메뉴 건너뛰기




Volumn 85, Issue 5, 2012, Pages 1067-1074

Noisy data elimination using mutual k-nearest neighbor for classification mining

Author keywords

Data mining; Data reduction; kNN; Mutual nearest neighbor; Pattern classification

Indexed keywords

DATA MINING; DATA REDUCTION; MEMBERSHIP FUNCTIONS; MOTION COMPENSATION; NEAREST NEIGHBOR SEARCH; PATTERN RECOGNITION; TEXT PROCESSING;

EID: 84865233213     PISSN: 01641212     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jss.2011.12.019     Document Type: Article
Times cited : (94)

References (37)
  • 3
    • 0036104537 scopus 로고    scopus 로고
    • Advances in instance selection for instance-based learning algorithms
    • DOI 10.1023/A:1014043630878
    • Brighton, H., Mellish, C, 2002. Advances in instance selection for instance-based learning algorithms. Data Mining and Knowledge Discovery 6, 153-172. (Pubitemid 37113870)
    • (2002) Data Mining and Knowledge Discovery , vol.6 , Issue.2 , pp. 153-172
    • Brighton, H.1    Mellish, C.2
  • 6
    • 33750379261 scopus 로고    scopus 로고
    • Fast and versatile algorithm for nearest neighbor search based on a lower bound tree
    • Chen, Y.S., Hung, Y.P., Yen, T.F., Fuh, CS., 2007. Fast and versatile algorithm for nearest neighbor search based on a lower bound tree. Pattern Recognition 40, 360-375.
    • (2007) Pattern Recognition , vol.40 , pp. 360-375
    • Chen, Y.S.1    Hung, Y.P.2    Yen, T.F.3    Fuh, C.S.4
  • 9
    • 60649120005 scopus 로고    scopus 로고
    • Data preparation using data quality matrices for classification mining
    • Davidson, I., Tayi, G., 2009. Data preparation using data quality matrices for classification mining. European Journal of Operational Research 197, 764-772.
    • (2009) European Journal of Operational Research , vol.197 , pp. 764-772
    • Davidson, I.1    Tayi, G.2
  • 10
    • 2442514312 scopus 로고    scopus 로고
    • K-nearest-neighbor consistency in data clustering: Incorporating local information into global optimization
    • Ding, C.H.Q., He, X., 2004. K-nearest-neighbor consistency in data clustering: incorporating local information into global optimization. In: Proceedings of ACM Symposium on Applied Computing (SAC), pp. 584-589.
    • (2004) Proceedings of ACM Symposium on Applied Computing (SAC) , pp. 584-589
    • Ding, C.H.Q.1    He, X.2
  • 13
    • 67349169047 scopus 로고    scopus 로고
    • A novel template reduction approach forthe k-nearest neighbor method
    • Fayed, H.A., Atiya, A.F., 2009. A novel template reduction approach forthe k-nearest neighbor method. IEEE Transactions on Neural Networks 20 (5), 890-896.
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.5 , pp. 890-896
    • Fayed, H.A.1    Atiya, A.F.2
  • 14
    • 77649341794 scopus 로고    scopus 로고
    • Efficient mutual nearest neighbor query processing for moving object trajectories
    • Gao, Y., Zheng, B., Chen, G., Li, Q., Chen, C, Chen, G., 2010. Efficient mutual nearest neighbor query processing for moving object trajectories. Information Sciences 180, 2170-2195.
    • (2010) Information Sciences , vol.180 , pp. 2170-2195
    • Gao, Y.1    Zheng, B.2    Chen, G.3    Li, Q.4    Chen, C.5    Chen, G.6
  • 16
    • 0018492515 scopus 로고
    • Condensed nearest neighbor rule using the concept of mutual nearest neighborhood
    • Gowda, K.C., Krishna, G., 1979. The condensed nearest neighbor rule using the concept of mutual nearest neighborhood. IEEE Transactions on Information Theory 25 (4), 488-490. (Pubitemid 9477344)
    • (1979) IEEE Trans Inf Theory , vol.25 , Issue.4 , pp. 488-490
    • Gowda K.Chidananda1    Krishna, G.2
  • 17
  • 18
    • 67549091208 scopus 로고    scopus 로고
    • A method of learning weighted similarity function to improve the performance of nearest neighbor
    • Jahromi, M.Z., Parvinnia, E., John, R., 2009. A method of learning weighted similarity function to improve the performance of nearest neighbor. Information Sciences 179, 2964-2973.
    • (2009) Information Sciences , vol.179 , pp. 2964-2973
    • Jahromi, M.Z.1    Parvinnia, E.2    John, R.3
  • 22
    • 1242352526 scopus 로고    scopus 로고
    • Selective sampling for nearest neighbor classifiers
    • Lindenbaum, M., Markovitch, S., Rusakov, D., 2004. Selective sampling for nearest neighbor classifiers. Machine Learning 54, 125-152.
    • (2004) Machine Learning , vol.54 , pp. 125-152
    • Lindenbaum, M.1    Markovitch, S.2    Rusakov, D.3
  • 23
    • 77951255156 scopus 로고    scopus 로고
    • Ensemble gene selection for cancer classification
    • Liu, H., Liu, L, Zhang, H., 2010. Ensemble gene selection for cancer classification. Pattern Recognition 43 (8), 2763-2772.
    • (2010) Pattern Recognition , vol.43 , Issue.8 , pp. 2763-2772
    • Liu, H.1    Liu, L.2    Zhang, H.3
  • 24
    • 62349118015 scopus 로고    scopus 로고
    • Feature selection with dynamic mutual information
    • Liu, H., Sun, J., Liu, L., Zhang, H., 2009. Feature selection with dynamic mutual information. Pattern Recognition 42, 1330-1339.
    • (2009) Pattern Recognition , vol.42 , pp. 1330-1339
    • Liu, H.1    Sun, J.2    Liu, L.3    Zhang, H.4
  • 27
    • 0003766191 scopus 로고    scopus 로고
    • Morgan Kaufmann Publishers, San Francisco, CA, USA
    • Pyle, D., 1999. Data Preparation for Data Mining. Morgan Kaufmann Publishers, San Francisco, CA, USA.
    • (1999) Data Preparation for Data Mining
    • Pyle, D.1
  • 28
    • 38049101112 scopus 로고    scopus 로고
    • IKNN: Informative k-nearest neighbor pattern classification
    • Song, Y., Huang, J., Zhou, D., Zha, H., Giles, CL, 2007. IKNN: informative k-nearest neighbor pattern classification. In: PKDD 2007, LNAI 4702, pp. 248-264.
    • (2007) PKDD 2007, LNAI 4702 , pp. 248-264
    • Song, Y.1    Huang, J.2    Zhou, D.3    Zha, H.4    Giles, C.L.5
  • 29
    • 74449084253 scopus 로고    scopus 로고
    • Probably correct k-nearest neighbor search in high dimensions
    • Toyama, J., Kudo, M., Imai, H., 2010. Probably correct k-nearest neighbor search in high dimensions. Pattern Recognition 43, 1361-1372.
    • (2010) Pattern Recognition , vol.43 , pp. 1361-1372
    • Toyama, J.1    Kudo, M.2    Imai, H.3
  • 34
    • 78651366861 scopus 로고    scopus 로고
    • Selective sampling techniques for feedback-based data retrieval
    • Yu, H., 2011. Selective sampling techniques for feedback-based data retrieval. Data Mining and Knowledge Discovery 22(1), 1-30.
    • (2011) Data Mining and Knowledge Discovery , vol.22 , Issue.1 , pp. 1-30
    • Yu, H.1
  • 35
    • 77958151233 scopus 로고    scopus 로고
    • Integrating induction and deduction for noisy data mining
    • Zhang, Y., Wu, X., 2010. Integrating induction and deduction for noisy data mining. Information Sciences 180 (14), 2663-2673.
    • (2010) Information Sciences , vol.180 , Issue.14 , pp. 2663-2673
    • Zhang, Y.1    Wu, X.2
  • 36
    • 79959375445 scopus 로고    scopus 로고
    • Shell-neighbor method and its application in missing data imputation
    • Zhang, S., 2011. Shell-neighbor method and its application in missing data imputation. Applied Intelligence 35 (1), 123-133.
    • (2011) Applied Intelligence , vol.35 , Issue.1 , pp. 123-133
    • Zhang, S.1
  • 37
    • 77649305686 scopus 로고    scopus 로고
    • Joint sampling distribution between actual and estimated classification errors for linear discriminant analysis
    • Zollanvari, A., Braga-Neto, U.M., Dougherty, E.R., 2010. Joint sampling distribution between actual and estimated classification errors for linear discriminant analysis. IEEE Transactions on Information Theory 56 (2), 784-804.
    • (2010) IEEE Transactions on Information Theory , vol.56 , Issue.2 , pp. 784-804
    • Zollanvari, A.1    Braga-Neto, U.M.2    Dougherty, E.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.