liu, H.1
Sun, J.2
Liu, L.3
Zhang, H.4
-
26
-
-
77956918947
-
A review ofinstance selection methods
-
Olvera-Lopez, J.A., Carrasco-Ochoa, J.A., Martinez-Trinidad, J.F., Kittler, J., 2010. A review ofinstance selection methods. Artificial Intelligence Review34, 133-143.
-
(2010)
Artificial Intelligence Review
, vol.34
, pp. 133-143
-
-
Olvera-Lopez, J.A.1
Carrasco-Ochoa, J.A.2
Martinez-Trinidad, J.F.3
Kittler, J.4
-
27
-
-
0003766191
-
-
Morgan Kaufmann Publishers, San Francisco, CA, USA
-
Pyle, D., 1999. Data Preparation for Data Mining. Morgan Kaufmann Publishers, San Francisco, CA, USA.
-
(1999)
Data Preparation for Data Mining
-
-
Pyle, D.1
-
28
-
-
38049101112
-
IKNN: Informative k-nearest neighbor pattern classification
-
Song, Y., Huang, J., Zhou, D., Zha, H., Giles, CL, 2007. IKNN: informative k-nearest neighbor pattern classification. In: PKDD 2007, LNAI 4702, pp. 248-264.
-
(2007)
PKDD 2007, LNAI 4702
, pp. 248-264
-
-
Song, Y.1
Huang, J.2
Zhou, D.3
Zha, H.4
Giles, C.L.5
-
29
-
-
74449084253
-
Probably correct k-nearest neighbor search in high dimensions
-
Toyama, J., Kudo, M., Imai, H., 2010. Probably correct k-nearest neighbor search in high dimensions. Pattern Recognition 43, 1361-1372.
-
(2010)
Pattern Recognition
, vol.43
, pp. 1361-1372
-
-
Toyama, J.1
Kudo, M.2
Imai, H.3
-
31
-
-
80855135228
-
-
Morgan Kaufmann Publishers, Los Altos
-
Witten, I.H., Frank, E., 2005. Data Mining-Practical Machine Learning Tools and Techniques with JAVA Implementations, 2nd ed. Morgan Kaufmann Publishers, Los Altos.
-
(2005)
Data Mining-Practical Machine Learning Tools and Techniques with JAVA Implementations, 2nd Ed
-
-
Witten, I.H.1
Frank, E.2
-
32
-
-
37549018049
-
Top 10 algorithms in data mining
-
Wu, X., Kumar, V., Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLach-lan, G., Ng, A., Liu, B., Yu, P., Zhou, Z., Steinbach, M., Hand, D., Stein-berg, D., 2008. Top 10 algorithms in data mining. Knowledge and Information Systems 14, 1-37.
-
(2008)
Knowledge and Information Systems
, vol.14
, pp. 1-37
-
-
Wu, X.1
Kumar, V.2
Quinlan, J.3
Ghosh, J.4
Yang, Q.5
Motoda, H.6
McLach-Lan, G.7
Ng, A.8
Liu, B.9
Yu, P.10
Zhou, Z.11
Steinbach, M.12
Hand, D.13
Stein-Berg, D.14
-
33
-
-
33845501387
-
10 challenging problems in data mining research
-
Yang, Q., Wu, X., 2006. 10 challenging problems in data mining research. International Journal of Information Technology and Decision Making 5 (4), 597-604.
-
(2006)
International Journal of Information Technology and Decision Making
, vol.5
, Issue.4
, pp. 597-604
-
-
Yang, Q.1
Wu, X.2
-
34
-
-
78651366861
-
Selective sampling techniques for feedback-based data retrieval
-
Yu, H., 2011. Selective sampling techniques for feedback-based data retrieval. Data Mining and Knowledge Discovery 22(1), 1-30.
-
(2011)
Data Mining and Knowledge Discovery
, vol.22
, Issue.1
, pp. 1-30
-
-
Yu, H.1
-
35
-
-
77958151233
-
Integrating induction and deduction for noisy data mining
-
Zhang, Y., Wu, X., 2010. Integrating induction and deduction for noisy data mining. Information Sciences 180 (14), 2663-2673.
-
(2010)
Information Sciences
, vol.180
, Issue.14
, pp. 2663-2673
-
-
Zhang, Y.1
Wu, X.2
-
36
-
-
79959375445
-
Shell-neighbor method and its application in missing data imputation
-
Zhang, S., 2011. Shell-neighbor method and its application in missing data imputation. Applied Intelligence 35 (1), 123-133.
-
(2011)
Applied Intelligence
, vol.35
, Issue.1
, pp. 123-133
-
-
Zhang, S.1
-
37
-
-
77649305686
-
Joint sampling distribution between actual and estimated classification errors for linear discriminant analysis
-
Zollanvari, A., Braga-Neto, U.M., Dougherty, E.R., 2010. Joint sampling distribution between actual and estimated classification errors for linear discriminant analysis. IEEE Transactions on Information Theory 56 (2), 784-804.
-
(2010)
IEEE Transactions on Information Theory
, vol.56
, Issue.2
, pp. 784-804
-
-
Zollanvari, A.1
Braga-Neto, U.M.2
Dougherty, E.R.3
|