-
1
-
-
55149088329
-
Convex multi-task feature learning
-
Argyriou, A., Evgeniou, T., & Pontil, M. (2008). Convex multi-task feature learning. Machine Learning, 73(3), 243–272.
-
(2008)
Machine Learning
, vol.73
, Issue.3
, pp. 243-272
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
2
-
-
84873572408
-
Corrlog: Correlated logistic models for joint prediction of multiple labels
-
Bian, W., Xie, B., & Tao, D. (2012). Corrlog: Correlated logistic models for joint prediction of multiple labels. In: Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS-12), vol. 22, pp. 109–117.
-
(2012)
Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS-12)
, vol.22
, pp. 109-117
-
-
Bian, W.1
Xie, B.2
Tao, D.3
-
3
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
77952046540
-
Good and bad diversity in majority vote ensembles
-
Berlin: Springer
-
Brown, G., & Kuncheva, LI. (2010). Good and bad diversity in majority vote ensembles. In: Multiple classifier systems (pp. 124–133). Berlin: Springer.
-
(2010)
Multiple classifier systems
, pp. 124-133
-
-
Brown, G.1
Kuncheva, L.I.2
-
6
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7, 1–30.
-
(2006)
The Journal of Machine Learning Research
, vol.7
-
-
Demšar, J.1
-
8
-
-
43949121902
-
Boosting multi-label hierarchical text categorization
-
Esuli, A., Fagni, T., & Sebastiani, F. (2008). Boosting multi-label hierarchical text categorization. Information Retrieval, 11(4), 287–313.
-
(2008)
Information Retrieval
, vol.11
, Issue.4
, pp. 287-313
-
-
Esuli, A.1
Fagni, T.2
Sebastiani, F.3
-
9
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
10
-
-
84944811700
-
The use of ranks to avoid the assumption of normality implicit in the analysis of variance
-
Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32(200), 675–701.
-
(1937)
Journal of the American Statistical Association
, vol.32
, Issue.200
, pp. 675-701
-
-
Friedman, M.1
-
11
-
-
85054435084
-
Neural network ensembles, cross validation, and active learning
-
Cambridge, MA: MIT Press
-
Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active learning. In: Advances in neural information processing systems (pp. 231–238). Cambridge, MA: MIT Press.
-
(1995)
Advances in neural information processing systems
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
13
-
-
23844480138
-
Graph kernels for chemical informatics
-
Ralaivola, L., Swamidass, S., Saigo, H., & Baldi, P. (2005). Graph kernels for chemical informatics. Neural Networks, 18, 1093–1110.
-
(2005)
Neural Networks
, vol.18
, pp. 1093-1110
-
-
Ralaivola, L.1
Swamidass, S.2
Saigo, H.3
Baldi, P.4
-
14
-
-
33745768424
-
Kernel-based learning of hierarchical multilabel classification models
-
Rousu, J., Saunders, C., Szedmak, S., & Shawe-Taylor, J. (2006). Kernel-based learning of hierarchical multilabel classification models. The Journal of Machine Learning Research, 7, 1601–1626.
-
(2006)
The Journal of Machine Learning Research
, vol.7
, pp. 1601-1626
-
-
Rousu, J.1
Saunders, C.2
Szedmak, S.3
Shawe-Taylor, J.4
-
15
-
-
78049465511
-
Efficient algorithms for max-margin structured classification
-
Rousu, J., Saunders, C., Szedmak, S., & Shawe-Taylor, J. (2007). Efficient algorithms for max-margin structured classification. In Predicting structured data, pp. 105–129.
-
(2007)
In Predicting structured data
, pp. 105-129
-
-
Rousu, J.1
Saunders, C.2
Szedmak, S.3
Shawe-Taylor, J.4
-
17
-
-
0033905095
-
Boostexter: A boosting-based system for text categorization
-
Schapire, R. E., & Singer, Y. (2000). Boostexter: A boosting-based system for text categorization. Machine Learning, 39(2/3), 135–168.
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
, pp. 135-168
-
-
Schapire, R.E.1
Singer, Y.2
-
19
-
-
80455144801
-
Multi-task drug bioactivity classification with graph labeling ensembles. In Proceedings of the 6th International Conference on Pattern Recognition in Bioinformatics (PRIB2011)
-
Su, H., & Rousu, J. (2001). Multi-task drug bioactivity classification with graph labeling ensembles. In Proceedings of the 6th International Conference on Pattern Recognition in Bioinformatics (PRIB2011), Lecture Note in Computer Science (LNCS), (Vol. 7035, pp.157–167).
-
(2001)
Lecture Note in Computer Science (LNCS)
, vol.7035
, pp. 157-167
-
-
Su, H.1
Rousu, J.2
-
20
-
-
84908472806
-
Multilabel classification through random graph ensembles
-
Su, H., & Rousu, J. (2013). Multilabel classification through random graph ensembles. In: Proceedings, 5th Asian conference on machine learning (ACML2013), Journal of Machine Learning Research W&CP, vol. 29, pp. 404–418.
-
(2013)
Proceedings, 5th Asian conference on machine learning (ACML2013), Journal of Machine Learning Research W&CP
, vol.29
, pp. 404-418
-
-
Su, H.1
Rousu, J.2
-
21
-
-
84898948585
-
Max-Margin Markov networks. In S. Thrun, L. K. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems, (Vol. 16, pp. 25–32)
-
Taskar, B., Guestrin, G., & Koller, D. (2004). Max-Margin Markov networks. In S. Thrun, L. K. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems, (Vol. 16, pp. 25–32). MIT Press.
-
(2004)
MIT Press
-
-
Taskar, B.1
Guestrin, G.2
Koller, D.3
-
22
-
-
14344250451
-
Support vector machine learning for interdependent and structured output spaces. In: Proceedings of the twenty-first international conference on machine learning ICML’04, pp
-
Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun, Y. (2004). Support vector machine learning for interdependent and structured output spaces. In: Proceedings of the twenty-first international conference on machine learning ICML’04, pp. 823–830.
-
(2004)
823–830
-
-
Tsochantaridis, I.1
Hofmann, T.2
Joachims, T.3
Altun, Y.4
-
23
-
-
27744456278
-
MAP estimation via agreement on trees: message-passing and linear programming
-
Wainwright, M., Jaakkola, T., & Willsky, A. (2005). MAP estimation via agreement on trees: message-passing and linear programming. IEEE Transactions on Information Theory, 51(11), 3697–3717.
-
(2005)
IEEE Transactions on Information Theory
, vol.51
, Issue.11
, pp. 3697-3717
-
-
Wainwright, M.1
Jaakkola, T.2
Willsky, A.3
-
24
-
-
36849011561
-
Model-shared subspace boosting for multi-label classification. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, (pp. 834–843)
-
Yan, R., Tesic, J., & Smith, J. (2007). Model-shared subspace boosting for multi-label classification. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, (pp. 834–843). ACM
-
(2007)
ACM
-
-
Yan, R.1
Tesic, J.2
Smith, J.3
|