-
1
-
-
3142516228
-
Microtubule-dependent transport in neurons: steps towards an understanding of regulation, function and dysfunction
-
Guzik BW, Goldstein LS, (2004) Microtubule-dependent transport in neurons: steps towards an understanding of regulation, function and dysfunction. Curr Opin Cell Biol 16: 443-450.
-
(2004)
Curr Opin Cell Biol
, vol.16
, pp. 443-450
-
-
Guzik, B.W.1
Goldstein, L.S.2
-
2
-
-
67649650263
-
Roles of endosomal trafficking in neurite outgrowth and guidance
-
Sann S, Wang Z, Brown H, Jin Y, (2009) Roles of endosomal trafficking in neurite outgrowth and guidance. Trends Cell Biol 19: 317-324.
-
(2009)
Trends Cell Biol
, vol.19
, pp. 317-324
-
-
Sann, S.1
Wang, Z.2
Brown, H.3
Jin, Y.4
-
3
-
-
5344253900
-
Molecular motors in neuronal development, intracellular transport and diseases
-
Hirokawa N, Takemura R, (2004) Molecular motors in neuronal development, intracellular transport and diseases. Curr Opin Neurobiol 14: 564-573.
-
(2004)
Curr Opin Neurobiol
, vol.14
, pp. 564-573
-
-
Hirokawa, N.1
Takemura, R.2
-
4
-
-
67651055363
-
Establishment of axon-dendrite polarity in developing neurons
-
Barnes AP, Polleux F, (2009) Establishment of axon-dendrite polarity in developing neurons. Annu Rev Neurosci 32: 347-381.
-
(2009)
Annu Rev Neurosci
, vol.32
, pp. 347-381
-
-
Barnes, A.P.1
Polleux, F.2
-
5
-
-
0141894133
-
Neuronal polarity and trafficking
-
Horton AC, Ehlers MD, (2003) Neuronal polarity and trafficking. Neuron 40: 277-295.
-
(2003)
Neuron
, vol.40
, pp. 277-295
-
-
Horton, A.C.1
Ehlers, M.D.2
-
6
-
-
59649091156
-
The specific targeting of guidance receptors within neurons: who directs the directors?
-
Allen J, Chilton JK, (2009) The specific targeting of guidance receptors within neurons: who directs the directors? Dev Biol 327: 4-11.
-
(2009)
Dev Biol
, vol.327
, pp. 4-11
-
-
Allen, J.1
Chilton, J.K.2
-
7
-
-
34547937104
-
Growing dendrites and axons differ in their reliance on the secretory pathway
-
Ye B, Zhang Y, Song W, Younger SH, Jan LY, et al. (2007) Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 130: 717-729.
-
(2007)
Cell
, vol.130
, pp. 717-729
-
-
Ye, B.1
Zhang, Y.2
Song, W.3
Younger, S.H.4
Jan, L.Y.5
-
8
-
-
28744433842
-
Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis
-
Horton AC, Racz B, Monson EE, Lin AL, Weinberg RJ, et al. (2005) Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48: 757-771.
-
(2005)
Neuron
, vol.48
, pp. 757-771
-
-
Horton, A.C.1
Racz, B.2
Monson, E.E.3
Lin, A.L.4
Weinberg, R.J.5
-
9
-
-
53349164540
-
Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons
-
Zheng Y, Wildonger J, Ye B, Zhang Y, Kita A, et al. (2008) Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat Cell Biol 10: 1172-1180.
-
(2008)
Nat Cell Biol
, vol.10
, pp. 1172-1180
-
-
Zheng, Y.1
Wildonger, J.2
Ye, B.3
Zhang, Y.4
Kita, A.5
-
10
-
-
53349168419
-
Spatial control of branching within dendritic arbors by dynein-dependent transport of Rab5-endosomes
-
Satoh D, Sato D, Tsuyama T, Saito M, Ohkura H, et al. (2008) Spatial control of branching within dendritic arbors by dynein-dependent transport of Rab5-endosomes. Nat Cell Biol 10: 1164-1171.
-
(2008)
Nat Cell Biol
, vol.10
, pp. 1164-1171
-
-
Satoh, D.1
Sato, D.2
Tsuyama, T.3
Saito, M.4
Ohkura, H.5
-
11
-
-
0022358866
-
Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes
-
Hedgecock EM, Culotti JG, Thomson JN, Perkins LA, (1985) Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev Biol 111: 158-170.
-
(1985)
Dev Biol
, vol.111
, pp. 158-170
-
-
Hedgecock, E.M.1
Culotti, J.G.2
Thomson, J.N.3
Perkins, L.A.4
-
12
-
-
0028132203
-
Caenorhabditis elegans unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase
-
Ogura K, Wicky C, Magnenat L, Tobler H, Mori I, et al. (1994) Caenorhabditis elegans unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase. Genes Dev 8: 2389-2400.
-
(1994)
Genes Dev
, vol.8
, pp. 2389-2400
-
-
Ogura, K.1
Wicky, C.2
Magnenat, L.3
Tobler, H.4
Mori, I.5
-
13
-
-
0033377776
-
A mouse serine/threonine kinase homologous to C. elegans UNC51 functions in parallel fiber formation of cerebellar granule neurons
-
Tomoda T, Bhatt RS, Kuroyanagi H, Shirasawa T, Hatten ME, (1999) A mouse serine/threonine kinase homologous to C. elegans UNC51 functions in parallel fiber formation of cerebellar granule neurons. Neuron 24: 833-846.
-
(1999)
Neuron
, vol.24
, pp. 833-846
-
-
Tomoda, T.1
Bhatt, R.S.2
Kuroyanagi, H.3
Shirasawa, T.4
Hatten, M.E.5
-
14
-
-
1642417689
-
Role of Unc51.1 and its binding partners in CNS axon outgrowth
-
Tomoda T, Kim JH, Zhan C, Hatten ME, (2004) Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev 18: 541-558.
-
(2004)
Genes Dev
, vol.18
, pp. 541-558
-
-
Tomoda, T.1
Kim, J.H.2
Zhan, C.3
Hatten, M.E.4
-
15
-
-
58849141189
-
Unc-51 controls active zone density and protein composition by downregulating ERK signaling
-
Wairkar YP, Toda H, Mochizuki H, Furukubo-Tokunaga K, Tomoda T, et al. (2009) Unc-51 controls active zone density and protein composition by downregulating ERK signaling. J Neurosci 29: 517-528.
-
(2009)
J Neurosci
, vol.29
, pp. 517-528
-
-
Wairkar, Y.P.1
Toda, H.2
Mochizuki, H.3
Furukubo-Tokunaga, K.4
Tomoda, T.5
-
16
-
-
57749095080
-
UNC-51/ATG1 kinase regulates axonal transport by mediating motor-cargo assembly
-
Toda H, Mochizuki H, Flores R 3rd, Josowitz R, Krasieva TB, et al. (2008) UNC-51/ATG1 kinase regulates axonal transport by mediating motor-cargo assembly. Genes Dev 22: 3292-3307.
-
(2008)
Genes Dev
, vol.22
, pp. 3292-3307
-
-
Toda, H.1
Mochizuki, H.2
Flores 3rd, R.3
Josowitz, R.4
Krasieva, T.B.5
-
17
-
-
34347236186
-
Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons
-
Zhou X, Babu JR, da Silva S, Shu Q, Graef IA, et al. (2007) Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc Natl Acad Sci U S A 104: 5842-5847.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 5842-5847
-
-
Zhou, X.1
Babu, J.R.2
da Silva, S.3
Shu, Q.4
Graef, I.A.5
-
18
-
-
0026521660
-
Genes necessary for directed axonal elongation or fasciculation in C. elegans
-
McIntire SL, Garriga G, White J, Jacobson D, Horvitz HR, (1992) Genes necessary for directed axonal elongation or fasciculation in C. elegans. Neuron 8: 307-322.
-
(1992)
Neuron
, vol.8
, pp. 307-322
-
-
McIntire, S.L.1
Garriga, G.2
White, J.3
Jacobson, D.4
Horvitz, H.R.5
-
19
-
-
33846639295
-
VAB-8, UNC-73 and MIG-2 regulate axon polarity and cell migration functions of UNC-40 in C. elegans
-
Levy-Strumpf N, Culotti JG, (2007) VAB-8, UNC-73 and MIG-2 regulate axon polarity and cell migration functions of UNC-40 in C. elegans. Nat Neurosci 10: 161-168.
-
(2007)
Nat Neurosci
, vol.10
, pp. 161-168
-
-
Levy-Strumpf, N.1
Culotti, J.G.2
-
20
-
-
12344309528
-
The conserved kinase UNC-51 acts with VAB-8 and UNC-14 to regulate axon outgrowth in C. elegans
-
Lai T, Garriga G, (2004) The conserved kinase UNC-51 acts with VAB-8 and UNC-14 to regulate axon outgrowth in C. elegans. Development 131: 5991-6000.
-
(2004)
Development
, vol.131
, pp. 5991-6000
-
-
Lai, T.1
Garriga, G.2
-
21
-
-
33846625269
-
C. elegans VAB-8 and UNC-73 regulate the SAX-3 receptor to direct cell and growth-cone migrations
-
Watari-Goshima N, Ogura K, Wolf FW, Goshima Y, Garriga G, (2007) C. elegans VAB-8 and UNC-73 regulate the SAX-3 receptor to direct cell and growth-cone migrations. Nat Neurosci 10: 169-176.
-
(2007)
Nat Neurosci
, vol.10
, pp. 169-176
-
-
Watari-Goshima, N.1
Ogura, K.2
Wolf, F.W.3
Goshima, Y.4
Garriga, G.5
-
22
-
-
12844277941
-
The Caenorhabditis elegans UNC-14 RUN domain protein binds to the kinesin-1 and UNC-16 complex and regulates synaptic vesicle localization
-
Sakamoto R, Byrd DT, Brown HM, Hisamoto N, Matsumoto K, et al. (2005) The Caenorhabditis elegans UNC-14 RUN domain protein binds to the kinesin-1 and UNC-16 complex and regulates synaptic vesicle localization. Mol Biol Cell 16: 483-496.
-
(2005)
Mol Biol Cell
, vol.16
, pp. 483-496
-
-
Sakamoto, R.1
Byrd, D.T.2
Brown, H.M.3
Hisamoto, N.4
Matsumoto, K.5
-
23
-
-
33749373208
-
The autophagy-related kinase UNC-51 and its binding partner UNC-14 regulate the subcellular localization of the Netrin receptor UNC-5 in Caenorhabditis elegans
-
Ogura K, Goshima Y, (2006) The autophagy-related kinase UNC-51 and its binding partner UNC-14 regulate the subcellular localization of the Netrin receptor UNC-5 in Caenorhabditis elegans. Development 133: 3441-3450.
-
(2006)
Development
, vol.133
, pp. 3441-3450
-
-
Ogura, K.1
Goshima, Y.2
-
24
-
-
24344499674
-
Induction of cAMP response element-binding protein-dependent medium-term memory by appetitive gustatory reinforcement in Drosophila larvae
-
Honjo K, Furukubo-Tokunaga K, (2005) Induction of cAMP response element-binding protein-dependent medium-term memory by appetitive gustatory reinforcement in Drosophila larvae. J Neurosci 25: 7905-7913.
-
(2005)
J Neurosci
, vol.25
, pp. 7905-7913
-
-
Honjo, K.1
Furukubo-Tokunaga, K.2
-
25
-
-
58849098758
-
Distinctive neuronal networks and biochemical pathways for appetitive and aversive memory in Drosophila larvae
-
Honjo K, Furukubo-Tokunaga K, (2009) Distinctive neuronal networks and biochemical pathways for appetitive and aversive memory in Drosophila larvae. J Neurosci 29: 852-862.
-
(2009)
J Neurosci
, vol.29
, pp. 852-862
-
-
Honjo, K.1
Furukubo-Tokunaga, K.2
-
26
-
-
0038439322
-
Mushroom body memoir: from maps to models
-
Heisenberg M, (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4: 266-275.
-
(2003)
Nat Rev Neurosci
, vol.4
, pp. 266-275
-
-
Heisenberg, M.1
-
27
-
-
0034007075
-
Genetic control of development of the mushroom bodies, the associative learning centers in the Drosophila brain, by the eyeless, twin of eyeless, and Dachshund genes
-
Kurusu M, Nagao T, Walldorf U, Flister S, Gehring WJ, et al. (2000) Genetic control of development of the mushroom bodies, the associative learning centers in the Drosophila brain, by the eyeless, twin of eyeless, and Dachshund genes. Proc Natl Acad Sci U S A 97: 2140-2144.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 2140-2144
-
-
Kurusu, M.1
Nagao, T.2
Walldorf, U.3
Flister, S.4
Gehring, W.J.5
-
28
-
-
0036336904
-
Embryonic and larval development of the Drosophila mushroom bodies: concentric layer subdivisions and the role of fasciclin II
-
Kurusu M, Awasaki T, Masuda-Nakagawa LM, Kawauchi H, Ito K, et al. (2002) Embryonic and larval development of the Drosophila mushroom bodies: concentric layer subdivisions and the role of fasciclin II. Development 129: 409-419.
-
(2002)
Development
, vol.129
, pp. 409-419
-
-
Kurusu, M.1
Awasaki, T.2
Masuda-Nakagawa, L.M.3
Kawauchi, H.4
Ito, K.5
-
29
-
-
0030861051
-
Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS
-
Iwai Y, Usui T, Hirano S, Steward R, Takeichi M, et al. (1997) Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 19: 77-89.
-
(1997)
Neuron
, vol.19
, pp. 77-89
-
-
Iwai, Y.1
Usui, T.2
Hirano, S.3
Steward, R.4
Takeichi, M.5
-
30
-
-
0030612883
-
GAL4-responsive UAS-tau as a tool for studying the anatomy and development of the Drosophila central nervous system
-
Ito K, Sass H, Urban J, Hofbauer A, Schneuwly S, (1997) GAL4-responsive UAS-tau as a tool for studying the anatomy and development of the Drosophila central nervous system. Cell Tissue Res 290: 1-10.
-
(1997)
Cell Tissue Res
, vol.290
, pp. 1-10
-
-
Ito, K.1
Sass, H.2
Urban, J.3
Hofbauer, A.4
Schneuwly, S.5
-
31
-
-
0033680949
-
Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development
-
Hummel T, Krukkert K, Roos J, Davis G, Klambt C, (2000) Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron 26: 357-370.
-
(2000)
Neuron
, vol.26
, pp. 357-370
-
-
Hummel, T.1
Krukkert, K.2
Roos, J.3
Davis, G.4
Klambt, C.5
-
32
-
-
0033103536
-
Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis
-
Lee T, Luo L, (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22: 451-461.
-
(1999)
Neuron
, vol.22
, pp. 451-461
-
-
Lee, T.1
Luo, L.2
-
34
-
-
0030895760
-
Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons
-
Stocker RF, Heimbeck G, Gendre N, de Belle JS, (1997) Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. J Neurobiol 32: 443-456.
-
(1997)
J Neurobiol
, vol.32
, pp. 443-456
-
-
Stocker, R.F.1
Heimbeck, G.2
Gendre, N.3
de Belle, J.S.4
-
35
-
-
0033594145
-
Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster
-
Laissue PP, Reiter C, Hiesinger PR, Halter S, Fischbach KF, et al. (1999) Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J Comp Neurol 405: 543-552.
-
(1999)
J Comp Neurol
, vol.405
, pp. 543-552
-
-
Laissue, P.P.1
Reiter, C.2
Hiesinger, P.R.3
Halter, S.4
Fischbach, K.F.5
-
36
-
-
33646759268
-
Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons
-
Pilling AD, Horiuchi D, Lively CM, Saxton WM, (2006) Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17: 2057-2068.
-
(2006)
Mol Biol Cell
, vol.17
, pp. 2057-2068
-
-
Pilling, A.D.1
Horiuchi, D.2
Lively, C.M.3
Saxton, W.M.4
-
37
-
-
4344563878
-
Role and regulation of starvation-induced autophagy in the Drosophila fat body
-
Scott RC, Schuldiner O, Neufeld TP, (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7: 167-178.
-
(2004)
Dev Cell
, vol.7
, pp. 167-178
-
-
Scott, R.C.1
Schuldiner, O.2
Neufeld, T.P.3
-
38
-
-
33845874899
-
Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death
-
Scott RC, Juhasz G, Neufeld TP, (2007) Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17: 1-11.
-
(2007)
Curr Biol
, vol.17
, pp. 1-11
-
-
Scott, R.C.1
Juhasz, G.2
Neufeld, T.P.3
-
39
-
-
4344608793
-
Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway
-
Rusten TE, Lindmo K, Juhasz G, Sass M, Seglen PO, et al. (2004) Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell 7: 179-192.
-
(2004)
Dev Cell
, vol.7
, pp. 179-192
-
-
Rusten, T.E.1
Lindmo, K.2
Juhasz, G.3
Sass, M.4
Seglen, P.O.5
-
40
-
-
65249155441
-
An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation
-
Chang YY, Neufeld TP, (2009) An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol Biol Cell 20: 2004-2014.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 2004-2014
-
-
Chang, Y.Y.1
Neufeld, T.P.2
-
41
-
-
38049073134
-
Genetic interactions between Drosophila melanogaster Atg1 and paxillin reveal a role for paxillin in autophagosome formation
-
Chen GC, Lee JY, Tang HW, Debnath J, Thomas SM, et al. (2008) Genetic interactions between Drosophila melanogaster Atg1 and paxillin reveal a role for paxillin in autophagosome formation. Autophagy 4: 37-45.
-
(2008)
Autophagy
, vol.4
, pp. 37-45
-
-
Chen, G.C.1
Lee, J.Y.2
Tang, H.W.3
Debnath, J.4
Thomas, S.M.5
-
42
-
-
34047154536
-
ATG1, an autophagy regulator, inhibits cell growth by negatively regulating S6 kinase
-
Lee SB, Kim S, Lee J, Park J, Lee G, et al. (2007) ATG1, an autophagy regulator, inhibits cell growth by negatively regulating S6 kinase. EMBO Rep 8: 360-365.
-
(2007)
EMBO Rep
, vol.8
, pp. 360-365
-
-
Lee, S.B.1
Kim, S.2
Lee, J.3
Park, J.4
Lee, G.5
-
43
-
-
70449727080
-
Autophagy promotes synapse development in Drosophila
-
Shen W, Ganetzky B, (2009) Autophagy promotes synapse development in Drosophila. J Cell Biol 187: 71-79.
-
(2009)
J Cell Biol
, vol.187
, pp. 71-79
-
-
Shen, W.1
Ganetzky, B.2
-
44
-
-
0032550207
-
Kinesin light chains are essential for axonal transport in Drosophila
-
Gindhart JG Jr, Desai CJ, Beushausen S, Zinn K, Goldstein LS, (1998) Kinesin light chains are essential for axonal transport in Drosophila. J Cell Biol 141: 443-454.
-
(1998)
J Cell Biol
, vol.141
, pp. 443-454
-
-
Gindhart Jr., J.G.1
Desai, C.J.2
Beushausen, S.3
Zinn, K.4
Goldstein, L.S.5
-
45
-
-
3142686745
-
The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes
-
Bellen HJ, Levis RW, Liao G, He Y, Carlson JW, et al. (2004) The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167: 761-781.
-
(2004)
Genetics
, vol.167
, pp. 761-781
-
-
Bellen, H.J.1
Levis, R.W.2
Liao, G.3
He, Y.4
Carlson, J.W.5
-
46
-
-
43049107461
-
Receptor tyrosine phosphatases regulate birth order-dependent axonal fasciculation and midline repulsion during development of the Drosophila mushroom body
-
Kurusu M, Zinn K, (2008) Receptor tyrosine phosphatases regulate birth order-dependent axonal fasciculation and midline repulsion during development of the Drosophila mushroom body. Mol Cell Neurosci 38: 53-65.
-
(2008)
Mol Cell Neurosci
, vol.38
, pp. 53-65
-
-
Kurusu, M.1
Zinn, K.2
-
47
-
-
4444288626
-
Transmembrane/juxtamembrane domain-dependent Dscam distribution and function during mushroom body neuronal morphogenesis
-
Wang J, Ma X, Yang JS, Zheng X, Zugates CT, et al. (2004) Transmembrane/juxtamembrane domain-dependent Dscam distribution and function during mushroom body neuronal morphogenesis. Neuron 43: 663-672.
-
(2004)
Neuron
, vol.43
, pp. 663-672
-
-
Wang, J.1
Ma, X.2
Yang, J.S.3
Zheng, X.4
Zugates, C.T.5
-
48
-
-
34250822252
-
Specific Drosophila Dscam juxtamembrane variants control dendritic elaboration and axonal arborization
-
Shi L, Yu HH, Yang JS, Lee T, (2007) Specific Drosophila Dscam juxtamembrane variants control dendritic elaboration and axonal arborization. J Neurosci 27: 6723-6728.
-
(2007)
J Neurosci
, vol.27
, pp. 6723-6728
-
-
Shi, L.1
Yu, H.H.2
Yang, J.S.3
Lee, T.4
-
49
-
-
55849143312
-
Dynein-dynactin complex is essential for dendritic restriction of TM1-containing Drosophila Dscam
-
Yang JS, Bai JM, Lee T, (2008) Dynein-dynactin complex is essential for dendritic restriction of TM1-containing Drosophila Dscam. PLoS ONE 3: e3504.
-
(2008)
PLoS ONE
, vol.3
-
-
Yang, J.S.1
Bai, J.M.2
Lee, T.3
-
50
-
-
0031040498
-
Reciprocal localization of Nod and kinesin fusion proteins indicates microtubule polarity in the Drosophila oocyte, epithelium, neuron and muscle
-
Clark IE, Jan LY, Jan YN, (1997) Reciprocal localization of Nod and kinesin fusion proteins indicates microtubule polarity in the Drosophila oocyte, epithelium, neuron and muscle. Development 124: 461-470.
-
(1997)
Development
, vol.124
, pp. 461-470
-
-
Clark, I.E.1
Jan, L.Y.2
Jan, Y.N.3
-
51
-
-
0037350720
-
A mosaic genetic screen for genes necessary for Drosophila mushroom body neuronal morphogenesis
-
Reuter JE, Nardine TM, Penton A, Billuart P, Scott EK, et al. (2003) A mosaic genetic screen for genes necessary for Drosophila mushroom body neuronal morphogenesis. Development 130: 1203-1213.
-
(2003)
Development
, vol.130
, pp. 1203-1213
-
-
Reuter, J.E.1
Nardine, T.M.2
Penton, A.3
Billuart, P.4
Scott, E.K.5
-
52
-
-
25644437117
-
Calcium/calmodulin-dependent protein kinase II alters structural plasticity and cytoskeletal dynamics in Drosophila
-
Andersen R, Li Y, Resseguie M, Brenman JE, (2005) Calcium/calmodulin-dependent protein kinase II alters structural plasticity and cytoskeletal dynamics in Drosophila. J Neurosci 25: 8878-8888.
-
(2005)
J Neurosci
, vol.25
, pp. 8878-8888
-
-
Andersen, R.1
Li, Y.2
Resseguie, M.3
Brenman, J.E.4
-
53
-
-
0030739354
-
The UNC-14 protein required for axonal elongation and guidance in Caenorhabditis elegans interacts with the serine/threonine kinase UNC-51
-
Ogura K, Shirakawa M, Barnes TM, Hekimi S, Ohshima Y, (1997) The UNC-14 protein required for axonal elongation and guidance in Caenorhabditis elegans interacts with the serine/threonine kinase UNC-51. Genes Dev 11: 1801-1811.
-
(1997)
Genes Dev
, vol.11
, pp. 1801-1811
-
-
Ogura, K.1
Shirakawa, M.2
Barnes, T.M.3
Hekimi, S.4
Ohshima, Y.5
-
54
-
-
58149181482
-
Structural basis for recruitment of Rab6-interacting protein 1 to Golgi via a RUN domain
-
Recacha R, Boulet A, Jollivet F, Monier S, Houdusse A, et al. (2009) Structural basis for recruitment of Rab6-interacting protein 1 to Golgi via a RUN domain. Structure 17: 21-30.
-
(2009)
Structure
, vol.17
, pp. 21-30
-
-
Recacha, R.1
Boulet, A.2
Jollivet, F.3
Monier, S.4
Houdusse, A.5
-
55
-
-
0032055881
-
vab-8 is a key regulator of posteriorly directed migrations in C. elegans and encodes a novel protein with kinesin motor similarity
-
Wolf FW, Hung MS, Wightman B, Way J, Garriga G, (1998) vab-8 is a key regulator of posteriorly directed migrations in C. elegans and encodes a novel protein with kinesin motor similarity. Neuron 20: 655-666.
-
(1998)
Neuron
, vol.20
, pp. 655-666
-
-
Wolf, F.W.1
Hung, M.S.2
Wightman, B.3
Way, J.4
Garriga, G.5
-
56
-
-
0034727876
-
Interaction of the Unc-51-like kinase and microtubule-associated protein light chain 3 related proteins in the brain: possible role of vesicular transport in axonal elongation
-
Okazaki N, Yan J, Yuasa S, Ueno T, Kominami E, et al. (2000) Interaction of the Unc-51-like kinase and microtubule-associated protein light chain 3 related proteins in the brain: possible role of vesicular transport in axonal elongation. Brain Res Mol Brain Res 85: 1-12.
-
(2000)
Brain Res Mol Brain Res
, vol.85
, pp. 1-12
-
-
Okazaki, N.1
Yan, J.2
Yuasa, S.3
Ueno, T.4
Kominami, E.5
-
57
-
-
37249028327
-
In vivo induction of postsynaptic molecular assembly by the cell adhesion molecule Fasciclin2
-
Kohsaka H, Takasu E, Nose A, (2007) In vivo induction of postsynaptic molecular assembly by the cell adhesion molecule Fasciclin2. J Cell Biol 179: 1289-1300.
-
(2007)
J Cell Biol
, vol.179
, pp. 1289-1300
-
-
Kohsaka, H.1
Takasu, E.2
Nose, A.3
-
58
-
-
24944583279
-
Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules
-
Pulipparacharuvil S, Akbar MA, Ray S, Sevrioukov EA, Haberman AS, et al. (2005) Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules. J Cell Sci 118: 3663-3673.
-
(2005)
J Cell Sci
, vol.118
, pp. 3663-3673
-
-
Pulipparacharuvil, S.1
Akbar, M.A.2
Ray, S.3
Sevrioukov, E.A.4
Haberman, A.S.5
-
59
-
-
0030449882
-
Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies
-
Connolly JB, Roberts IJ, Armstrong JD, Kaiser K, Forte M, et al. (1996) Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 274: 2104-2107.
-
(1996)
Science
, vol.274
, pp. 2104-2107
-
-
Connolly, J.B.1
Roberts, I.J.2
Armstrong, J.D.3
Kaiser, K.4
Forte, M.5
-
60
-
-
0142089788
-
Conserved cis-regulatory modules mediate complex neural expression patterns of the eyeless gene in the Drosophila brain
-
Adachi Y, Hauck B, Clements J, Kawauchi H, Kurusu M, et al. (2003) Conserved cis-regulatory modules mediate complex neural expression patterns of the eyeless gene in the Drosophila brain. Mech Dev 120: 1113-1126.
-
(2003)
Mech Dev
, vol.120
, pp. 1113-1126
-
-
Adachi, Y.1
Hauck, B.2
Clements, J.3
Kawauchi, H.4
Kurusu, M.5
-
61
-
-
0029089595
-
Subdivision of the Drosophila mushroom bodies by enhancer-trap expression patterns
-
Yang MY, Armstrong JD, Vilinsky I, Strausfeld NJ, Kaiser K, (1995) Subdivision of the Drosophila mushroom bodies by enhancer-trap expression patterns. Neuron 15: 45-54.
-
(1995)
Neuron
, vol.15
, pp. 45-54
-
-
Yang, M.Y.1
Armstrong, J.D.2
Vilinsky, I.3
Strausfeld, N.J.4
Kaiser, K.5
-
62
-
-
0028086441
-
Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion
-
Luo L, Liao YJ, Jan LY, Jan YN, (1994) Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev 8: 1787-1802.
-
(1994)
Genes Dev
, vol.8
, pp. 1787-1802
-
-
Luo, L.1
Liao, Y.J.2
Jan, L.Y.3
Jan, Y.N.4
-
63
-
-
0027959402
-
Genetic analysis of Fasciclin II in Drosophila: defasciculation, refasciculation, and altered fasciculation
-
Lin DM, Fetter RD, Kopczynski C, Grenningloh G, Goodman CS, (1994) Genetic analysis of Fasciclin II in Drosophila: defasciculation, refasciculation, and altered fasciculation. Neuron 13: 1055-1069.
-
(1994)
Neuron
, vol.13
, pp. 1055-1069
-
-
Lin, D.M.1
Fetter, R.D.2
Kopczynski, C.3
Grenningloh, G.4
Goodman, C.S.5
-
64
-
-
0036743680
-
Living synaptic vesicle marker: synaptotagmin-GFP
-
Zhang YQ, Rodesch CK, Broadie K, (2002) Living synaptic vesicle marker: synaptotagmin-GFP. Genesis 34: 142-145.
-
(2002)
Genesis
, vol.34
, pp. 142-145
-
-
Zhang, Y.Q.1
Rodesch, C.K.2
Broadie, K.3
-
65
-
-
34250731404
-
Thirty-one flavors of Drosophila rab proteins
-
Zhang J, Schulze KL, Hiesinger PR, Suyama K, Wang S, et al. (2007) Thirty-one flavors of Drosophila rab proteins. Genetics 176: 1307-1322.
-
(2007)
Genetics
, vol.176
, pp. 1307-1322
-
-
Zhang, J.1
Schulze, K.L.2
Hiesinger, P.R.3
Suyama, K.4
Wang, S.5
-
66
-
-
0037130255
-
The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo
-
Mackler JM, Drummond JA, Loewen CA, Robinson IM, Reist NE, (2002) The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature 418: 340-344.
-
(2002)
Nature
, vol.418
, pp. 340-344
-
-
Mackler, J.M.1
Drummond, J.A.2
Loewen, C.A.3
Robinson, I.M.4
Reist, N.E.5
|