-
1
-
-
66249108601
-
Understanding the Warburg effect: The metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324:1029-1033.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
2
-
-
80054046029
-
Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation
-
Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 2011; 27:441-464.
-
(2011)
Annu Rev Cell Dev Biol
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander Heiden, M.G.2
-
3
-
-
84938740158
-
Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells
-
Kuehne A, Emmert H, Soehle J, et al. Acute activation of oxidative pentose phosphate pathway as first-line response to oxidative stress in human skin cells. Mol Cell 2015; 59:359-371.
-
(2015)
Mol Cell
, vol.59
, pp. 359-371
-
-
Kuehne, A.1
Emmert, H.2
Soehle, J.3
-
4
-
-
77956217067
-
Regulation of the HIF-1alpha level is essential for hematopoietic stem cells
-
Takubo K, Goda N, Yamada W, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 2010; 7:391-402.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 391-402
-
-
Takubo, K.1
Goda, N.2
Yamada, W.3
-
5
-
-
77956205122
-
The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche
-
Simsek T, Kocabas F, Zheng J, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010; 7:380-390.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 380-390
-
-
Simsek, T.1
Kocabas, F.2
Zheng, J.3
-
6
-
-
84877575509
-
Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment
-
Nombela-Arrieta C, Pivarnik G, Winkel B, et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 2013; 15:533-543.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 533-543
-
-
Nombela-Arrieta, C.1
Pivarnik, G.2
Winkel, B.3
-
7
-
-
85047692887
-
Expansion of human SCID-repopulating cells under hypoxic conditions
-
Danet GH, Pan Y, Luongo JL, et al. Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest 2003; 112:126-135.
-
(2003)
J Clin Invest
, vol.112
, pp. 126-135
-
-
Danet, G.H.1
Pan, Y.2
Luongo, J.L.3
-
8
-
-
33644513357
-
Very low O2 concentration (0.1%) favors G0 return of dividing CD34+ cells
-
Hermitte F, Brunet de la Grange P, Belloc F, et al. Very low O2 concentration (0.1%) favors G0 return of dividing CD34+ cells. Stem Cells 2006; 24: 65-73.
-
(2006)
Stem Cells
, vol.24
, pp. 65-73
-
-
Hermitte, F.1
Brunet De-La-Grange, P.2
Belloc, F.3
-
9
-
-
84931561759
-
Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen Shock
-
Mantel CR, O'Leary HA, Chitteti BR, et al. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen Shock. Cell 2015; 161:1553-1565.
-
(2015)
Cell
, vol.161
, pp. 1553-1565
-
-
Mantel, C.R.1
O'Leary, H.A.2
Chitteti, B.R.3
-
10
-
-
84872037830
-
Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation
-
Yu WM, Liu X, Shen J, et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 2013; 12:62-74.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 62-74
-
-
Yu, W.M.1
Liu, X.2
Shen, J.3
-
11
-
-
84872011926
-
Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
-
Takubo K, Nagamatsu G, Kobayashi CI, et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 2013; 12:49-61.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 49-61
-
-
Takubo, K.1
Nagamatsu, G.2
Kobayashi, C.I.3
-
12
-
-
56549128268
-
Hematopoietic stemcells reversibly switch from dormancy to self-renewal during homeostasis and repair
-
Wilson A, Laurenti E, Oser G, et al. Hematopoietic stemcells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008; 135:1118-1129.
-
(2008)
Cell
, vol.135
, pp. 1118-1129
-
-
Wilson, A.1
Laurenti, E.2
Oser, G.3
-
13
-
-
60149104597
-
Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells
-
Foudi A, Hochedlinger K, Van Buren D, et al. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nat Biotechnol 2009; 27:84-90.
-
(2009)
Nat Biotechnol
, vol.27
, pp. 84-90
-
-
Foudi, A.1
Hochedlinger, K.2
Van Buren, D.3
-
14
-
-
84885962654
-
HIF1alpha is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo
-
Imanirad P, Solaimani Kartalaei P, Crisan M, et al. HIF1alpha is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo. Stem Cell Res 2014; 12:24-35.
-
(2014)
Stem Cell Res
, vol.12
, pp. 24-35
-
-
Imanirad, P.1
Solaimani Kartalaei, P.2
Crisan, M.3
-
15
-
-
80053926733
-
Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78
-
Miharada K, Karlsson G, Rehn M, et al. Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78. Cell Stem Cell 2011; 9:330-344.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 330-344
-
-
Miharada, K.1
Karlsson, G.2
Rehn, M.3
-
16
-
-
84904043095
-
Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle
-
Beerman I, Seita J, Inlay MA, et al. Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell 2014; 15:37-50.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 37-50
-
-
Beerman, I.1
Seita, J.2
Inlay, M.A.3
-
17
-
-
77953632556
-
Upregulation of nascent mitochondrial biogenesis in mouse hematopoietic stem cells parallels upregulation of CD34 and loss of pluripotency: A potential strategy for reducing oxidative risk in stem cells
-
Mantel C, Messina-Graham S, Broxmeyer HE. Upregulation of nascent mitochondrial biogenesis in mouse hematopoietic stem cells parallels upregulation of CD34 and loss of pluripotency: a potential strategy for reducing oxidative risk in stem cells. Cell Cycle 2010; 9:2008-2017.
-
(2010)
Cell Cycle
, vol.9
, pp. 2008-2017
-
-
Mantel, C.1
Messina-Graham, S.2
Broxmeyer, H.E.3
-
18
-
-
53349091768
-
TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species
-
Chen C, Liu Y, Liu R, et al. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 2008; 205:2397-2408.
-
(2008)
J Exp Med
, vol.205
, pp. 2397-2408
-
-
Chen, C.1
Liu, Y.2
Liu, R.3
-
19
-
-
65949113818
-
The axis of mTOR-mitochondria-ROS and stemness of the hematopoietic stem cells
-
Chen C, Liu Y, Liu Y, Zheng P. The axis of mTOR-mitochondria-ROS and stemness of the hematopoietic stem cells. Cell Cycle 2009; 8:1158-1160.
-
(2009)
Cell Cycle
, vol.8
, pp. 1158-1160
-
-
Chen, C.1
Liu, Y.2
Liu, Y.3
Zheng, P.4
-
20
-
-
84870866912
-
Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways
-
Huang J, Nguyen-McCarty M, Hexner EO, et al. Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways. Nat Med 2012; 18:1778-1785.
-
(2012)
Nat Med
, vol.18
, pp. 1778-1785
-
-
Huang, J.1
Nguyen-McCarty, M.2
Hexner, E.O.3
-
21
-
-
84957839266
-
The Dlk1-Gtl2 locus preserves LT-HSC function by inhibiting the PI3K-mTOR pathway to restrict mitochondrial metabolism
-
Qian P, He XC, Paulson A, et al. The Dlk1-Gtl2 locus preserves LT-HSC function by inhibiting the PI3K-mTOR pathway to restrict mitochondrial metabolism. Cell Stem Cell 2016; 18:214-228.
-
(2016)
Cell Stem Cell
, vol.18
, pp. 214-228
-
-
Qian, P.1
He, X.C.2
Paulson, A.3
-
22
-
-
84883639503
-
Mouse gene targeting reveals an essential role of mTOR in hematopoietic stem cell engraftment and hematopoiesis
-
Guo F, Zhang S, Grogg M, et al. Mouse gene targeting reveals an essential role of mTOR in hematopoietic stem cell engraftment and hematopoiesis. Haematologica 2013; 98:1353-1358.
-
(2013)
Haematologica
, vol.98
, pp. 1353-1358
-
-
Guo, F.1
Zhang, S.2
Grogg, M.3
-
23
-
-
84938267949
-
An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate
-
Maryanovich M, Zaltsman Y, Ruggiero A, et al. An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate. Nat Commun 2015; 6:7901.
-
(2015)
Nat Commun
, vol.6
, pp. 7901
-
-
Maryanovich, M.1
Zaltsman, Y.2
Ruggiero, A.3
-
24
-
-
84855885803
-
Cell cycle regulation in hematopoietic stem cells
-
Pietras EM, Warr MR, Passegue E. Cell cycle regulation in hematopoietic stem cells. J Cell Biol 2011; 195:709-720.
-
(2011)
J Cell Biol
, vol.195
, pp. 709-720
-
-
Pietras, E.M.1
Warr, M.R.2
Passegue, E.3
-
25
-
-
84868632060
-
A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance
-
Ito K, Carracedo A, Weiss D, et al. A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med 2012; 18:1350-1358.
-
(2012)
Nat Med
, vol.18
, pp. 1350-1358
-
-
Ito, K.1
Carracedo, A.2
Weiss, D.3
-
26
-
-
84867075651
-
Fate through fat: Lipid metabolism determines stem cell division outcome
-
Yusuf RZ, Scadden DT. Fate through fat: lipid metabolism determines stem cell division outcome. Cell Metab 2012; 16:411-413.
-
(2012)
Cell Metab
, vol.16
, pp. 411-413
-
-
Yusuf, R.Z.1
Scadden, D.T.2
-
27
-
-
44349166602
-
PML targeting eradicates quiescent leukaemia-initiating cells
-
Ito K, Bernardi R, Morotti A, et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 2008; 453:1072-1078.
-
(2008)
Nature
, vol.453
, pp. 1072-1078
-
-
Ito, K.1
Bernardi, R.2
Morotti, A.3
-
28
-
-
84896929687
-
Metabolic requirements for the maintenance of self-renewing stem cells
-
Ito K, Suda T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol 2014; 15:243-256.
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 243-256
-
-
Ito, K.1
Suda, T.2
-
29
-
-
67650547953
-
PPAR{delta} agonism activates fatty acid oxidation via PGC-1{alpha} but does not increase mitochondrial gene expression and function
-
Kleiner S, Nguyen-Tran V, Bare O, et al. PPAR{delta} agonism activates fatty acid oxidation via PGC-1{alpha} but does not increase mitochondrial gene expression and function. J Biol Chem 2009; 284:18624-18633.
-
(2009)
J Biol Chem
, vol.284
, pp. 18624-18633
-
-
Kleiner, S.1
Nguyen-Tran, V.2
Bare, O.3
-
30
-
-
78649874959
-
Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells
-
Gan B, Hu J, Jiang S, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 2010; 468:701-704.
-
(2010)
Nature
, vol.468
, pp. 701-704
-
-
Gan, B.1
Hu, J.2
Jiang, S.3
-
31
-
-
78649851511
-
The Lkb1 metabolic sensor maintains haematopoietic stem cell survival
-
Gurumurthy S, Xie SZ, Alagesan B, et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 2010; 468:659-663.
-
(2010)
Nature
, vol.468
, pp. 659-663
-
-
Gurumurthy, S.1
Xie, S.Z.2
Alagesan, B.3
-
32
-
-
78649811793
-
Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells
-
Nakada D, Saunders TL, Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 2010; 468:653-658.
-
(2010)
Nature
, vol.468
, pp. 653-658
-
-
Nakada, D.1
Saunders, T.L.2
Morrison, S.J.3
-
33
-
-
84866600774
-
Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number
-
Sankaran VG, Ludwig LS, Sicinska E, et al. Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number. Genes Dev 2012; 26:2075-2087.
-
(2012)
Genes Dev
, vol.26
, pp. 2075-2087
-
-
Sankaran, V.G.1
Ludwig, L.S.2
Sicinska, E.3
-
34
-
-
84879142151
-
Isolation and functional characterization of human erythroblasts at distinct stages: Implications for understanding of normal and disordered erythropoiesis in vivo
-
Hu J, Liu J, Xue F, et al. Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood 2013; 121:3246-3253.
-
(2013)
Blood
, vol.121
, pp. 3246-3253
-
-
Hu, J.1
Liu, J.2
Xue, F.3
-
35
-
-
84901705651
-
Global transcriptome analyses of human and murine terminal erythroid differentiation
-
An X, Schulz VP, Li J, et al. Global transcriptome analyses of human and murine terminal erythroid differentiation. Blood 2014; 123:3466-3477.
-
(2014)
Blood
, vol.123
, pp. 3466-3477
-
-
An, X.1
Schulz, V.P.2
Li, J.3
-
36
-
-
10844258104
-
Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization
-
Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004; 306:2090-2093.
-
(2004)
Science
, vol.306
, pp. 2090-2093
-
-
Nemeth, E.1
Tuttle, M.S.2
Powelson, J.3
-
38
-
-
84904865496
-
Molecular liaisons between erythropoiesis and iron metabolism
-
Kautz L, Nemeth E. Molecular liaisons between erythropoiesis and iron metabolism. Blood 2014; 124:479-482.
-
(2014)
Blood
, vol.124
, pp. 479-482
-
-
Kautz, L.1
Nemeth, E.2
-
39
-
-
78650037490
-
Transferrin receptor 2 is a component of the erythropoietin receptor complex and is required for efficient erythropoiesis
-
Forejtnikova H, Vieillevoye M, Zermati Y, et al. Transferrin receptor 2 is a component of the erythropoietin receptor complex and is required for efficient erythropoiesis. Blood 2010; 116:5357-5367.
-
(2010)
Blood
, vol.116
, pp. 5357-5367
-
-
Forejtnikova, H.1
Vieillevoye, M.2
Zermati, Y.3
-
40
-
-
84923293373
-
The second transferrin receptor regulates red blood cell production in mice
-
Nai A, Lidonnici MR, Rausa M, et al. The second transferrin receptor regulates red blood cell production in mice. Blood 2015; 125:1170-1179.
-
(2015)
Blood
, vol.125
, pp. 1170-1179
-
-
Nai, A.1
Lidonnici, M.R.2
Rausa, M.3
-
41
-
-
84923291109
-
TfR2 links iron metabolism and erythropoiesis
-
Pantopoulos K. TfR2 links iron metabolism and erythropoiesis. Blood 2015; 125:1055-1056.
-
(2015)
Blood
, vol.125
, pp. 1055-1056
-
-
Pantopoulos, K.1
-
42
-
-
40349103525
-
Macrophages function as a ferritin iron source for cultured human erythroid precursors
-
Leimberg MJ, Prus E, Konijn AM, Fibach E. Macrophages function as a ferritin iron source for cultured human erythroid precursors. J Cell Biochem 2008; 103:1211-1218.
-
(2008)
J Cell Biochem
, vol.103
, pp. 1211-1218
-
-
Leimberg, M.J.1
Prus, E.2
Konijn, A.M.3
Fibach, E.4
-
43
-
-
84878444005
-
CD169 (+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress
-
Chow A, Huggins M, Ahmed J, et al. CD169 (+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med 2013; 19:429-436.
-
(2013)
Nat Med
, vol.19
, pp. 429-436
-
-
Chow, A.1
Huggins, M.2
Ahmed, J.3
-
44
-
-
84878439561
-
Macrophages support pathological erythropoiesis in polycythemia vera and beta-thalassemia
-
Ramos P, Casu C, Gardenghi S, et al. Macrophages support pathological erythropoiesis in polycythemia vera and beta-thalassemia. Nat Med 2013; 19:437-445.
-
(2013)
Nat Med
, vol.19
, pp. 437-445
-
-
Ramos, P.1
Casu, C.2
Gardenghi, S.3
-
45
-
-
38949097546
-
A heme export protein is required for red blood cell differentiation and iron homeostasis
-
Keel SB, Doty RT, Yang Z, et al. A heme export protein is required for red blood cell differentiation and iron homeostasis. Science 2008; 319:825-828.
-
(2008)
Science
, vol.319
, pp. 825-828
-
-
Keel, S.B.1
Doty, R.T.2
Yang, Z.3
-
46
-
-
84948807302
-
Coordinate expression of heme and globin is essential for effective erythropoiesis
-
Doty RT, Phelps SR, Shadle C, et al. Coordinate expression of heme and globin is essential for effective erythropoiesis. J Clin Invest 2015; 125:4681-4691.
-
(2015)
J Clin Invest
, vol.125
, pp. 4681-4691
-
-
Doty, R.T.1
Phelps, S.R.2
Shadle, C.3
-
47
-
-
84870514416
-
The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation
-
Chiabrando D, Marro S, Mercurio S, et al. The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation. J Clin Invest 2012; 122:4569-4579.
-
(2012)
J Clin Invest
, vol.122
, pp. 4569-4579
-
-
Chiabrando, D.1
Marro, S.2
Mercurio, S.3
-
48
-
-
0028152377
-
Facilitative glucose transporters
-
Mueckler M. Facilitative glucose transporters. Eur J Biochem 1994; 219:713-725.
-
(1994)
Eur J Biochem
, vol.219
, pp. 713-725
-
-
Mueckler, M.1
-
49
-
-
58149386516
-
The Glut1 and Glut4 glucose transporters are differentially expressed during perinatal and postnatal erythropoiesis
-
Montel-Hagen A, Blanc L, Boyer-Clavel M, et al. The Glut1 and Glut4 glucose transporters are differentially expressed during perinatal and postnatal erythropoiesis. Blood 2008; 112:4729-4738.
-
(2008)
Blood
, vol.112
, pp. 4729-4738
-
-
Montel-Hagen, A.1
Blanc, L.2
Boyer-Clavel, M.3
-
51
-
-
48249139469
-
Age-dependent changes in uptake and recycling of ascorbic acid in erythrocytes of Beagle dogs
-
Ogawa E. Age-dependent changes in uptake and recycling of ascorbic acid in erythrocytes of Beagle dogs. J Comp Physiol B 2008; 178:699-704.
-
(2008)
J Comp Physiol B
, vol.178
, pp. 699-704
-
-
Ogawa, E.1
-
52
-
-
0035802278
-
Mechanisms of ascorbic acid recycling in human erythrocytes
-
May JM, Qu Z, Morrow JD. Mechanisms of ascorbic acid recycling in human erythrocytes. Biochim Biophys Acta 2001; 1528:159-166.
-
(2001)
Biochim Biophys Acta
, vol.1528
, pp. 159-166
-
-
May, J.M.1
Qu, Z.2
Morrow, J.D.3
-
53
-
-
0032546432
-
13C NMR studies of Vitamin C transport and its redox cycling in human erythrocytes
-
Himmelreich U, Drew KN, Serianni AS, Kuchel PW. 13C NMR studies of vitamin C transport and its redox cycling in human erythrocytes. Biochemistry 1998; 37:7578-7588.
-
(1998)
Biochemistry
, vol.37
, pp. 7578-7588
-
-
Himmelreich, U.1
Drew, K.N.2
Serianni, A.S.3
Kuchel, P.W.4
-
54
-
-
40849102818
-
Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize Vitamin C
-
Montel-Hagen A, Kinet S, Manel N, et al. Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C. Cell 2008; 132:1039-1048.
-
(2008)
Cell
, vol.132
, pp. 1039-1048
-
-
Montel-Hagen, A.1
Kinet, S.2
Manel, N.3
-
55
-
-
64249123991
-
Species diversity in GLUT expression and function
-
Montel-Hagen A, Kinet S, Manel N, et al. Species diversity in GLUT expression and function. Cell 2009; 137:201-202.
-
(2009)
Cell
, vol.137
, pp. 201-202
-
-
Montel-Hagen, A.1
Kinet, S.2
Manel, N.3
-
56
-
-
84905921360
-
Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification
-
Oburoglu L, Tardito S, Fritz V, et al. Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell 2014; 15:169-184.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 169-184
-
-
Oburoglu, L.1
Tardito, S.2
Fritz, V.3
-
58
-
-
84928225287
-
The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability
-
Chung J, Bauer DE, Ghamari A, et al. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability. Sci Signal 2015; 8:ra34.
-
(2015)
Sci Signal
, vol.8
, pp. ra34
-
-
Chung, J.1
Bauer, D.E.2
Ghamari, A.3
-
59
-
-
84964315439
-
A critical role for mTORC1 in erythropoiesis and anemia
-
Knight ZA, Schmidt SF, Birsoy K, et al. A critical role for mTORC1 in erythropoiesis and anemia. Elife 2014; 3:e01913.
-
(2014)
Elife
, vol.3
, pp. e01913
-
-
Knight, Z.A.1
Schmidt, S.F.2
Birsoy, K.3
-
60
-
-
84908029999
-
FOXO3-mTOR metabolic cooperation in the regulation of erythroid cell maturation and homeostasis
-
Zhang X, Camprecios G, Rimmele P, et al. FOXO3-mTOR metabolic cooperation in the regulation of erythroid cell maturation and homeostasis. Am J Hematol 2014; 89:954-963.
-
(2014)
Am J Hematol
, vol.89
, pp. 954-963
-
-
Zhang, X.1
Camprecios, G.2
Rimmele, P.3
-
61
-
-
84876341593
-
A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy
-
Barde I, Rauwel B, Marin-Florez RM, et al. A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy. Science 2013; 340:350-353.
-
(2013)
Science
, vol.340
, pp. 350-353
-
-
Barde, I.1
Rauwel, B.2
Marin-Florez, R.M.3
-
62
-
-
84922873168
-
Autophagy as a regulatory component of erythropoiesis
-
Zhang J, Wu K, Xiao X, et al. Autophagy as a regulatory component of erythropoiesis. Int J Mol Sci 2015; 16:4083-4094.
-
(2015)
Int J Mol Sci
, vol.16
, pp. 4083-4094
-
-
Zhang, J.1
Wu, K.2
Xiao, X.3
-
63
-
-
19944433653
-
Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase
-
Selak MA, Armour SM, MacKenzie ED, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 2005; 7:77-85.
-
(2005)
Cancer Cell
, vol.7
, pp. 77-85
-
-
Selak, M.A.1
Armour, S.M.2
MacKenzie, E.D.3
-
64
-
-
84876285741
-
Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha
-
Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 2013; 496:238-242.
-
(2013)
Nature
, vol.496
, pp. 238-242
-
-
Tannahill, G.M.1
Curtis, A.M.2
Adamik, J.3
-
65
-
-
84911466192
-
Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS
-
Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014; 515:431-435.
-
(2014)
Nature
, vol.515
, pp. 431-435
-
-
Chouchani, E.T.1
Pell, V.R.2
Gaude, E.3
-
66
-
-
34247553146
-
Cell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells
-
MacKenzie ED, Selak MA, Tennant DA, et al. Cell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol Cell Biol 2007; 27:3282-3289.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 3282-3289
-
-
MacKenzie, E.D.1
Selak, M.A.2
Tennant, D.A.3
-
67
-
-
84941366350
-
Phosphoenolpyruvate is a metabolic checkpoint of antitumor T cell responses
-
Ho PC, Bihuniak JD, Macintyre AN, et al. Phosphoenolpyruvate is a metabolic checkpoint of antitumor T cell responses. Cell 2015; 162:1217-1228.
-
(2015)
Cell
, vol.162
, pp. 1217-1228
-
-
Ho, P.C.1
Bihuniak, J.D.2
Macintyre, A.N.3
-
69
-
-
84939856405
-
Introduction: Metals in biology: Alpha-ketoglutarate/irondependent dioxygenases
-
Guengerich FP. Introduction: metals in biology: alpha-ketoglutarate/irondependent dioxygenases. J Biol Chem 2015; 290:20700-20701.
-
(2015)
J Biol Chem
, vol.290
, pp. 20700-20701
-
-
Guengerich, F.P.1
-
70
-
-
84925503908
-
Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells
-
Carey BW, Finley LW, Cross JR, et al. Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 2015; 518:413-416.
-
(2015)
Nature
, vol.518
, pp. 413-416
-
-
Carey, B.W.1
Finley, L.W.2
Cross, J.R.3
-
71
-
-
84924369505
-
Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells
-
Moussaieff A, Rouleau M, Kitsberg D, et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 2015; 21:392-402.
-
(2015)
Cell Metab
, vol.21
, pp. 392-402
-
-
Moussaieff, A.1
Rouleau, M.2
Kitsberg, D.3
-
72
-
-
84926518933
-
Ten-eleventranslocation 2 (TET2) is downregulated in myelodysplastic syndromes
-
Scopim-Ribeiro R, Machado-Neto JA, Campos Pde M, et al. Ten-eleventranslocation 2 (TET2) is downregulated in myelodysplastic syndromes. Eur J Haematol 2015; 94:413-418.
-
(2015)
Eur J Haematol
, vol.94
, pp. 413-418
-
-
Scopim-Ribeiro, R.1
Machado-Neto, J.A.2
Campos Pde, M.3
-
73
-
-
84929395538
-
Histone methyltransferase Setd8 represses Gata2 expression and regulates erythroid maturation
-
Malik J, Getman M, Steiner LA. Histone methyltransferase Setd8 represses Gata2 expression and regulates erythroid maturation. Mol Cell Biol 2015; 35:2059-2072.
-
(2015)
Mol Cell Biol
, vol.35
, pp. 2059-2072
-
-
Malik, J.1
Getman, M.2
Steiner, L.A.3
-
74
-
-
84929409244
-
Epigenetic determinants of erythropoiesis: Role of the histone methyltransferase SetD8 in promoting erythroid cell maturation and survival
-
DeVilbiss AW, Sanalkumar R, Hall BD, et al. Epigenetic determinants of erythropoiesis: role of the histone methyltransferase SetD8 in promoting erythroid cell maturation and survival. Mol Cell Biol 2015; 35: 2073-2087.
-
(2015)
Mol Cell Biol
, vol.35
, pp. 2073-2087
-
-
DeVilbiss, A.W.1
Sanalkumar, R.2
Hall, B.D.3
|