-
1
-
-
84937201762
-
International Society of Nephrology's 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): A human rights case for nephrology
-
Mehta RL, Cerda J, Burdmann EA, et al. (2015). International Society of Nephrology's 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet 385: 1-28
-
(2015)
Lancet
, vol.385
, pp. 1-28
-
-
Mehta, R.L.1
Cerda, J.2
Burdmann, E.A.3
-
2
-
-
84944029523
-
Acute kidney injury in China: A cross-sectional survey
-
Yang L, Xing G, Wang L, et al. (2015). Acute kidney injury in China: a cross-sectional survey. Lancet 386: 1465-71
-
(2015)
Lancet
, vol.386
, pp. 1465-1471
-
-
Yang, L.1
Xing, G.2
Wang, L.3
-
3
-
-
39749172584
-
The contrasting characteristics of acute kidney injury in developed and developing countries
-
Cerda J, Bagga A, Kher V, Chakravarthi RM. (2008). The contrasting characteristics of acute kidney injury in developed and developing countries. Nat. Clin. Pract. Nephrol. 4: 138-53
-
(2008)
Nat. Clin. Pract. Nephrol
, vol.4
, pp. 138-153
-
-
Cerda, J.1
Bagga, A.2
Kher, V.3
Chakravarthi, R.M.4
-
4
-
-
84877005376
-
Community-Acquired acute kidney injury in tropical countries
-
Jha V, Parameswaran S. (2013). Community-Acquired acute kidney injury in tropical countries. Nat. Rev. Nephrol. 9: 278-90
-
(2013)
Nat. Rev. Nephrol
, vol.9
, pp. 278-290
-
-
Jha, V.1
Parameswaran, S.2
-
5
-
-
84903705384
-
Acute kidney injury and chronic kidney disease as interconnected syndromes
-
Chawla LS, Eggers PW, Star RA, Kimmel PL. (2014). Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 371: 58-66
-
(2014)
N. Engl. J. Med
, vol.371
, pp. 58-66
-
-
Chawla, L.S.1
Eggers, P.W.2
Star, R.A.3
Kimmel, P.L.4
-
6
-
-
58149485462
-
Acute kidney injury increases risk of ESRD among elderly
-
Ishani A, Xue JL, Himmelfarb J, et al. (2009). Acute kidney injury increases risk of ESRD among elderly. J. Am. Soc. Nephrol. 20: 223-28
-
(2009)
J. Am. Soc. Nephrol
, vol.20
, pp. 223-228
-
-
Ishani, A.1
Xue, J.L.2
Himmelfarb, J.3
-
7
-
-
84857112728
-
Chronic kidney disease after acute kidney injury: A systematic review and meta-Analysis
-
Coca SG, Singanamala S, Parikh CR. (2012). Chronic kidney disease after acute kidney injury: a systematic review and meta-Analysis. Kidney Int. 81: 442-48
-
(2012)
Kidney Int
, vol.81
, pp. 442-448
-
-
Coca, S.G.1
Singanamala, S.2
Parikh, C.R.3
-
8
-
-
84881113183
-
Increased cellular senescence and vascular rarefaction exacerbate the progression of kidney fibrosis in aged mice following transient ischemic injury
-
Clements ME, Chaber CJ, Ledbetter SR, Zuk A. (2013). Increased cellular senescence and vascular rarefaction exacerbate the progression of kidney fibrosis in aged mice following transient ischemic injury. PLoS ONE 8: e70464
-
(2013)
PLoS ONE
, vol.8
, pp. e70464
-
-
Clements, M.E.1
Chaber, C.J.2
Ledbetter, S.R.3
Zuk, A.4
-
9
-
-
84920270340
-
Hyperglycemia, p53, and mitochondrial pathway of apoptosis are involved in the susceptibility of diabetic models to ischemic acute kidney injury
-
Peng J, Li X, Zhang D, et al. (2015). Hyperglycemia, p53, and mitochondrial pathway of apoptosis are involved in the susceptibility of diabetic models to ischemic acute kidney injury. Kidney Int. 87: 137-50
-
(2015)
Kidney Int
, vol.87
, pp. 137-150
-
-
Peng, J.1
Li, X.2
Zhang, D.3
-
10
-
-
84907209245
-
Severe renal mass reduction impairs recovery and promotes fibrosis after AKI
-
Polichnowski AJ, Lan R, Geng H, et al. (2014). Severe renal mass reduction impairs recovery and promotes fibrosis after AKI. J. Am. Soc. Nephrol. 25: 1496-507
-
(2014)
J. Am. Soc. Nephrol
, vol.25
, pp. 1496-1507
-
-
Polichnowski, A.J.1
Lan, R.2
Geng, H.3
-
11
-
-
80555157523
-
Cellular pathophysiology of ischemic acute kidney injury
-
Bonventre JV, Yang L. (2011). Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Investig. 121: 4210-21
-
(2011)
J. Clin. Investig
, vol.121
, pp. 4210-4221
-
-
Bonventre, J.V.1
Yang, L.2
-
12
-
-
84929129947
-
Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD
-
Ferenbach DA, Bonventre JV. (2015). Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat. Rev. Nephrol. 11: 264-76
-
(2015)
Nat. Rev. Nephrol
, vol.11
, pp. 264-276
-
-
Ferenbach, D.A.1
Bonventre, J.V.2
-
13
-
-
84902136264
-
Therapeutic translation in acute kidney injury: The epithelial/endothelial axis
-
Molitoris BA. (2014). Therapeutic translation in acute kidney injury: the epithelial/endothelial axis. J. Clin. Investig. 124: 2355-63
-
(2014)
J. Clin. Investig
, vol.124
, pp. 2355-2363
-
-
Molitoris, B.A.1
-
14
-
-
84884593246
-
The pathogenesis of acute kidney injury and the toxic triangle of oxygen, reactive oxygen species and nitric oxide
-
Aksu U, Demirci C, Ince C. (2011). The pathogenesis of acute kidney injury and the toxic triangle of oxygen, reactive oxygen species and nitric oxide. Contrib. Nephrol. 174: 119-28
-
(2011)
Contrib. Nephrol
, vol.174
, pp. 119-128
-
-
Aksu, U.1
Demirci, C.2
Ince, C.3
-
15
-
-
0035199934
-
Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-Term function
-
Basile DP, Donohoe D, Roethe K, Osborn JL. (2001). Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-Term function. Am. J. Physiol. Ren. Physiol. 281: F887-99
-
(2001)
Am. J. Physiol. Ren. Physiol
, vol.281
, pp. F887-F899
-
-
Basile, D.P.1
Donohoe, D.2
Roethe, K.3
Osborn, J.L.4
-
16
-
-
63349088070
-
Endoplasmic reticulum stress in the kidney as a novel mediator of kidney injury
-
Inagi R. (2009). Endoplasmic reticulum stress in the kidney as a novel mediator of kidney injury. Exp. Nephrol. 112: e1-e9
-
(2009)
Exp. Nephrol
, vol.112
, pp. e1-e9
-
-
Inagi, R.1
-
17
-
-
47949099916
-
From endoplasmic-reticulum stress to the inflammatory response
-
Zhang K, Kaufman RJ. (2008). From endoplasmic-reticulum stress to the inflammatory response. Nature 454: 455-62
-
(2008)
Nature
, vol.454
, pp. 455-462
-
-
Zhang, K.1
Kaufman, R.J.2
-
18
-
-
84923195554
-
UPR, autophagy, and mitochondria crosstalk underlies the ER stress response
-
Senft D, Ronai ZA. (2015). UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci. 40: 141-48
-
(2015)
Trends Biochem. Sci
, vol.40
, pp. 141-148
-
-
Senft, D.1
Ronai, Z.A.2
-
19
-
-
84856111924
-
The unfolded protein response: Controlling cell fate decisions under ER stress and beyond
-
Hetz C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13: 89-102
-
(2012)
Nat. Rev. Mol. Cell Biol
, vol.13
, pp. 89-102
-
-
Hetz, C.1
-
20
-
-
84878234281
-
Gender differences control the susceptibility to ER stress-induced acute kidney injury
-
Hodeify R, Megyesi J, Tarcsafalvi A, et al. (2013). Gender differences control the susceptibility to ER stress-induced acute kidney injury. Am. J. Physiol. Ren. Physiol. 304: F875-82
-
(2013)
Am. J. Physiol. Ren. Physiol
, vol.304
, pp. F875-F882
-
-
Hodeify, R.1
Megyesi, J.2
Tarcsafalvi, A.3
-
21
-
-
70349575224
-
Endoplasmic reticulum stress: An unrecognized actor in solid organ transplantation
-
Pallet N, Fougeray S, Beaune P, et al. (2009). Endoplasmic reticulum stress: an unrecognized actor in solid organ transplantation. Transplantation 88: 605-13
-
(2009)
Transplantation
, vol.88
, pp. 605-613
-
-
Pallet, N.1
Fougeray, S.2
Beaune, P.3
-
22
-
-
34547918307
-
Cisplatin, gentamicin, and p-Aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys
-
Peyrou M, Hanna PE, Cribb AE. (2007). Cisplatin, gentamicin, and p-Aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys. Toxicol. Sci. 99: 346-53
-
(2007)
Toxicol. Sci
, vol.99
, pp. 346-353
-
-
Peyrou, M.1
Hanna, P.E.2
Cribb, A.E.3
-
23
-
-
84863959263
-
ERstress contributes to renal proximal tubule injury by increasing SREBP-2-mediated lipid accumulation and apoptotic cell death
-
Lhotak S, Sood S, Brimble E, et al. 2012.ERstress contributes to renal proximal tubule injury by increasing SREBP-2-mediated lipid accumulation and apoptotic cell death. Am. J. Physiol. Ren. Physiol. 303: F266-78
-
(2012)
Am. J. Physiol. Ren. Physiol
, vol.303
, pp. F266-F278
-
-
Lhotak, S.1
Sood, S.2
Brimble, E.3
-
24
-
-
9444268084
-
ORP150/HSP12A protects renal tubular epithelium from ischemia-induced cell death
-
Bando Y, Tsukamoto Y, Katayama T, et al. (2004). ORP150/HSP12A protects renal tubular epithelium from ischemia-induced cell death. FASEB J. 18: 1401-3
-
(2004)
FASEB J
, vol.18
, pp. 1401-1403
-
-
Bando, Y.1
Tsukamoto, Y.2
Katayama, T.3
-
25
-
-
84863413520
-
The nephroprotective effect of tauroursodeoxycholic acid on ischaemia/reperfusion-induced acute kidney injury by inhibiting endoplasmic reticulum stress
-
Gao X, Fu L, Xiao M, et al. (2012). The nephroprotective effect of tauroursodeoxycholic acid on ischaemia/reperfusion-induced acute kidney injury by inhibiting endoplasmic reticulum stress. Basic Clin. Pharmacol. Toxicol. 111: 14-23
-
(2012)
Basic Clin. Pharmacol. Toxicol
, vol.111
, pp. 14-23
-
-
Gao, X.1
Fu, L.2
Xiao, M.3
-
26
-
-
84885455062
-
The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression
-
B'Chir W, Maurin AC, Carraro V, et al. (2013). The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 41: 7683-99
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 7683-7699
-
-
B'Chir, W.1
Maurin, A.C.2
Carraro, V.3
-
27
-
-
84908577208
-
Ischemia/reperfusion-inducedCHOPexpression promotes apoptosis and impairs renal function recovery: The role of acidosis and GPR4
-
Dong B, Zhou H, Han C, et al. (2014). Ischemia/reperfusion-inducedCHOPexpression promotes apoptosis and impairs renal function recovery: the role of acidosis and GPR4. PLoS ONE 9: e110944
-
(2014)
PLoS ONE
, vol.9
, pp. e110944
-
-
Dong, B.1
Zhou, H.2
Han, C.3
-
28
-
-
82855164039
-
Endoplasmic reticulum stress implicated in the development of renal fibrosis
-
Chiang CK, Hsu SP, Wu CT, et al. (2011). Endoplasmic reticulum stress implicated in the development of renal fibrosis. Mol. Med. 17: 1295-305
-
(2011)
Mol. Med
, vol.17
, pp. 1295-1305
-
-
Chiang, C.K.1
Hsu, S.P.2
Wu, C.T.3
-
29
-
-
84871726622
-
Where the endoplasmic reticulum and the mitochondrion tie the knot: The mitochondria-Associated membrane (MAM
-
Raturi A, Simmen T. (2013). Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-Associated membrane (MAM). Biochim. Biophys. Acta 1833: 213-24
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 213-224
-
-
Raturi, A.1
Simmen, T.2
-
30
-
-
77951587507
-
Acute kidney injury: A springboard for progression in chronic kidney disease
-
Venkatachalam MA, Griffin KA, Lan R, et al. (2010). Acute kidney injury: a springboard for progression in chronic kidney disease. Am. J. Physiol. Ren. Physiol. 298: F1078-94
-
(2010)
Am. J. Physiol. Ren. Physiol
, vol.298
, pp. F1078-F1094
-
-
Venkatachalam, M.A.1
Griffin, K.A.2
Lan, R.3
-
31
-
-
66449121454
-
Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models
-
Brooks C, Wei Q, Cho SG, Dong Z. (2009). Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Investig. 119: 1275-85
-
(2009)
J. Clin. Investig
, vol.119
, pp. 1275-1285
-
-
Brooks, C.1
Wei, Q.2
Cho, S.G.3
Dong, Z.4
-
32
-
-
84875753723
-
Mitochondrial dynamics: Regulatory mechanisms and emerging role in renal pathophysiology
-
Zhan M, Brooks C, Liu F, et al. (2013). Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int. 83: 568-81
-
(2013)
Kidney Int
, vol.83
, pp. 568-581
-
-
Zhan, M.1
Brooks, C.2
Liu, F.3
-
33
-
-
84881090284
-
Themitochondrial-Targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin
-
Birk AV, Liu S, Soong Y, et al. (2013). Themitochondrial-Targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J. Am. Soc. Nephrol. 24: 1250-61
-
(2013)
J. Am. Soc. Nephrol
, vol.24
, pp. 1250-1261
-
-
Birk, A.V.1
Liu, S.2
Soong, Y.3
-
34
-
-
79957701753
-
Mitochondria-Targeted peptide accelerates ATP recovery and reduces ischemic kidney injury
-
Szeto HH, Liu S, Soong Y, et al. (2011). Mitochondria-Targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J. Am. Soc. Nephrol. 22: 1041-52
-
(2011)
J. Am. Soc. Nephrol
, vol.22
, pp. 1041-1052
-
-
Szeto, H.H.1
Liu, S.2
Soong, Y.3
-
35
-
-
84900534164
-
Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis
-
Liu S, Soong Y, Seshan SV, Szeto HH. (2014). Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis. Am. J. Physiol. Ren. Physiol. 306: F970-80
-
(2014)
Am. J. Physiol. Ren. Physiol
, vol.306
, pp. F970-F980
-
-
Liu, S.1
Soong, Y.2
Seshan, S.V.3
Szeto, H.H.4
-
36
-
-
77951049870
-
SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells
-
Funk JA, Odejinmi S, Schnellmann RG. (2010). SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells. J. Pharmacol. Exp. Ther. 333: 593-601
-
(2010)
J. Pharmacol. Exp. Ther
, vol.333
, pp. 593-601
-
-
Funk, J.A.1
Odejinmi, S.2
Schnellmann, R.G.3
-
37
-
-
84888203219
-
Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1aactivation following ischemia-reperfusion injury
-
Funk JA, Schnellmann RG. (2013). Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1aactivation following ischemia-reperfusion injury. Toxicol. Appl. Pharmacol. 273: 345-54
-
(2013)
Toxicol. Appl. Pharmacol
, vol.273
, pp. 345-354
-
-
Funk, J.A.1
Schnellmann, R.G.2
-
38
-
-
77951223830
-
Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function
-
Hasegawa K, Wakino S, Yoshioka K, et al. (2010). Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function. J. Biol. Chem. 285: 13045-56
-
(2010)
J. Biol. Chem
, vol.285
, pp. 13045-13056
-
-
Hasegawa, K.1
Wakino, S.2
Yoshioka, K.3
-
39
-
-
77951165669
-
Sirt1 activation protects the mouse renal medulla from oxidative injury
-
He W, Wang Y, Zhang MZ, et al. (2010). Sirt1 activation protects the mouse renal medulla from oxidative injury. J. Clin. Investig. 120: 1056-68
-
(2010)
J. Clin. Investig
, vol.120
, pp. 1056-1068
-
-
He, W.1
Wang, Y.2
Zhang, M.Z.3
-
41
-
-
84859464827
-
Persistent disruption of mitochondrial homeostasis after acute kidney injury
-
Funk JA, Schnellmann RG. (2012). Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am. J. Physiol. Ren. Physiol. 302: F853-64
-
(2012)
Am. J. Physiol. Ren. Physiol
, vol.302
, pp. F853-F864
-
-
Funk, J.A.1
Schnellmann, R.G.2
-
42
-
-
80053402552
-
PGC-1a promotes recovery after acute kidney injury during systemic inflammation in mice
-
Tran M, Tam D, Bardia A, et al. (2011). PGC-1a promotes recovery after acute kidney injury during systemic inflammation in mice. J. Clin. Investig. 121: 4003-14
-
(2011)
J. Clin. Investig
, vol.121
, pp. 4003-4014
-
-
Tran, M.1
Tam, D.2
Bardia, A.3
-
43
-
-
84904969665
-
Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury
-
Jeskiney SR, Funk JA, Stallons LJ, et al. (2015). Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury. J. Am. Soc. Nephrol. 25: 1157-62
-
(2015)
J. Am. Soc. Nephrol
, vol.25
, pp. 1157-1162
-
-
Jeskiney, S.R.1
Funk, J.A.2
Stallons, L.J.3
-
44
-
-
84905058536
-
Agonism of the 5-hydroxytryptamine 1F receptor promotes mitochondrial biogenesis and recovery from acute kidney injury
-
Garrett SM, Whitaker RM, Beeson CC, Schnellmann RG. (2014). Agonism of the 5-hydroxytryptamine 1F receptor promotes mitochondrial biogenesis and recovery from acute kidney injury. J. Pharmacol. Exp. Ther. 350: 257-64
-
(2014)
J. Pharmacol. Exp. Ther
, vol.350
, pp. 257-264
-
-
Garrett, S.M.1
Whitaker, R.M.2
Beeson, C.C.3
Schnellmann, R.G.4
-
45
-
-
84887985169
-
CGMP-selective phosphodiesterase inhibitors stimulate mitochondrial biogenesis and promote recovery from acute kidney injury
-
Whitaker RM, Wills LP, Stallons LJ, Schnellmann RG. (2013). cGMP-selective phosphodiesterase inhibitors stimulate mitochondrial biogenesis and promote recovery from acute kidney injury. J. Pharmacol. Exp. Ther. 347: 626-34
-
(2013)
J. Pharmacol. Exp. Ther
, vol.347
, pp. 626-634
-
-
Whitaker, R.M.1
Wills, L.P.2
Stallons, L.J.3
Schnellmann, R.G.4
-
46
-
-
84929377156
-
Conditional knockout of proximal tubule mitofusin 2 accelerates recovery and improves survival after renal ischemia
-
Gall JM, Wang Z, Bonegio RG, et al. (2015). Conditional knockout of proximal tubule mitofusin 2 accelerates recovery and improves survival after renal ischemia. J. Am. Soc. Nephrol. 26: 1092-102
-
(2015)
J. Am. Soc. Nephrol
, vol.26
, pp. 1092-1102
-
-
Gall, J.M.1
Wang, Z.2
Bonegio, R.G.3
-
47
-
-
84961291233
-
Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury
-
Morigi M, Perico L, Rota C, et al. (2015). Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury. J. Clin. Investig. 125: 715-26
-
(2015)
J. Clin. Investig
, vol.125
, pp. 715-726
-
-
Morigi, M.1
Perico, L.2
Rota, C.3
-
48
-
-
84870580153
-
Autophagy in proximal tubules protects against acute kidney injury
-
Jiang M, Wei Q, Dong G, et al. (2012). Autophagy in proximal tubules protects against acute kidney injury. Kidney Int. 82: 1271-83
-
(2012)
Kidney Int
, vol.82
, pp. 1271-1283
-
-
Jiang, M.1
Wei, Q.2
Dong, G.3
-
50
-
-
84942832480
-
KIM-1/TIM-1-mediated phagocytosis links ATG5/ULK1-dependent clearance of apoptotic cells to antigen presentation
-
Brooks CR, Yeung MY, Brooks YS, et al. (2015). KIM-1/TIM-1-mediated phagocytosis links ATG5/ULK1-dependent clearance of apoptotic cells to antigen presentation. EMBO J. 34(19): 2441-64
-
(2015)
EMBO J
, vol.34
, Issue.19
, pp. 2441-2464
-
-
Brooks, C.R.1
Yeung, M.Y.2
Brooks, Y.S.3
-
51
-
-
84926358028
-
KIM-1-mediated phagocytosis reduces acute injury to the kidney
-
Yang L, Brooks CR, Xiao S, et al. (2015). KIM-1-mediated phagocytosis reduces acute injury to the kidney. J. Clin. Investig. 125: 1620-36
-
(2015)
J. Clin. Investig
, vol.125
, pp. 1620-1636
-
-
Yang, L.1
Brooks, C.R.2
Xiao, S.3
-
52
-
-
3242772187
-
Ischemic acute renal failure: An inflammatory disease?
-
Bonventre JV, Zuk A. (2004). Ischemic acute renal failure: an inflammatory disease? Kidney Int. 66: 480-85
-
(2004)
Kidney Int
, vol.66
, pp. 480-485
-
-
Bonventre, J.V.1
Zuk, A.2
-
53
-
-
84923193790
-
Immune cells in experimental acute kidney injury
-
Jang HR, Rabb H. (2015). Immune cells in experimental acute kidney injury. Nat. Rev. Nephrol. 11: 88-101
-
(2015)
Nat. Rev. Nephrol
, vol.11
, pp. 88-101
-
-
Jang, H.R.1
Rabb, H.2
-
54
-
-
84858752623
-
Role of leukocytes in the pathogenesis of acute kidney injury
-
Kinsey GR, Okusa MD. (2012). Role of leukocytes in the pathogenesis of acute kidney injury. Crit. Care 16: 214
-
(2012)
Crit. Care
, vol.16
, pp. 214
-
-
Kinsey, G.R.1
Okusa, M.D.2
-
55
-
-
0033776898
-
Identification and kinetics of leukocytes after severe ischemia/reperfusion renal injury
-
Ysebaert DK. (2000). Identification and kinetics of leukocytes after severe ischemia/reperfusion renal injury. Nephrol. Dial. Transpl. 15: 1562-74
-
(2000)
Nephrol. Dial. Transpl
, vol.15
, pp. 1562-1574
-
-
Ysebaert, D.K.1
-
56
-
-
84907479026
-
CXCR4 anatagonism as a therapeutic approach to prevent acute kidney injury
-
Zuk A, Gershenovich M, Ivanova Y, et al. (2014). CXCR4 anatagonism as a therapeutic approach to prevent acute kidney injury. Am. J. Physiol. Ren. Physiol. 307: F783-F97
-
(2014)
Am. J. Physiol. Ren. Physiol
, vol.307
, pp. F783-F797
-
-
Zuk, A.1
Gershenovich, M.2
Ivanova, Y.3
-
57
-
-
84884298581
-
Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway
-
Gigliotti JC, Huang L, Ye H, et al. (2013). Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway. J. Am. Soc. Nephrol. 24: 1451-60
-
(2013)
J. Am. Soc. Nephrol
, vol.24
, pp. 1451-1460
-
-
Gigliotti, J.C.1
Huang, L.2
Ye, H.3
-
58
-
-
0037836057
-
Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure
-
Bonventre JV. (2003). Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J. Am. Soc. Nephrol. 14(Suppl. 1): S55-61
-
(2003)
J. Am. Soc. Nephrol
, vol.14
, pp. S55-61
-
-
Bonventre, J.V.1
-
59
-
-
79959336759
-
Repair of injured proximal tubule does not involve specialized progenitors
-
Humphreys BD, Czerniak S, DiRocco DP, et al. (2011). Repair of injured proximal tubule does not involve specialized progenitors. PNAS 108: 9226-31
-
(2011)
PNAS
, vol.108
, pp. 9226-9231
-
-
Humphreys, B.D.1
Czerniak, S.2
DiRocco, D.P.3
-
60
-
-
39749172401
-
Intrinsic epithelial cells repair the kidney after injury
-
Humphreys BD, Valerius MT, Kobayashi A, et al. (2008). Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2: 284-91
-
(2008)
Cell Stem Cell
, vol.2
, pp. 284-291
-
-
Humphreys, B.D.1
Valerius, M.T.2
Kobayashi, A.3
-
61
-
-
33645525811
-
The relationship between albuminuria, MCP-1/CCL2, and interstitial macrophages in chronic kidney disease
-
Eardley KS, Zehnder D, Quinkler M, et al. (2006). The relationship between albuminuria, MCP-1/CCL2, and interstitial macrophages in chronic kidney disease. Kidney Int. 69: 1189-97
-
(2006)
Kidney Int
, vol.69
, pp. 1189-1197
-
-
Eardley, K.S.1
Zehnder, D.2
Quinkler, M.3
-
62
-
-
85191983349
-
From monocytes to M1/M2 macrophages: Phenotypical versus functional differentiation
-
Italiani P, Boraschi D. (2014). From monocytes to M1/M2 macrophages: phenotypical versus functional differentiation. Front. Immunol. 5: 514
-
(2014)
Front. Immunol
, vol.5
, pp. 514
-
-
Italiani, P.1
Boraschi, D.2
-
63
-
-
84949263177
-
Differential Ly6C expression after renal ischemiareperfusion identifies unique macrophage populations
-
In press
-
Clements M, Gershenovich M, Chaber C, et al. (2015). Differential Ly6C expression after renal ischemiareperfusion identifies unique macrophage populations. J. Am. Soc. Nephrol. In press
-
(2015)
J. Am. Soc. Nephrol
-
-
Clements, M.1
Gershenovich, M.2
Chaber, C.3
-
64
-
-
79551654684
-
Distinct macrophage phenotypes contribute to kidney injury and repair
-
Lee S, Huen S, Nishio H, et al. (2011). Distinct macrophage phenotypes contribute to kidney injury and repair. J. Am. Soc. Nephrol. 22: 317-26
-
(2011)
J. Am. Soc. Nephrol
, vol.22
, pp. 317-326
-
-
Lee, S.1
Huen, S.2
Nishio, H.3
-
65
-
-
84870567687
-
CSF-1 signaling mediates recovery from acute kidney injury
-
Zhang MZ, Yao B, Yang S, et al. (2012). CSF-1 signaling mediates recovery from acute kidney injury. J. Clin. Investig. 122: 4519-32
-
(2012)
J. Clin. Investig
, vol.122
, pp. 4519-4532
-
-
Zhang, M.Z.1
Yao, B.2
Yang, S.3
-
66
-
-
84883512836
-
Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis
-
Humphreys BD, Xu F, Sabbisetti V, et al. (2013). Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J. Clin. Investig. 123: 4023-35
-
(2013)
J. Clin. Investig
, vol.123
, pp. 4023-4035
-
-
Humphreys, B.D.1
Xu, F.2
Sabbisetti, V.3
-
67
-
-
77952174830
-
Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury
-
Yang L, Besschetnova TY, Brooks CR, et al. (2010). Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16: 535-43
-
(2010)
Nat. Med
, vol.16
, pp. 535-543
-
-
Yang, L.1
Besschetnova, T.Y.2
Brooks, C.R.3
-
68
-
-
84938931511
-
Failed tubule recovery, AKI-CKD transition, and kidney disease progression
-
Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. (2015). Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J. Am. Soc. Nephrol. 26: 1765-76
-
(2015)
J. Am. Soc. Nephrol
, vol.26
, pp. 1765-1776
-
-
Venkatachalam, M.A.1
Weinberg, J.M.2
Kriz, W.3
Bidani, A.K.4
-
69
-
-
77956534990
-
Cell senescence in the aging kidney
-
Yang H, Fogo AB. (2010). Cell senescence in the aging kidney. J. Am. Soc. Nephrol. 21: 1436-39
-
(2010)
J. Am. Soc. Nephrol
, vol.21
, pp. 1436-1439
-
-
Yang, H.1
Fogo, A.B.2
-
70
-
-
77952105389
-
Inflammatory networks during cellular senescence: Causes and consequences
-
Freund A, Orjalo AV, Desprez PY, Campisi J. (2010). Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16: 238-46
-
(2010)
Trends Mol. Med
, vol.16
, pp. 238-246
-
-
Freund, A.1
Orjalo, A.V.2
Desprez, P.Y.3
Campisi, J.4
-
71
-
-
79551479332
-
Renal interstitial fibrosis: A critical evaluation of the origin of myofibroblasts
-
Barnes JL, GlassWF 2nd. (2011). Renal interstitial fibrosis: a critical evaluation of the origin of myofibroblasts. Contrib. Nephrol. 169: 73-93
-
(2011)
Contrib. Nephrol
, vol.169
, pp. 73-93
-
-
Barnes, J.L.1
Glass, I.I.W.F.2
-
72
-
-
33845973760
-
Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen i after ischemia/reperfusion in rats
-
Broekema M, Harmsen MC, van Luyn MJ, et al. (2007). Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats. J. Am. Soc. Nephrol. 18: 165-75
-
(2007)
J. Am. Soc. Nephrol
, vol.18
, pp. 165-175
-
-
Broekema, M.1
Harmsen, M.C.2
Van Luyn, M.J.3
-
73
-
-
0037406831
-
Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischema-reperfusion injury in mice
-
Lin F, Cordes K, Li L, et al. (2003). Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischema-reperfusion injury in mice. J. Am. Soc. Nephrol. 14: 1188-99
-
(2003)
J. Am. Soc. Nephrol
, vol.14
, pp. 1188-1199
-
-
Lin, F.1
Cordes, K.2
Li, L.3
-
74
-
-
84867747480
-
Monocytes-macrophages that express a-smoothmuscle actin preserve primitive hematopoietic cells in the bone marrow
-
Ludin A, Itkin T, Gur-Cohen S, et al. (2012). Monocytes-macrophages that express a-smoothmuscle actin preserve primitive hematopoietic cells in the bone marrow. Nat. Immunol. 13: 1072-82
-
(2012)
Nat. Immunol
, vol.13
, pp. 1072-1082
-
-
Ludin, A.1
Itkin, T.2
Gur-Cohen, S.3
-
75
-
-
79551521517
-
Epithelial-mesenchymal transition (EMT) in kidney fibrosis: Fact or fantasy?
-
Kriz W, Kaissling B, Le Hir M. (2011). Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J. Clin. Investig. 121: 468-74
-
(2011)
J. Clin. Investig
, vol.121
, pp. 468-474
-
-
Kriz, W.1
Kaissling, B.2
Le Hir, M.3
-
76
-
-
84908544781
-
The FOXD1 lineage of kidney perivascular cells and myofibroblasts: Functions and responses to injury
-
Gomez IG, Duffield JS. (2014). The FOXD1 lineage of kidney perivascular cells and myofibroblasts: functions and responses to injury. Kidney Int. Suppl. 4: 26-33
-
(2014)
Kidney Int. Suppl
, vol.4
, pp. 26-33
-
-
Gomez, I.G.1
Duffield, J.S.2
-
77
-
-
84907195162
-
Beyond tissue injury-damage-Associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis
-
Anders HJ, Schaefer L. (2014). Beyond tissue injury-damage-Associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J. Am. Soc. Nephrol. 25: 1387-400
-
(2014)
J. Am. Soc. Nephrol
, vol.25
, pp. 1387-1400
-
-
Anders, H.J.1
Schaefer, L.2
-
78
-
-
84903513560
-
Pattern recognition receptors and the inflammasome in kidney disease
-
Leemans JC, Kors L, Anders HJ, Florquin S. (2014). Pattern recognition receptors and the inflammasome in kidney disease. Nat. Rev. Nephrol. 10: 398-414
-
(2014)
Nat. Rev. Nephrol
, vol.10
, pp. 398-414
-
-
Leemans, J.C.1
Kors, L.2
Anders, H.J.3
Florquin, S.4
-
79
-
-
84874647240
-
Human renal stem/progenitor cells repair tubular epithelial cell injury throughTLR-2 driven inhibin-A and microvesicle-shuttled decorin
-
Sallustio F, Constantino V, Cox SN, et al. (2013). Human renal stem/progenitor cells repair tubular epithelial cell injury throughTLR-2 driven inhibin-A and microvesicle-shuttled decorin. Kidney Int. 83: 392-403
-
(2013)
Kidney Int
, vol.83
, pp. 392-403
-
-
Sallustio, F.1
Constantino, V.2
Cox, S.N.3
-
80
-
-
84906539304
-
Toll-like receptor 4-induced IL-22 accelerates kidney regeneration
-
Kulkarni OP, Hartter I, Mulay SR, et al. (2014). Toll-like receptor 4-induced IL-22 accelerates kidney regeneration. J. Am. Soc. Nephrol. 25: 978-89
-
(2014)
J. Am. Soc. Nephrol
, vol.25
, pp. 978-989
-
-
Kulkarni, O.P.1
Hartter, I.2
Mulay, S.R.3
-
81
-
-
84872737232
-
Inflammasome-independent NLRP3 augments TGF-βsignaling in kidney epithelium
-
Wang W, Wang X, Chun J, et al. (2013). Inflammasome-independent NLRP3 augments TGF-βsignaling in kidney epithelium. J. Immunol. 190: 1239-49
-
(2013)
J. Immunol
, vol.190
, pp. 1239-1249
-
-
Wang, W.1
Wang, X.2
Chun, J.3
-
82
-
-
84860602485
-
Biomarkers predict progression of acute kidney injury after cardiac surgery
-
Koyner JL, Garg AX, Coca SG, et al. (2012). Biomarkers predict progression of acute kidney injury after cardiac surgery. J. Am. Soc. Nephrol. 23: 905-14
-
(2012)
J. Am. Soc. Nephrol
, vol.23
, pp. 905-914
-
-
Koyner, J.L.1
Garg, A.X.2
Coca, S.G.3
-
83
-
-
84923346326
-
Biomarkers of AKI: A review of mechanistic relevance and potential therapeutic implications
-
Alge JL, Arthur JM. (2015). Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin. J. Am. Soc. Nephrol. 10: 147-55
-
(2015)
Clin. J. Am. Soc. Nephrol
, vol.10
, pp. 147-155
-
-
Alge, J.L.1
Arthur, J.M.2
-
84
-
-
84918776125
-
Novel biomarkers indicating repair or progression after acute kidney injury
-
Kashani K, Kellum JA. (2015). Novel biomarkers indicating repair or progression after acute kidney injury. Curr. Opin. Nephrol. Hypertens. 24: 21-27
-
(2015)
Curr. Opin. Nephrol. Hypertens
, vol.24
, pp. 21-27
-
-
Kashani, K.1
Kellum, J.A.2
-
85
-
-
84908075907
-
Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type i diabetes
-
Sabbisetti VS, Waikar SS, Antoine DJ, et al. (2014). Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J. Am. Soc. Nephrol. 25: 2177-86
-
(2014)
J. Am. Soc. Nephrol
, vol.25
, pp. 2177-2186
-
-
Sabbisetti, V.S.1
Waikar, S.S.2
Antoine, D.J.3
-
87
-
-
77952691255
-
Transcriptional analysis of kidneys during repair from AKI reveals possible roles for NGAL and KIM-1 as biomarkers of AKI-To-CKD progression
-
Ko GJ, Grigoryev DN, Linfert D, et al. (2010). Transcriptional analysis of kidneys during repair from AKI reveals possible roles for NGAL and KIM-1 as biomarkers of AKI-To-CKD progression. Am. J. Physiol. Ren. Physiol. 298: F1472-F83
-
(2010)
Am. J. Physiol. Ren. Physiol
, vol.298
, pp. F1472-F1483
-
-
Ko, G.J.1
Grigoryev, D.N.2
Linfert, D.3
-
88
-
-
77955972575
-
The assessment, serial evaluation, and subsequent sequelae of acute kidney injury (ASSESS-AKI) study: Design and methods
-
Go AS, Parikh CR, Ikizler TA, et al. (2010). The assessment, serial evaluation, and subsequent sequelae of acute kidney injury (ASSESS-AKI) study: design and methods. BMC Nephrol. 11: 22
-
(2010)
BMC Nephrol
, vol.11
, pp. 22
-
-
Go, A.S.1
Parikh, C.R.2
Ikizler, T.A.3
-
89
-
-
84892791650
-
Proteomics in acute kidney injury-current status and future promise
-
Ho J, Dart A, Rigatto C. (2014). Proteomics in acute kidney injury-current status and future promise. Pediatr. Nephrol. 29: 163-71
-
(2014)
Pediatr. Nephrol
, vol.29
, pp. 163-171
-
-
Ho, J.1
Dart, A.2
Rigatto, C.3
-
90
-
-
84862779793
-
Serum metabolomic profiles from patients with acute kidney injury: A pilot study
-
Sun J, Shannon M, Ando Y, et al. (2012). Serum metabolomic profiles from patients with acute kidney injury: a pilot study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 893-894: 107-13
-
(2012)
J. Chromatogr. B Anal. Technol. Biomed. Life Sci
, vol.893-894
, pp. 107-113
-
-
Sun, J.1
Shannon, M.2
Ando, Y.3
-
91
-
-
84908593842
-
Discovery of an integrative network of microRNAs and transcriptomics changes for acute kidney injury
-
Lee CG, Kim JG, Kim HJ, et al. (2014). Discovery of an integrative network of microRNAs and transcriptomics changes for acute kidney injury. Kidney Int. 86: 943-53
-
(2014)
Kidney Int
, vol.86
, pp. 943-953
-
-
Lee, C.G.1
Kim, J.G.2
Kim, H.J.3
-
92
-
-
84889825012
-
Human miRNome profiling identifies microRNAs differentially present in the urine after kidney injury
-
Ramachandran K, Saikumar J, Bijol V, et al. (2013). Human miRNome profiling identifies microRNAs differentially present in the urine after kidney injury. Clin. Chem. 59: 1742-52
-
(2013)
Clin. Chem
, vol.59
, pp. 1742-1752
-
-
Ramachandran, K.1
Saikumar, J.2
Bijol, V.3
-
93
-
-
84902829122
-
A novel biomarker for acute kidney injury usingTaqMan-based unmethylated DNA-specific polymerase chain reaction
-
Endo K, Kito N, Fukushima Y, et al. (2014). A novel biomarker for acute kidney injury usingTaqMan-based unmethylated DNA-specific polymerase chain reaction. Biomed. Res. 35: 207-13
-
(2014)
Biomed. Res
, vol.35
, pp. 207-213
-
-
Endo, K.1
Kito, N.2
Fukushima, Y.3
-
94
-
-
84901705059
-
Urinary extracellular vesicles and the kidney: Biomarkers and beyond
-
Salih M, Zietse R, Hoorn EJ. (2014). Urinary extracellular vesicles and the kidney: biomarkers and beyond. Am. J. Physiol. Ren. Physiol. 306: F1251-59
-
(2014)
Am. J. Physiol. Ren. Physiol
, vol.306
, pp. F1251-F1259
-
-
Salih, M.1
Zietse, R.2
Hoorn, E.J.3
|