메뉴 건너뛰기




Volumn 23, Issue 3, 2016, Pages 198-205

Metabolic regulation of hematopoietic stem cell commitment and erythroid differentiation

Author keywords

Erythropoiesis; Hematopoietic stem cell; Lineage differentiation; Metabolic reprogramming; Self renewal

Indexed keywords

AMINO ACID; HYPOXIA INDUCIBLE FACTOR 1; IRON; MAMMALIAN TARGET OF RAPAMYCIN;

EID: 84957921806     PISSN: 10656251     EISSN: 15317048     Source Type: Journal    
DOI: 10.1097/MOH.0000000000000234     Document Type: Review
Times cited : (66)

References (74)
  • 1
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: The metabolic requirements of cell proliferation
    • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324:1029-1033.
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1    Cantley, L.C.2    Thompson, C.B.3
  • 2
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation
    • Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 2011; 27:441-464.
    • (2011) Annu Rev Cell Dev Biol , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 3
    • 84938740158 scopus 로고    scopus 로고
    • Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells
    • Kuehne A, Emmert H, Soehle J, et al. Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol Cell 2015; 59:359-371.
    • (2015) Mol Cell , vol.59 , pp. 359-371
    • Kuehne, A.1    Emmert, H.2    Soehle, J.3
  • 4
    • 77956217067 scopus 로고    scopus 로고
    • Regulation of the HIF-1alpha level is essential for hematopoietic stem cells
    • Takubo K, Goda N, Yamada W, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 2010; 7:391-402.
    • (2010) Cell Stem Cell , vol.7 , pp. 391-402
    • Takubo, K.1    Goda, N.2    Yamada, W.3
  • 5
    • 77956205122 scopus 로고    scopus 로고
    • The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche
    • Simsek T, Kocabas F, Zheng J, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010; 7:380-390.
    • (2010) Cell Stem Cell , vol.7 , pp. 380-390
    • Simsek, T.1    Kocabas, F.2    Zheng, J.3
  • 6
    • 84877575509 scopus 로고    scopus 로고
    • Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment
    • Nombela-Arrieta C, Pivarnik G, Winkel B, et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 2013; 15:533-543.
    • (2013) Nat Cell Biol , vol.15 , pp. 533-543
    • Nombela-Arrieta, C.1    Pivarnik, G.2    Winkel, B.3
  • 7
    • 85047692887 scopus 로고    scopus 로고
    • Expansion of human SCID-repopulating cells under hypoxic conditions
    • Danet GH, Pan Y, Luongo JL, et al. Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest 2003; 112:126-135.
    • (2003) J Clin Invest , vol.112 , pp. 126-135
    • Danet, G.H.1    Pan, Y.2    Luongo, J.L.3
  • 8
    • 33644513357 scopus 로고    scopus 로고
    • Very low O2 concentration (0.1%) favors G0 return of dividing CD34+ cells
    • Hermitte F, Brunet de la Grange P, Belloc F, et al. Very low O2 concentration (0.1%) favors G0 return of dividing CD34+ cells. Stem Cells 2006; 24: 65-73.
    • (2006) Stem Cells , vol.24 , pp. 65-73
    • Hermitte, F.1    Brunet De-La-Grange, P.2    Belloc, F.3
  • 9
    • 84931561759 scopus 로고    scopus 로고
    • Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen Shock
    • Mantel CR, O'Leary HA, Chitteti BR, et al. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen Shock. Cell 2015; 161:1553-1565.
    • (2015) Cell , vol.161 , pp. 1553-1565
    • Mantel, C.R.1    O'Leary, H.A.2    Chitteti, B.R.3
  • 10
    • 84872037830 scopus 로고    scopus 로고
    • Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation
    • Yu WM, Liu X, Shen J, et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 2013; 12:62-74.
    • (2013) Cell Stem Cell , vol.12 , pp. 62-74
    • Yu, W.M.1    Liu, X.2    Shen, J.3
  • 11
    • 84872011926 scopus 로고    scopus 로고
    • Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
    • Takubo K, Nagamatsu G, Kobayashi CI, et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 2013; 12:49-61.
    • (2013) Cell Stem Cell , vol.12 , pp. 49-61
    • Takubo, K.1    Nagamatsu, G.2    Kobayashi, C.I.3
  • 12
    • 56549128268 scopus 로고    scopus 로고
    • Hematopoietic stemcells reversibly switch from dormancy to self-renewal during homeostasis and repair
    • Wilson A, Laurenti E, Oser G, et al. Hematopoietic stemcells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008; 135:1118-1129.
    • (2008) Cell , vol.135 , pp. 1118-1129
    • Wilson, A.1    Laurenti, E.2    Oser, G.3
  • 13
    • 60149104597 scopus 로고    scopus 로고
    • Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells
    • Foudi A, Hochedlinger K, Van Buren D, et al. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nat Biotechnol 2009; 27:84-90.
    • (2009) Nat Biotechnol , vol.27 , pp. 84-90
    • Foudi, A.1    Hochedlinger, K.2    Van Buren, D.3
  • 14
    • 84885962654 scopus 로고    scopus 로고
    • HIF1alpha is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo
    • Imanirad P, Solaimani Kartalaei P, Crisan M, et al. HIF1alpha is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo. Stem Cell Res 2014; 12:24-35.
    • (2014) Stem Cell Res , vol.12 , pp. 24-35
    • Imanirad, P.1    Solaimani Kartalaei, P.2    Crisan, M.3
  • 15
    • 80053926733 scopus 로고    scopus 로고
    • Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78
    • Miharada K, Karlsson G, Rehn M, et al. Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78. Cell Stem Cell 2011; 9:330-344.
    • (2011) Cell Stem Cell , vol.9 , pp. 330-344
    • Miharada, K.1    Karlsson, G.2    Rehn, M.3
  • 16
    • 84904043095 scopus 로고    scopus 로고
    • Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle
    • Beerman I, Seita J, Inlay MA, et al. Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell 2014; 15:37-50.
    • (2014) Cell Stem Cell , vol.15 , pp. 37-50
    • Beerman, I.1    Seita, J.2    Inlay, M.A.3
  • 17
    • 77953632556 scopus 로고    scopus 로고
    • Upregulation of nascent mitochondrial biogenesis in mouse hematopoietic stem cells parallels upregulation of CD34 and loss of pluripotency: A potential strategy for reducing oxidative risk in stem cells
    • Mantel C, Messina-Graham S, Broxmeyer HE. Upregulation of nascent mitochondrial biogenesis in mouse hematopoietic stem cells parallels upregulation of CD34 and loss of pluripotency: a potential strategy for reducing oxidative risk in stem cells. Cell Cycle 2010; 9:2008-2017.
    • (2010) Cell Cycle , vol.9 , pp. 2008-2017
    • Mantel, C.1    Messina-Graham, S.2    Broxmeyer, H.E.3
  • 18
    • 53349091768 scopus 로고    scopus 로고
    • TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species
    • Chen C, Liu Y, Liu R, et al. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 2008; 205:2397-2408.
    • (2008) J Exp Med , vol.205 , pp. 2397-2408
    • Chen, C.1    Liu, Y.2    Liu, R.3
  • 19
    • 65949113818 scopus 로고    scopus 로고
    • The axis of mTOR-mitochondria-ROS and stemness of the hematopoietic stem cells
    • Chen C, Liu Y, Liu Y, Zheng P. The axis of mTOR-mitochondria-ROS and stemness of the hematopoietic stem cells. Cell Cycle 2009; 8:1158-1160.
    • (2009) Cell Cycle , vol.8 , pp. 1158-1160
    • Chen, C.1    Liu, Y.2    Liu, Y.3    Zheng, P.4
  • 20
    • 84870866912 scopus 로고    scopus 로고
    • Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways
    • Huang J, Nguyen-McCarty M, Hexner EO, et al. Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways. Nat Med 2012; 18:1778-1785.
    • (2012) Nat Med , vol.18 , pp. 1778-1785
    • Huang, J.1    Nguyen-McCarty, M.2    Hexner, E.O.3
  • 21
    • 84957839266 scopus 로고    scopus 로고
    • The Dlk1-Gtl2 locus preserves LT-HSC function by inhibiting the PI3K-mTOR pathway to restrict mitochondrial metabolism
    • Qian P, He XC, Paulson A, et al. The Dlk1-Gtl2 locus preserves LT-HSC function by inhibiting the PI3K-mTOR pathway to restrict mitochondrial metabolism. Cell Stem Cell 2016; 18:214-228.
    • (2016) Cell Stem Cell , vol.18 , pp. 214-228
    • Qian, P.1    He, X.C.2    Paulson, A.3
  • 22
    • 84883639503 scopus 로고    scopus 로고
    • Mouse gene targeting reveals an essential role of mTOR in hematopoietic stem cell engraftment and hematopoiesis
    • Guo F, Zhang S, Grogg M, et al. Mouse gene targeting reveals an essential role of mTOR in hematopoietic stem cell engraftment and hematopoiesis. Haematologica 2013; 98:1353-1358.
    • (2013) Haematologica , vol.98 , pp. 1353-1358
    • Guo, F.1    Zhang, S.2    Grogg, M.3
  • 23
    • 84938267949 scopus 로고    scopus 로고
    • An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate
    • Maryanovich M, Zaltsman Y, Ruggiero A, et al. An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate. Nat Commun 2015; 6:7901.
    • (2015) Nat Commun , vol.6 , pp. 7901
    • Maryanovich, M.1    Zaltsman, Y.2    Ruggiero, A.3
  • 24
    • 84855885803 scopus 로고    scopus 로고
    • Cell cycle regulation in hematopoietic stem cells
    • Pietras EM, Warr MR, Passegue E. Cell cycle regulation in hematopoietic stem cells. J Cell Biol 2011; 195:709-720.
    • (2011) J Cell Biol , vol.195 , pp. 709-720
    • Pietras, E.M.1    Warr, M.R.2    Passegue, E.3
  • 25
    • 84868632060 scopus 로고    scopus 로고
    • A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance
    • Ito K, Carracedo A, Weiss D, et al. A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med 2012; 18:1350-1358.
    • (2012) Nat Med , vol.18 , pp. 1350-1358
    • Ito, K.1    Carracedo, A.2    Weiss, D.3
  • 26
    • 84867075651 scopus 로고    scopus 로고
    • Fate through fat: Lipid metabolism determines stem cell division outcome
    • Yusuf RZ, Scadden DT. Fate through fat: lipid metabolism determines stem cell division outcome. Cell Metab 2012; 16:411-413.
    • (2012) Cell Metab , vol.16 , pp. 411-413
    • Yusuf, R.Z.1    Scadden, D.T.2
  • 27
    • 44349166602 scopus 로고    scopus 로고
    • PML targeting eradicates quiescent leukaemia-initiating cells
    • Ito K, Bernardi R, Morotti A, et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 2008; 453:1072-1078.
    • (2008) Nature , vol.453 , pp. 1072-1078
    • Ito, K.1    Bernardi, R.2    Morotti, A.3
  • 28
    • 84896929687 scopus 로고    scopus 로고
    • Metabolic requirements for the maintenance of self-renewing stem cells
    • Ito K, Suda T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 2014; 15:243-256.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , pp. 243-256
    • Ito, K.1    Suda, T.2
  • 29
    • 67650547953 scopus 로고    scopus 로고
    • PPAR{delta} agonism activates fatty acid oxidation via PGC-1{alpha} but does not increase mitochondrial gene expression and function
    • Kleiner S, Nguyen-Tran V, Bare O, et al. PPAR{delta} agonism activates fatty acid oxidation via PGC-1{alpha} but does not increase mitochondrial gene expression and function. J Biol Chem 2009; 284:18624-18633.
    • (2009) J Biol Chem , vol.284 , pp. 18624-18633
    • Kleiner, S.1    Nguyen-Tran, V.2    Bare, O.3
  • 30
    • 78649874959 scopus 로고    scopus 로고
    • Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells
    • Gan B, Hu J, Jiang S, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 2010; 468:701-704.
    • (2010) Nature , vol.468 , pp. 701-704
    • Gan, B.1    Hu, J.2    Jiang, S.3
  • 31
    • 78649851511 scopus 로고    scopus 로고
    • The Lkb1 metabolic sensor maintains haematopoietic stem cell survival
    • Gurumurthy S, Xie SZ, Alagesan B, et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 2010; 468:659-663.
    • (2010) Nature , vol.468 , pp. 659-663
    • Gurumurthy, S.1    Xie, S.Z.2    Alagesan, B.3
  • 32
    • 78649811793 scopus 로고    scopus 로고
    • Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells
    • Nakada D, Saunders TL, Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 2010; 468:653-658.
    • (2010) Nature , vol.468 , pp. 653-658
    • Nakada, D.1    Saunders, T.L.2    Morrison, S.J.3
  • 33
    • 84866600774 scopus 로고    scopus 로고
    • Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number
    • Sankaran VG, Ludwig LS, Sicinska E, et al. Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number. Genes Dev 2012; 26:2075-2087.
    • (2012) Genes Dev , vol.26 , pp. 2075-2087
    • Sankaran, V.G.1    Ludwig, L.S.2    Sicinska, E.3
  • 34
    • 84879142151 scopus 로고    scopus 로고
    • Isolation and functional characterization of human erythroblasts at distinct stages: Implications for understanding of normal and disordered erythropoiesis in vivo
    • Hu J, Liu J, Xue F, et al. Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood 2013; 121:3246-3253.
    • (2013) Blood , vol.121 , pp. 3246-3253
    • Hu, J.1    Liu, J.2    Xue, F.3
  • 35
    • 84901705651 scopus 로고    scopus 로고
    • Global transcriptome analyses of human and murine terminal erythroid differentiation
    • An X, Schulz VP, Li J, et al. Global transcriptome analyses of human and murine terminal erythroid differentiation. Blood 2014; 123:3466-3477.
    • (2014) Blood , vol.123 , pp. 3466-3477
    • An, X.1    Schulz, V.P.2    Li, J.3
  • 36
    • 10844258104 scopus 로고    scopus 로고
    • Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization
    • Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306:2090-2093.
    • (2004) Science , vol.306 , pp. 2090-2093
    • Nemeth, E.1    Tuttle, M.S.2    Powelson, J.3
  • 38
    • 84904865496 scopus 로고    scopus 로고
    • Molecular liaisons between erythropoiesis and iron metabolism
    • Kautz L, Nemeth E. Molecular liaisons between erythropoiesis and iron metabolism. Blood 2014; 124:479-482.
    • (2014) Blood , vol.124 , pp. 479-482
    • Kautz, L.1    Nemeth, E.2
  • 39
    • 78650037490 scopus 로고    scopus 로고
    • Transferrin receptor 2 is a component of the erythropoietin receptor complex and is required for efficient erythropoiesis
    • Forejtnikova H, Vieillevoye M, Zermati Y, et al. Transferrin receptor 2 is a component of the erythropoietin receptor complex and is required for efficient erythropoiesis. Blood 2010; 116:5357-5367.
    • (2010) Blood , vol.116 , pp. 5357-5367
    • Forejtnikova, H.1    Vieillevoye, M.2    Zermati, Y.3
  • 40
    • 84923293373 scopus 로고    scopus 로고
    • The second transferrin receptor regulates red blood cell production in mice
    • Nai A, Lidonnici MR, Rausa M, et al. The second transferrin receptor regulates red blood cell production in mice. Blood 2015; 125:1170-1179.
    • (2015) Blood , vol.125 , pp. 1170-1179
    • Nai, A.1    Lidonnici, M.R.2    Rausa, M.3
  • 41
    • 84923291109 scopus 로고    scopus 로고
    • TfR2 links iron metabolism and erythropoiesis
    • Pantopoulos K. TfR2 links iron metabolism and erythropoiesis. Blood 2015; 125:1055-1056.
    • (2015) Blood , vol.125 , pp. 1055-1056
    • Pantopoulos, K.1
  • 42
    • 40349103525 scopus 로고    scopus 로고
    • Macrophages function as a ferritin iron source for cultured human erythroid precursors
    • Leimberg MJ, Prus E, Konijn AM, Fibach E. Macrophages function as a ferritin iron source for cultured human erythroid precursors. J Cell Biochem 2008; 103:1211-1218.
    • (2008) J Cell Biochem , vol.103 , pp. 1211-1218
    • Leimberg, M.J.1    Prus, E.2    Konijn, A.M.3    Fibach, E.4
  • 43
    • 84878444005 scopus 로고    scopus 로고
    • CD169 (+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress
    • Chow A, Huggins M, Ahmed J, et al. CD169 (+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med 2013; 19:429-436.
    • (2013) Nat Med , vol.19 , pp. 429-436
    • Chow, A.1    Huggins, M.2    Ahmed, J.3
  • 44
    • 84878439561 scopus 로고    scopus 로고
    • Macrophages support pathological erythropoiesis in polycythemia vera and beta-thalassemia
    • Ramos P, Casu C, Gardenghi S, et al. Macrophages support pathological erythropoiesis in polycythemia vera and beta-thalassemia. Nat Med 2013; 19:437-445.
    • (2013) Nat Med , vol.19 , pp. 437-445
    • Ramos, P.1    Casu, C.2    Gardenghi, S.3
  • 45
    • 38949097546 scopus 로고    scopus 로고
    • A heme export protein is required for red blood cell differentiation and iron homeostasis
    • Keel SB, Doty RT, Yang Z, et al. A heme export protein is required for red blood cell differentiation and iron homeostasis. Science 2008; 319:825-828.
    • (2008) Science , vol.319 , pp. 825-828
    • Keel, S.B.1    Doty, R.T.2    Yang, Z.3
  • 46
    • 84948807302 scopus 로고    scopus 로고
    • Coordinate expression of heme and globin is essential for effective erythropoiesis
    • Doty RT, Phelps SR, Shadle C, et al. Coordinate expression of heme and globin is essential for effective erythropoiesis. J Clin Invest 2015; 125:4681-4691.
    • (2015) J Clin Invest , vol.125 , pp. 4681-4691
    • Doty, R.T.1    Phelps, S.R.2    Shadle, C.3
  • 47
    • 84870514416 scopus 로고    scopus 로고
    • The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation
    • Chiabrando D, Marro S, Mercurio S, et al. The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation. J Clin Invest 2012; 122:4569-4579.
    • (2012) J Clin Invest , vol.122 , pp. 4569-4579
    • Chiabrando, D.1    Marro, S.2    Mercurio, S.3
  • 48
    • 0028152377 scopus 로고
    • Facilitative glucose transporters
    • Mueckler M. Facilitative glucose transporters. Eur J Biochem 1994; 219:713-725.
    • (1994) Eur J Biochem , vol.219 , pp. 713-725
    • Mueckler, M.1
  • 49
    • 58149386516 scopus 로고    scopus 로고
    • The Glut1 and Glut4 glucose transporters are differentially expressed during perinatal and postnatal erythropoiesis
    • Montel-Hagen A, Blanc L, Boyer-Clavel M, et al. The Glut1 and Glut4 glucose transporters are differentially expressed during perinatal and postnatal erythropoiesis. Blood 2008; 112:4729-4738.
    • (2008) Blood , vol.112 , pp. 4729-4738
    • Montel-Hagen, A.1    Blanc, L.2    Boyer-Clavel, M.3
  • 51
    • 48249139469 scopus 로고    scopus 로고
    • Age-dependent changes in uptake and recycling of ascorbic acid in erythrocytes of Beagle dogs
    • Ogawa E. Age-dependent changes in uptake and recycling of ascorbic acid in erythrocytes of Beagle dogs. J Comp Physiol B 2008; 178:699-704.
    • (2008) J Comp Physiol B , vol.178 , pp. 699-704
    • Ogawa, E.1
  • 52
    • 0035802278 scopus 로고    scopus 로고
    • Mechanisms of ascorbic acid recycling in human erythrocytes
    • May JM, Qu Z, Morrow JD. Mechanisms of ascorbic acid recycling in human erythrocytes. Biochim Biophys Acta 2001; 1528:159-166.
    • (2001) Biochim Biophys Acta , vol.1528 , pp. 159-166
    • May, J.M.1    Qu, Z.2    Morrow, J.D.3
  • 53
    • 0032546432 scopus 로고    scopus 로고
    • 13C NMR studies of Vitamin C transport and its redox cycling in human erythrocytes
    • Himmelreich U, Drew KN, Serianni AS, Kuchel PW. 13C NMR studies of vitamin C transport and its redox cycling in human erythrocytes. Biochemistry 1998; 37:7578-7588.
    • (1998) Biochemistry , vol.37 , pp. 7578-7588
    • Himmelreich, U.1    Drew, K.N.2    Serianni, A.S.3    Kuchel, P.W.4
  • 54
    • 40849102818 scopus 로고    scopus 로고
    • Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize Vitamin C
    • Montel-Hagen A, Kinet S, Manel N, et al. Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C. Cell 2008; 132:1039-1048.
    • (2008) Cell , vol.132 , pp. 1039-1048
    • Montel-Hagen, A.1    Kinet, S.2    Manel, N.3
  • 55
    • 64249123991 scopus 로고    scopus 로고
    • Species diversity in GLUT expression and function
    • Montel-Hagen A, Kinet S, Manel N, et al. Species diversity in GLUT expression and function. Cell 2009; 137:201-202.
    • (2009) Cell , vol.137 , pp. 201-202
    • Montel-Hagen, A.1    Kinet, S.2    Manel, N.3
  • 56
    • 84905921360 scopus 로고    scopus 로고
    • Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification
    • Oburoglu L, Tardito S, Fritz V, et al. Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell 2014; 15:169-184.
    • (2014) Cell Stem Cell , vol.15 , pp. 169-184
    • Oburoglu, L.1    Tardito, S.2    Fritz, V.3
  • 58
    • 84928225287 scopus 로고    scopus 로고
    • The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability
    • Chung J, Bauer DE, Ghamari A, et al. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability. Sci Signal 2015; 8:ra34.
    • (2015) Sci Signal , vol.8 , pp. ra34
    • Chung, J.1    Bauer, D.E.2    Ghamari, A.3
  • 59
    • 84964315439 scopus 로고    scopus 로고
    • A critical role for mTORC1 in erythropoiesis and anemia
    • Knight ZA, Schmidt SF, Birsoy K, et al. A critical role for mTORC1 in erythropoiesis and anemia. Elife 2014; 3:e01913.
    • (2014) Elife , vol.3 , pp. e01913
    • Knight, Z.A.1    Schmidt, S.F.2    Birsoy, K.3
  • 60
    • 84908029999 scopus 로고    scopus 로고
    • FOXO3-mTOR metabolic cooperation in the regulation of erythroid cell maturation and homeostasis
    • Zhang X, Camprecios G, Rimmele P, et al. FOXO3-mTOR metabolic cooperation in the regulation of erythroid cell maturation and homeostasis. Am J Hematol 2014; 89:954-963.
    • (2014) Am J Hematol , vol.89 , pp. 954-963
    • Zhang, X.1    Camprecios, G.2    Rimmele, P.3
  • 61
    • 84876341593 scopus 로고    scopus 로고
    • A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy
    • Barde I, Rauwel B, Marin-Florez RM, et al. A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy. Science 2013; 340:350-353.
    • (2013) Science , vol.340 , pp. 350-353
    • Barde, I.1    Rauwel, B.2    Marin-Florez, R.M.3
  • 62
    • 84922873168 scopus 로고    scopus 로고
    • Autophagy as a regulatory component of erythropoiesis
    • Zhang J, Wu K, Xiao X, et al. Autophagy as a regulatory component of erythropoiesis. Int J Mol Sci 2015; 16:4083-4094.
    • (2015) Int J Mol Sci , vol.16 , pp. 4083-4094
    • Zhang, J.1    Wu, K.2    Xiao, X.3
  • 63
    • 19944433653 scopus 로고    scopus 로고
    • Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase
    • Selak MA, Armour SM, MacKenzie ED, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 2005; 7:77-85.
    • (2005) Cancer Cell , vol.7 , pp. 77-85
    • Selak, M.A.1    Armour, S.M.2    MacKenzie, E.D.3
  • 64
    • 84876285741 scopus 로고    scopus 로고
    • Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha
    • Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 2013; 496:238-242.
    • (2013) Nature , vol.496 , pp. 238-242
    • Tannahill, G.M.1    Curtis, A.M.2    Adamik, J.3
  • 65
    • 84911466192 scopus 로고    scopus 로고
    • Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS
    • Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014; 515:431-435.
    • (2014) Nature , vol.515 , pp. 431-435
    • Chouchani, E.T.1    Pell, V.R.2    Gaude, E.3
  • 66
    • 34247553146 scopus 로고    scopus 로고
    • Cell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells
    • MacKenzie ED, Selak MA, Tennant DA, et al. Cell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol Cell Biol 2007; 27:3282-3289.
    • (2007) Mol Cell Biol , vol.27 , pp. 3282-3289
    • MacKenzie, E.D.1    Selak, M.A.2    Tennant, D.A.3
  • 67
    • 84941366350 scopus 로고    scopus 로고
    • Phosphoenolpyruvate is a metabolic checkpoint of antitumor T cell responses
    • Ho PC, Bihuniak JD, Macintyre AN, et al. Phosphoenolpyruvate is a metabolic checkpoint of antitumor T cell responses. Cell 2015; 162:1217-1228.
    • (2015) Cell , vol.162 , pp. 1217-1228
    • Ho, P.C.1    Bihuniak, J.D.2    Macintyre, A.N.3
  • 69
    • 84939856405 scopus 로고    scopus 로고
    • Introduction: Metals in biology: Alpha-ketoglutarate/irondependent dioxygenases
    • Guengerich FP. Introduction: metals in biology: alpha-ketoglutarate/irondependent dioxygenases. J Biol Chem 2015; 290:20700-20701.
    • (2015) J Biol Chem , vol.290 , pp. 20700-20701
    • Guengerich, F.P.1
  • 70
    • 84925503908 scopus 로고    scopus 로고
    • Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells
    • Carey BW, Finley LW, Cross JR, et al. Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 2015; 518:413-416.
    • (2015) Nature , vol.518 , pp. 413-416
    • Carey, B.W.1    Finley, L.W.2    Cross, J.R.3
  • 71
    • 84924369505 scopus 로고    scopus 로고
    • Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells
    • Moussaieff A, Rouleau M, Kitsberg D, et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 2015; 21:392-402.
    • (2015) Cell Metab , vol.21 , pp. 392-402
    • Moussaieff, A.1    Rouleau, M.2    Kitsberg, D.3
  • 72
    • 84926518933 scopus 로고    scopus 로고
    • Ten-eleventranslocation 2 (TET2) is downregulated in myelodysplastic syndromes
    • Scopim-Ribeiro R, Machado-Neto JA, Campos Pde M, et al. Ten-eleventranslocation 2 (TET2) is downregulated in myelodysplastic syndromes. Eur J Haematol 2015; 94:413-418.
    • (2015) Eur J Haematol , vol.94 , pp. 413-418
    • Scopim-Ribeiro, R.1    Machado-Neto, J.A.2    Campos Pde, M.3
  • 73
    • 84929395538 scopus 로고    scopus 로고
    • Histone methyltransferase Setd8 represses Gata2 expression and regulates erythroid maturation
    • Malik J, Getman M, Steiner LA. Histone methyltransferase Setd8 represses Gata2 expression and regulates erythroid maturation. Mol Cell Biol 2015; 35:2059-2072.
    • (2015) Mol Cell Biol , vol.35 , pp. 2059-2072
    • Malik, J.1    Getman, M.2    Steiner, L.A.3
  • 74
    • 84929409244 scopus 로고    scopus 로고
    • Epigenetic determinants of erythropoiesis: Role of the histone methyltransferase SetD8 in promoting erythroid cell maturation and survival
    • DeVilbiss AW, Sanalkumar R, Hall BD, et al. Epigenetic determinants of erythropoiesis: role of the histone methyltransferase SetD8 in promoting erythroid cell maturation and survival. Mol Cell Biol 2015; 35: 2073-2087.
    • (2015) Mol Cell Biol , vol.35 , pp. 2073-2087
    • DeVilbiss, A.W.1    Sanalkumar, R.2    Hall, B.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.