메뉴 건너뛰기




Volumn 99, Issue 2, 2015, Pages 231-256

Multilabel classification through random graph ensembles

Author keywords

Ensemble methods; Graphical models; Kernel methods; Multilabel classification; Structured output

Indexed keywords

ADAPTIVE BOOSTING; ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); GRAPH THEORY; GRAPHIC METHODS;

EID: 84928376670     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-014-5465-9     Document Type: Article
Times cited : (14)

References (24)
  • 1
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • Argyriou, A., Evgeniou, T., & Pontil, M. (2008). Convex multi-task feature learning. Machine Learning, 73(3), 243–272.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 4
    • 77952046540 scopus 로고    scopus 로고
    • Good and bad diversity in majority vote ensembles
    • Berlin: Springer
    • Brown, G., & Kuncheva, LI. (2010). Good and bad diversity in majority vote ensembles. In: Multiple classifier systems (pp. 124–133). Berlin: Springer.
    • (2010) Multiple classifier systems , pp. 124-133
    • Brown, G.1    Kuncheva, L.I.2
  • 6
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7, 1–30.
    • (2006) The Journal of Machine Learning Research , vol.7
    • Demšar, J.1
  • 8
    • 43949121902 scopus 로고    scopus 로고
    • Boosting multi-label hierarchical text categorization
    • Esuli, A., Fagni, T., & Sebastiani, F. (2008). Boosting multi-label hierarchical text categorization. Information Retrieval, 11(4), 287–313.
    • (2008) Information Retrieval , vol.11 , Issue.4 , pp. 287-313
    • Esuli, A.1    Fagni, T.2    Sebastiani, F.3
  • 9
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 10
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32(200), 675–701.
    • (1937) Journal of the American Statistical Association , vol.32 , Issue.200 , pp. 675-701
    • Friedman, M.1
  • 11
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Cambridge, MA: MIT Press
    • Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active learning. In: Advances in neural information processing systems (pp. 231–238). Cambridge, MA: MIT Press.
    • (1995) Advances in neural information processing systems , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 17
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: A boosting-based system for text categorization
    • Schapire, R. E., & Singer, Y. (2000). Boostexter: A boosting-based system for text categorization. Machine Learning, 39(2/3), 135–168.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 19
    • 80455144801 scopus 로고    scopus 로고
    • Multi-task drug bioactivity classification with graph labeling ensembles. In Proceedings of the 6th International Conference on Pattern Recognition in Bioinformatics (PRIB2011)
    • Su, H., & Rousu, J. (2001). Multi-task drug bioactivity classification with graph labeling ensembles. In Proceedings of the 6th International Conference on Pattern Recognition in Bioinformatics (PRIB2011), Lecture Note in Computer Science (LNCS), (Vol. 7035, pp.157–167).
    • (2001) Lecture Note in Computer Science (LNCS) , vol.7035 , pp. 157-167
    • Su, H.1    Rousu, J.2
  • 21
    • 84898948585 scopus 로고    scopus 로고
    • Max-Margin Markov networks. In S. Thrun, L. K. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems, (Vol. 16, pp. 25–32)
    • Taskar, B., Guestrin, G., & Koller, D. (2004). Max-Margin Markov networks. In S. Thrun, L. K. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems, (Vol. 16, pp. 25–32). MIT Press.
    • (2004) MIT Press
    • Taskar, B.1    Guestrin, G.2    Koller, D.3
  • 22
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces. In: Proceedings of the twenty-first international conference on machine learning ICML’04, pp
    • Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun, Y. (2004). Support vector machine learning for interdependent and structured output spaces. In: Proceedings of the twenty-first international conference on machine learning ICML’04, pp. 823–830.
    • (2004) 823–830
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 23
    • 27744456278 scopus 로고    scopus 로고
    • MAP estimation via agreement on trees: message-passing and linear programming
    • Wainwright, M., Jaakkola, T., & Willsky, A. (2005). MAP estimation via agreement on trees: message-passing and linear programming. IEEE Transactions on Information Theory, 51(11), 3697–3717.
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.11 , pp. 3697-3717
    • Wainwright, M.1    Jaakkola, T.2    Willsky, A.3
  • 24
    • 36849011561 scopus 로고    scopus 로고
    • Model-shared subspace boosting for multi-label classification. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, (pp. 834–843)
    • Yan, R., Tesic, J., & Smith, J. (2007). Model-shared subspace boosting for multi-label classification. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, (pp. 834–843). ACM
    • (2007) ACM
    • Yan, R.1    Tesic, J.2    Smith, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.