메뉴 건너뛰기




Volumn 47, Issue 1, 2016, Pages 288-303

Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction

Author keywords

[No Author keywords available]

Indexed keywords

CALCIUM CHANNEL; CALCIUM CHANNEL L TYPE; MYOSIN LIGHT CHAIN; NITRIC OXIDE; PHOSPHOLIPASE; PROTEIN KINASE; REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE OXIDASE; TRANSIENT RECEPTOR POTENTIAL CHANNEL; VOLTAGE GATED POTASSIUM CHANNEL; CALCIUM; OXYGEN; VANILLOID RECEPTOR;

EID: 84954271441     PISSN: 09031936     EISSN: 13993003     Source Type: Journal    
DOI: 10.1183/13993003.00945-2015     Document Type: Article
Times cited : (118)

References (180)
  • 1
    • 10744221897 scopus 로고    scopus 로고
    • Basic features of hypoxic pulmonary vasoconstriction in mice
    • Weissmann N, Akkayagil E, Quanz K, et al. Basic features of hypoxic pulmonary vasoconstriction in mice. Respir Physiol Neurobiol 2004; 139: 191-202.
    • (2004) Respir Physiol Neurobiol , vol.139 , pp. 191-202
    • Weissmann, N.1    Akkayagil, E.2    Quanz, K.3
  • 2
    • 0028957051 scopus 로고
    • Hypoxic vasoconstriction in buffer-perfused rabbit lungs
    • Weissmann N, Grimminger F, Walmrath D, et al. Hypoxic vasoconstriction in buffer-perfused rabbit lungs. Respir Physiol 1995; 100: 159-169.
    • (1995) Respir Physiol , vol.100 , pp. 159-169
    • Weissmann, N.1    Grimminger, F.2    Walmrath, D.3
  • 3
    • 0021882324 scopus 로고
    • Hypoxic pulmonary vasoconstriction in isolated rat lungs perfused with perfluorocarbon emulsion
    • Lindgren L, Marshall C, Marshall BE. Hypoxic pulmonary vasoconstriction in isolated rat lungs perfused with perfluorocarbon emulsion. Acta Physiol Scand 1985; 123: 335-338.
    • (1985) Acta Physiol Scand , vol.123 , pp. 335-338
    • Lindgren, L.1    Marshall, C.2    Marshall, B.E.3
  • 5
    • 0021473922 scopus 로고
    • Attenuated pulmonary pressor response to hypoxia in bar-headed geese
    • Faraci FM, Kilgore DL Jr, Fedde MR. Attenuated pulmonary pressor response to hypoxia in bar-headed geese. Am J Physiol 1984; 247: R402-R403.
    • (1984) Am J Physiol , vol.247 , pp. R402-R403
    • Faraci, F.M.1    Kilgore, D.L.2    Fedde, M.R.3
  • 6
    • 0035041601 scopus 로고    scopus 로고
    • Sites and ionic mechanisms of hypoxic vasoconstriction in frog skin
    • Malvin GM, Walker BR. Sites and ionic mechanisms of hypoxic vasoconstriction in frog skin. Am J Physiol Regul Integr Comp Physiol 2001; 280: R1308-R1314.
    • (2001) Am J Physiol Regul Integr Comp Physiol , vol.280 , pp. R1308-R1314
    • Malvin, G.M.1    Walker, B.R.2
  • 7
    • 27144503830 scopus 로고    scopus 로고
    • Hypoxic pulmonary vasoconstriction in reptiles: A comparative study of four species with different lung structures and pulmonary blood pressures
    • Skovgaard N, Abe AS, Andrade DV, et al. Hypoxic pulmonary vasoconstriction in reptiles: A comparative study of four species with different lung structures and pulmonary blood pressures. Am J Physiol Regul Integr Comp Physiol 2005; 289: R1280-R1288.
    • (2005) Am J Physiol Regul Integr Comp Physiol , vol.289 , pp. R1280-R1288
    • Skovgaard, N.1    Abe, A.S.2    Andrade, D.V.3
  • 8
    • 0035010562 scopus 로고    scopus 로고
    • Hypoxic vasoconstriction of cyclostome systemic vessels the antecedent of hypoxic pulmonary vasoconstriction
    • Olson KR, Russell MJ, Forster ME. Hypoxic vasoconstriction of cyclostome systemic vessels: The antecedent of hypoxic pulmonary vasoconstriction Am J Physiol Regul Integr Comp Physiol 2001; 280: R198-R206.
    • (2001) Am J Physiol Regul Integr Comp Physiol , vol.280 , pp. R198-R206
    • Olson, K.R.1    Russell, M.J.2    Forster, M.E.3
  • 10
    • 84932159575 scopus 로고    scopus 로고
    • Hypoxic pulmonary vasoconstriction: Physiology and anesthetic implications
    • Lumb AB, Slinger P. Hypoxic pulmonary vasoconstriction: Physiology and anesthetic implications. Anesthesiology 2015; 122: 932-946.
    • (2015) Anesthesiology , vol.122 , pp. 932-946
    • Lumb, A.B.1    Slinger, P.2
  • 12
    • 0035065615 scopus 로고    scopus 로고
    • Physiology in medicine: Importance of hypoxic pulmonary vasoconstriction in maintaining arterial oxygenation during acute respiratory failure
    • Naeije R, Brimioulle S. Physiology in medicine: Importance of hypoxic pulmonary vasoconstriction in maintaining arterial oxygenation during acute respiratory failure. Crit Care 2001; 5: 67-71.
    • (2001) Crit Care , vol.5 , pp. 67-71
    • Naeije, R.1    Brimioulle, S.2
  • 13
    • 0036073354 scopus 로고    scopus 로고
    • Regulation of heme oxygenase-1 by nitric oxide during hepatopulmonary syndrome
    • Carter EP, Hartsfield CL, Miyazono M, et al. Regulation of heme oxygenase-1 by nitric oxide during hepatopulmonary syndrome. Am J Physiol Lung Cell Mol Physiol 2002; 283: L346-L353.
    • (2002) Am J Physiol Lung Cell Mol Physiol , vol.283 , pp. L346-L353
    • Carter, E.P.1    Hartsfield, C.L.2    Miyazono, M.3
  • 15
    • 0017812655 scopus 로고
    • Does normoxic pulmonary vasodilatation rather than hypoxic vasoconstriction account for the pulmonary pressor response to hypoxia
    • Weir EK. Does normoxic pulmonary vasodilatation rather than hypoxic vasoconstriction account for the pulmonary pressor response to hypoxia Lancet 1978; 1: 476-477.
    • (1978) Lancet , vol.1 , pp. 476-477
    • Weir, E.K.1
  • 16
    • 78149303518 scopus 로고
    • The pulmonary circulation
    • Bradford JR, Dean HP. The pulmonary circulation. J Physiol 1894; 16: 34-158.
    • (1894) J Physiol , vol.16 , pp. 34-158
    • Bradford, J.R.1    Dean, H.P.2
  • 17
    • 33751581945 scopus 로고
    • La circulation pulmonaire chez le chien [Pulmonary circulation in the dog]
    • Plumier L. La circulation pulmonaire chez le chien [Pulmonary circulation in the dog]. Arch Intern Physiol 1904; 1: 176-213.
    • (1904) Arch Intern Physiol , vol.1 , pp. 176-213
    • Plumier, L.1
  • 18
    • 84980110245 scopus 로고
    • Observations on the pulmonary arterial blood pressure in the cat
    • Von Euler US, Liljestrand G. Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand 1946; 12: 301-320.
    • (1946) Acta Physiol Scand , vol.12 , pp. 301-320
    • Von Euler, U.S.1    Liljestrand, G.2
  • 19
    • 0000707862 scopus 로고
    • The influence of short periods of induced acute anoxia upon pulmonary artery pressures in man
    • Motley HL, Cournand A, Werko L, et al. The influence of short periods of induced acute anoxia upon pulmonary artery pressures in man. Am J Physiol 1947; 150: 315-320.
    • (1947) Am J Physiol , vol.150 , pp. 315-320
    • Motley, H.L.1    Cournand, A.2    Werko, L.3
  • 20
  • 21
    • 0030899855 scopus 로고    scopus 로고
    • Hypoxic vasoconstriction in pulmonary arterioles and venules
    • Hillier SC, Graham JA, Hanger CC, et al. Hypoxic vasoconstriction in pulmonary arterioles and venules. J Appl Physiol 1997; 82: 1084-1090.
    • (1997) J Appl Physiol , vol.82 , pp. 1084-1090
    • Hillier, S.C.1    Graham, J.A.2    Hanger, C.C.3
  • 22
    • 0022216085 scopus 로고
    • Site of hypoxic pulmonary vasoconstriction
    • Staub NC. Site of hypoxic pulmonary vasoconstriction. Chest 1985; 88: Suppl. 4, 240S-245S.
    • (1985) Chest , vol.88 , Issue.4 , pp. 240S-245S
    • Staub, N.C.1
  • 23
    • 0013942378 scopus 로고
    • Response of small pulmonary arteries to unilobar hypoxia and hypercapnia
    • Kato M, Staub NC. Response of small pulmonary arteries to unilobar hypoxia and hypercapnia. Circ Res 1966; 19: 426-440.
    • (1966) Circ Res , vol.19 , pp. 426-440
    • Kato, M.1    Staub, N.C.2
  • 25
    • 0019777255 scopus 로고
    • Hypoxic pulmonary vasoconstriction in dogs: Effects of lung segment size and oxygen tension
    • Marshall BE, Marshall C, Benumof J, et al. Hypoxic pulmonary vasoconstriction in dogs: Effects of lung segment size and oxygen tension. J Appl Physiol Respir Environ Exerc Physiol 1981; 51: 1543-1551.
    • (1981) J Appl Physiol Respir Environ Exerc Physiol , vol.51 , pp. 1543-1551
    • Marshall, B.E.1    Marshall, C.2    Benumof, J.3
  • 26
    • 0020645714 scopus 로고
    • Influence of perfusate PO2 on hypoxic pulmonary vasoconstriction in rats
    • Marshall C, Marshall BE. Influence of perfusate PO2 on hypoxic pulmonary vasoconstriction in rats. Circ Res 1983; 52: 691-696.
    • (1983) Circ Res , vol.52 , pp. 691-696
    • Marshall, C.1    Marshall, B.E.2
  • 27
    • 0028271450 scopus 로고
    • Hypoxic vasoconstriction in rat pulmonary and mesenteric arteries
    • Leach RM, Robertson TP, Twort CH, et al. Hypoxic vasoconstriction in rat pulmonary and mesenteric arteries. Am J Physiol 1994; 266: L223-L231.
    • (1994) Am J Physiol , vol.266 , pp. L223-L231
    • Leach, R.M.1    Robertson, T.P.2    Ch, T.3
  • 28
    • 0025514277 scopus 로고
    • Hypoxic contraction of cultured pulmonary vascular smooth muscle cells
    • Murray TR, Chen L, Marshall BE, et al. Hypoxic contraction of cultured pulmonary vascular smooth muscle cells. Am J Respir Cell Mol Biol 1990; 3: 457-465.
    • (1990) Am J Respir Cell Mol Biol , vol.3 , pp. 457-465
    • Murray, T.R.1    Chen, L.2    Marshall, B.E.3
  • 29
    • 0026785297 scopus 로고
    • Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells
    • Madden JA, Vadula MS, Kurup VP. Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells. Am J Physiol 1992; 263: L384-L393.
    • (1992) Am J Physiol , vol.263 , pp. L384-L393
    • Madden, J.A.1    Vadula, M.S.2    Kurup, V.P.3
  • 30
    • 0027729672 scopus 로고
    • Effect of hypoxia and norepinephrine on cytoplasmic free Ca2+ in pulmonary and cerebral arterial myocytes
    • Vadula MS, Kleinman JG, Madden JA. Effect of hypoxia and norepinephrine on cytoplasmic free Ca2+ in pulmonary and cerebral arterial myocytes. Am J Physiol 1993; 265: L591-L597.
    • (1993) Am J Physiol , vol.265 , pp. L591-L597
    • Vadula, M.S.1    Kleinman, J.G.2    Madden, J.A.3
  • 31
    • 0027460361 scopus 로고
    • Acute hypoxia increases cytosolic calcium in cultured pulmonary arterial myocytes
    • Salvaterra CG, Goldman WF. Acute hypoxia increases cytosolic calcium in cultured pulmonary arterial myocytes. Am J Physiol 1993; 264: L323-L328.
    • (1993) Am J Physiol , vol.264 , pp. L323-L328
    • Salvaterra, C.G.1    Goldman, W.F.2
  • 32
  • 33
    • 0025231481 scopus 로고
    • Hypoxic pulmonary vasoconstriction Physiologic significance, mechanism, and clinical relevance
    • Cutaia M, Rounds S. Hypoxic pulmonary vasoconstriction. Physiologic significance, mechanism, and clinical relevance. Chest 1990; 97: 706-718.
    • (1990) Chest , vol.97 , pp. 706-718
    • Cutaia, M.1    Rounds, S.2
  • 34
    • 0019429129 scopus 로고
    • Microvascular pressure distribution and responses of pulmonary allografts and cheek pouch arterioles in the hamster to oxygen
    • Davis MJ, Joyner WL, Gilmore JP. Microvascular pressure distribution and responses of pulmonary allografts and cheek pouch arterioles in the hamster to oxygen. Circ Res 1981; 49: 125-132.
    • (1981) Circ Res , vol.49 , pp. 125-132
    • Davis, M.J.1    Joyner, W.L.2    Gilmore, J.P.3
  • 35
    • 0142030613 scopus 로고    scopus 로고
    • Orthodeoxia-an uncommon presentation following bilateral thoracic sympathectomy
    • van Heerden PV, Cameron PD, Karanovic A, et al. Orthodeoxia-an uncommon presentation following bilateral thoracic sympathectomy. Anaesth Intensive Care 2003; 31: 581-583.
    • (2003) Anaesth Intensive Care , vol.31 , pp. 581-583
    • Van Heerden, P.V.1    Cameron, P.D.2    Karanovic, A.3
  • 36
    • 0343471958 scopus 로고    scopus 로고
    • Sympathetic modulation of hypoxic pulmonary vasoconstriction in intact dogs
    • Brimioulle S, Vachiry JL, Brichant JF, et al. Sympathetic modulation of hypoxic pulmonary vasoconstriction in intact dogs. Cardiovasc Res 1997; 34: 384-392.
    • (1997) Cardiovasc Res , vol.34 , pp. 384-392
    • Brimioulle, S.1    Vachiry, J.L.2    Brichant, J.F.3
  • 37
    • 0025910315 scopus 로고
    • Inhaled nitric oxide A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction
    • Frostell C, Fratacci MD, Wain JC, et al. Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation 1991; 83: 2038-2047.
    • (1991) Circulation , vol.83 , pp. 2038-2047
    • Frostell, C.1    Fratacci, M.D.2    Wain, J.C.3
  • 38
    • 0035001399 scopus 로고    scopus 로고
    • NO and reactive oxygen species are involved in biphasic hypoxic vasoconstriction of isolated rabbit lungs
    • Weissmann N, Winterhalder S, Nollen M, et al. NO and reactive oxygen species are involved in biphasic hypoxic vasoconstriction of isolated rabbit lungs. Am J Physiol Lung Cell Mol Physiol 2001; 280: L638-L645.
    • (2001) Am J Physiol Lung Cell Mol Physiol , vol.280 , pp. L638-L645
    • Weissmann, N.1    Winterhalder, S.2    Nollen, M.3
  • 39
    • 48249101268 scopus 로고    scopus 로고
    • Nitric-oxide-mediated zinc release contributes to hypoxic regulation of pulmonary vascular tone
    • Bernal PJ, Leelavanichkul K, Bauer E, et al. Nitric-oxide-mediated zinc release contributes to hypoxic regulation of pulmonary vascular tone. Circ Res 2008; 102: 1575-1583.
    • (2008) Circ Res , vol.102 , pp. 1575-1583
    • Bernal, P.J.1    Leelavanichkul, K.2    Bauer, E.3
  • 40
    • 58149234707 scopus 로고    scopus 로고
    • Exogenous estrogen rapidly attenuates pulmonary artery vasoreactivity and acute hypoxic pulmonary vasoconstriction
    • Lahm T, Crisostomo PR, Markel TA, et al. Exogenous estrogen rapidly attenuates pulmonary artery vasoreactivity and acute hypoxic pulmonary vasoconstriction. Shock 2008; 30: 660-667.
    • (2008) Shock , vol.30 , pp. 660-667
    • Lahm, T.1    Crisostomo, P.R.2    Markel, T.A.3
  • 41
    • 0031951708 scopus 로고    scopus 로고
    • Effect of dehydroepiandrosterone on hypoxic pulmonary vasoconstriction: A Ca2+-activated K+-channel opener
    • Farrukh IS, Peng W, Orlinska U, et al. Effect of dehydroepiandrosterone on hypoxic pulmonary vasoconstriction: A Ca2+-activated K+-channel opener. Am J Physiol 1998; 274: L186-L195.
    • (1998) Am J Physiol , vol.274 , pp. L186-L195
    • Farrukh, I.S.1    Peng, W.2    Orlinska, U.3
  • 42
    • 84895006158 scopus 로고    scopus 로고
    • P21-dependent protective effects of a carbon monoxide-releasing molecule-3 in pulmonary hypertension
    • Abid S, Houssaöni A, Mouraret N, et al. P21-dependent protective effects of a carbon monoxide-releasing molecule-3 in pulmonary hypertension. Arterioscler Thromb Vasc Biol 2014; 34: 304-312.
    • (2014) Arterioscler Thromb Vasc Biol , vol.34 , pp. 304-312
    • Abid, S.1    Houssaöni, A.2    Mouraret, N.3
  • 43
    • 72449129511 scopus 로고    scopus 로고
    • Effects of hypercapnia with and without acidosis on hypoxic pulmonary vasoconstriction
    • Ketabchi F, Egemnazarov B, Schermuly RT, et al. Effects of hypercapnia with and without acidosis on hypoxic pulmonary vasoconstriction. Am J Physiol Lung Cell Mol Physiol 2009; 297: L977-L983.
    • (2009) Am J Physiol Lung Cell Mol Physiol , vol.297 , pp. L977-L983
    • Ketabchi, F.1    Egemnazarov, B.2    Schermuly, R.T.3
  • 44
    • 0034038118 scopus 로고    scopus 로고
    • Effects of the RBC membrane and increased perfusate viscosity on hypoxic pulmonary vasoconstriction
    • Deem S, Berg JT, Kerr ME, et al. Effects of the RBC membrane and increased perfusate viscosity on hypoxic pulmonary vasoconstriction. J Appl Physiol 2000; 88: 1520-1528.
    • (2000) J Appl Physiol , vol.88 , pp. 1520-1528
    • Deem, S.1    Berg, J.T.2    Kerr, M.E.3
  • 45
    • 84901236200 scopus 로고    scopus 로고
    • HIF and pulmonary vascular responses to hypoxia
    • Shimoda LA, Laurie SS. HIF and pulmonary vascular responses to hypoxia. J Appl Physiol 2014; 116: 867-874.
    • (2014) J Appl Physiol , vol.116 , pp. 867-874
    • Shimoda, L.A.1    Laurie, S.S.2
  • 46
    • 84887436170 scopus 로고    scopus 로고
    • Endocannabinoid anandamide mediates hypoxic pulmonary vasoconstriction
    • Wenzel D, Matthey M, Bindila L, et al. Endocannabinoid anandamide mediates hypoxic pulmonary vasoconstriction. Proc Natl Acad Sci USA 2013; 110: 18710-18715.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 18710-18715
    • Wenzel, D.1    Matthey, M.2    Bindila, L.3
  • 47
    • 84883203229 scopus 로고    scopus 로고
    • Regulation of rat intrapulmonary arterial tone by arachidonic acid and prostaglandin E2 during hypoxia
    • Yan G, Wang Q, Shi H, et al. Regulation of rat intrapulmonary arterial tone by arachidonic acid and prostaglandin E2 during hypoxia. PLoS One 2013; 8: E73839.
    • (2013) PLoS One , vol.8 , pp. e73839
    • Yan, G.1    Wang, Q.2    Shi, H.3
  • 48
    • 84875370485 scopus 로고    scopus 로고
    • Evidence for the role of phosphatidylcholine-specific phospholipase C in sustained hypoxic pulmonary vasoconstriction
    • Strielkov IV, Kizub IV, Khromov AS, et al. Evidence for the role of phosphatidylcholine-specific phospholipase C in sustained hypoxic pulmonary vasoconstriction. Vascul Pharmacol 2013; 58: 292-298.
    • (2013) Vascul Pharmacol , vol.58 , pp. 292-298
    • Strielkov, I.V.1    Kizub, I.V.2    Khromov, A.S.3
  • 49
    • 34249084477 scopus 로고    scopus 로고
    • Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange
    • Weissmann N, Dietrich A, Fuchs B, et al. Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci USA 2006; 103: 19093-19098.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 19093-19098
    • Weissmann, N.1    Dietrich, A.2    Fuchs, B.3
  • 50
    • 0035476196 scopus 로고    scopus 로고
    • Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: Identity of the hypoxic sensor
    • Leach RM, Hill HM, Snetkov VA, et al. Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: Identity of the hypoxic sensor. J Physiol 2001; 536: 211-224.
    • (2001) J Physiol , vol.536 , pp. 211-224
    • Leach, R.M.1    Hill, H.M.2    Snetkov, V.A.3
  • 51
    • 0027498933 scopus 로고
    • The role of endothelium in hypoxic constriction of human pulmonary artery rings
    • Demiryurek AT, Wadsworth RM, Kane KA, et al. The role of endothelium in hypoxic constriction of human pulmonary artery rings. Am Rev Respir Dis 1993; 147: 283-290.
    • (1993) Am Rev Respir Dis , vol.147 , pp. 283-290
    • Demiryurek, A.T.1    Wadsworth, R.M.2    Kane, K.A.3
  • 52
    • 0025734413 scopus 로고
    • Effects of hypoxia on isolated intrapulmonary arteries from the sheep
    • Demiryurek AT, Wadsworth RM, Kane KA. Effects of hypoxia on isolated intrapulmonary arteries from the sheep. Pulm Pharmacol 1991; 4: 158-164.
    • (1991) Pulm Pharmacol , vol.4 , pp. 158-164
    • Demiryurek, A.T.1    Wadsworth, R.M.2    Kane, K.A.3
  • 53
    • 0035036471 scopus 로고    scopus 로고
    • Hypoxic constriction of porcine distal pulmonary arteries: Endothelium and endothelin dependence
    • Liu Q, Sham JS, Shimoda LA, et al. Hypoxic constriction of porcine distal pulmonary arteries: Endothelium and endothelin dependence. Am J Physiol Lung Cell Mol Physiol 2001; 280: L856-L865.
    • (2001) Am J Physiol Lung Cell Mol Physiol , vol.280 , pp. L856-L865
    • Liu, Q.1    Sham, J.S.2    Shimoda, L.A.3
  • 54
    • 0037158625 scopus 로고    scopus 로고
    • Endothelium-derived mediators and hypoxic pulmonary vasoconstriction
    • Aaronson PI, Robertson TP, Ward JP. Endothelium-derived mediators and hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol 2002; 132: 107-120.
    • (2002) Respir Physiol Neurobiol , vol.132 , pp. 107-120
    • Aaronson, P.I.1    Robertson, T.P.2    Ward, J.P.3
  • 55
    • 0034659397 scopus 로고    scopus 로고
    • Voltage-independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat
    • Robertson TP, Hague D, Aaronson PI, et al. Voltage-independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat. J Physiol 2000; 525: 669-680.
    • (2000) J Physiol , vol.525 , pp. 669-680
    • Robertson, T.P.1    Hague, D.2    Aaronson, P.I.3
  • 56
    • 84884285662 scopus 로고    scopus 로고
    • Hypoxic pulmonary vasoconstriction in the absence of pretone: Essential role for intracellular Ca2+ release
    • Connolly MJ, Prieto-Lloret J, Becker S, et al. Hypoxic pulmonary vasoconstriction in the absence of pretone: Essential role for intracellular Ca2+ release. J Physiol 2013; 591: 4473-4498.
    • (2013) J Physiol , vol.591 , pp. 4473-4498
    • Connolly, M.J.1    Prieto-Lloret, J.2    Becker, S.3
  • 57
    • 84868624310 scopus 로고    scopus 로고
    • Hypoxic pulmonary vasoconstriction requires connexin 40-mediated endothelial signal conduction
    • Wang L, Yin J, Nickles HT, et al. Hypoxic pulmonary vasoconstriction requires connexin 40-mediated endothelial signal conduction. J Clin Invest 2012; 122: 4218-4230.
    • (2012) J Clin Invest , vol.122 , pp. 4218-4230
    • Wang, L.1    Yin, J.2    Nickles, H.T.3
  • 58
    • 33751576175 scopus 로고    scopus 로고
    • Role of ion channels in acute and chronic responses of the pulmonary vasculature to hypoxia
    • Weir EK, Olschewski A. Role of ion channels in acute and chronic responses of the pulmonary vasculature to hypoxia. Cardiovasc Res 2006; 71: 630-641.
    • (2006) Cardiovasc Res , vol.71 , pp. 630-641
    • Weir, E.K.1    Olschewski, A.2
  • 59
    • 34247860615 scopus 로고    scopus 로고
    • Point: Release of an endothelium-derived vasoconstrictor and RhoA/Rho kinase-mediated calcium sensitization of smooth muscle cell contraction are/are not the main effectors for full and sustained hypoxic pulmonary vasoconstriction
    • Robertson TP. Point: Release of an endothelium-derived vasoconstrictor and RhoA/Rho kinase-mediated calcium sensitization of smooth muscle cell contraction are/are not the main effectors for full and sustained hypoxic pulmonary vasoconstriction. J Appl Physiol 2007; 102: 2071-2072.
    • (2007) J Appl Physiol , vol.102 , pp. 2071-2072
    • Robertson, T.P.1
  • 60
    • 0035933388 scopus 로고    scopus 로고
    • Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing
    • Waypa GB, Chandel NS, Schumacker PT. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res 2001; 88: 1259-1266.
    • (2001) Circ Res , vol.88 , pp. 1259-1266
    • Waypa, G.B.1    Chandel, N.S.2    Schumacker, P.T.3
  • 61
    • 0019430909 scopus 로고
    • Inhibitors of oxidative ATP production cause transient vasoconstriction and block subsequent pressor responses in rat lungs
    • Rounds S, McMurtry IF. Inhibitors of oxidative ATP production cause transient vasoconstriction and block subsequent pressor responses in rat lungs. Circ Res 1981; 48: 393-400.
    • (1981) Circ Res , vol.48 , pp. 393-400
    • Rounds, S.1    McMurtry, I.F.2
  • 62
    • 9144224900 scopus 로고    scopus 로고
    • Effects of mitochondrial inhibitors and uncouplers on hypoxic vasoconstriction in rabbit lungs
    • Weissmann N, Ebert N, Ahrens M, et al. Effects of mitochondrial inhibitors and uncouplers on hypoxic vasoconstriction in rabbit lungs. Am J Respir Cell Mol Biol 2003; 29: 721-732.
    • (2003) Am J Respir Cell Mol Biol , vol.29 , pp. 721-732
    • Weissmann, N.1    Ebert, N.2    Ahrens, M.3
  • 63
    • 9644270197 scopus 로고    scopus 로고
    • Hypoxic pulmonary vasoconstriction: Redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells
    • Michelakis ED, Thbaud B, Weir EK, et al. Hypoxic pulmonary vasoconstriction: Redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells. J Mol Cell Cardiol 2004; 37: 1119-1136.
    • (2004) J Mol Cell Cardiol , vol.37 , pp. 1119-1136
    • Michelakis, E.D.1    Thbaud, B.2    Weir, E.K.3
  • 64
    • 78349234310 scopus 로고    scopus 로고
    • Mitochondrial cytochrome redox states and respiration in acute pulmonary oxygen sensing
    • Sommer N, Pak O, Schrner S, et al. Mitochondrial cytochrome redox states and respiration in acute pulmonary oxygen sensing. Eur Respir J 2010; 36: 1056-1066.
    • (2010) Eur Respir J , vol.36 , pp. 1056-1066
    • Sommer, N.1    Pak, O.2    Schrner, S.3
  • 65
    • 0025865055 scopus 로고
    • Energy state and vasomotor tone in hypoxic pig lungs
    • Buescher PC, Pearse DB, Pillai RP, et al. Energy state and vasomotor tone in hypoxic pig lungs. J Appl Physiol 1991; 70: 1874-1881.
    • (1991) J Appl Physiol , vol.70 , pp. 1874-1881
    • Buescher, P.C.1    Pearse, D.B.2    Pillai, R.P.3
  • 66
    • 0019596018 scopus 로고
    • Lung as a model for evaluation of critical intracellular PO2 and PCO
    • Fisher AB, Dodia C. Lung as a model for evaluation of critical intracellular PO2 and PCO. Am J Physiol 1981; 241: E47-E50.
    • (1981) Am J Physiol , vol.241 , pp. E47-E50
    • Fisher, A.B.1    Dodia, C.2
  • 68
    • 0035933445 scopus 로고    scopus 로고
    • Hypoxic pulmonary vasoconstriction: A radical view
    • Sylvester JT. Hypoxic pulmonary vasoconstriction: A radical view. Circ Res 2001; 88: 1228-1230.
    • (2001) Circ Res , vol.88 , pp. 1228-1230
    • Sylvester, J.T.1
  • 69
    • 0037131210 scopus 로고    scopus 로고
    • Hypoxic pulmonary vasoconstriction: Ups and downs of reactive oxygen species
    • Sham JS. Hypoxic pulmonary vasoconstriction: Ups and downs of reactive oxygen species. Circ Res 2002; 91: 649-651.
    • (2002) Circ Res , vol.91 , pp. 649-651
    • Sham, J.S.1
  • 70
    • 11144251210 scopus 로고    scopus 로고
    • Hypoxic pulmonary vasoconstriction: Redox events in oxygen sensing
    • Waypa GB, Schumacker PT. Hypoxic pulmonary vasoconstriction: Redox events in oxygen sensing. J Appl Physiol 2005; 98: 404-414.
    • (2005) J Appl Physiol , vol.98 , pp. 404-414
    • Waypa, G.B.1    Schumacker, P.T.2
  • 72
    • 33748441793 scopus 로고    scopus 로고
    • Point: Hypoxic pulmonary vasoconstriction is mediated by increased production of reactive oxygen species
    • Ward JP. Point: Hypoxic pulmonary vasoconstriction is mediated by increased production of reactive oxygen species. J Appl Physiol 2006; 101: 993-995.
    • (2006) J Appl Physiol , vol.101 , pp. 993-995
    • Ward, J.P.1
  • 73
    • 0027340241 scopus 로고
    • A redox-based O2 sensor in rat pulmonary vasculature
    • Archer SL, Huang J, Henry T, et al. A redox-based O2 sensor in rat pulmonary vasculature. Circ Res 1993; 73: 1100-1112.
    • (1993) Circ Res , vol.73 , pp. 1100-1112
    • Archer, S.L.1    Huang, J.2    Henry, T.3
  • 74
    • 0037188928 scopus 로고    scopus 로고
    • Diversity in mitochondrial function explains differences in vascular oxygen sensing
    • Michelakis ED, Hampl V, Nsair A, et al. Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ Res 2002; 90: 1307-1315.
    • (2002) Circ Res , vol.90 , pp. 1307-1315
    • Michelakis, E.D.1    Hampl, V.2    Nsair, A.3
  • 75
    • 0029449087 scopus 로고
    • Acute hypoxic pulmonary vasoconstriction: A model of oxygen sensing
    • Michelakis ED, Archer SL, Weir EK. Acute hypoxic pulmonary vasoconstriction: A model of oxygen sensing. Physiol Res 1995; 44: 361-367.
    • (1995) Physiol Res , vol.44 , pp. 361-367
    • Michelakis, E.D.1    Archer, S.L.2    Weir, E.K.3
  • 76
    • 0028916976 scopus 로고
    • The mechanism of acute hypoxic pulmonary vasoconstriction: The tale of two channels
    • Weir EK, Archer SL. The mechanism of acute hypoxic pulmonary vasoconstriction: The tale of two channels. FASEB J 1995; 9: 183-189.
    • (1995) FASEB J , vol.9 , pp. 183-189
    • Weir, E.K.1    Archer, S.L.2
  • 77
    • 0027532142 scopus 로고
    • Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes
    • Yuan XJ, Goldman WF, Tod ML, et al. Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes. Am J Physiol 1993; 264: L116-L123.
    • (1993) Am J Physiol , vol.264 , pp. L116-L123
    • Yuan, X.J.1    Goldman, W.F.2    Tod, M.L.3
  • 78
    • 0026560976 scopus 로고
    • Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction
    • Post JM, Hume JR, Archer SL, et al. Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am J Physiol 1992; 262: C882-C890.
    • (1992) Am J Physiol , vol.262 , pp. C882-C890
    • Post, J.M.1    Hume, J.R.2    Archer, S.L.3
  • 79
    • 0026018088 scopus 로고
    • Effects of K+ channel blockers on vascular tone in the perfused rat lung
    • Hasunuma K, Rodman DM, McMurtry IF. Effects of K+ channel blockers on vascular tone in the perfused rat lung. Am Rev Respir Dis 1991; 144: 884-887.
    • (1991) Am Rev Respir Dis , vol.144 , pp. 884-887
    • Hasunuma, K.1    Rodman, D.M.2    McMurtry, I.F.3
  • 80
    • 0030859539 scopus 로고    scopus 로고
    • Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes
    • Patel AJ, Lazdunski M, Honor E. Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes. EMBO J 1997; 16: 6615-6625.
    • (1997) EMBO J , vol.16 , pp. 6615-6625
    • Patel, A.J.1    Lazdunski, M.2    Honor, E.3
  • 81
    • 0033578666 scopus 로고    scopus 로고
    • Oxygen sensitivity of cloned voltage-gated K+ channels expressed in the pulmonary vasculature
    • Hulme JT, Coppock EA, Felipe A, et al. Oxygen sensitivity of cloned voltage-gated K+ channels expressed in the pulmonary vasculature. Circ Res 1999; 85: 489-497.
    • (1999) Circ Res , vol.85 , pp. 489-497
    • Hulme, J.T.1    Coppock, E.A.2    Felipe, A.3
  • 82
    • 0032104119 scopus 로고    scopus 로고
    • Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes
    • Archer SL, Souil E, Dinh-Xuan AT, et al. Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest 1998; 101: 2319-2330.
    • (1998) J Clin Invest , vol.101 , pp. 2319-2330
    • Archer, S.L.1    Souil, E.2    Dinh-Xuan, A.T.3
  • 83
    • 0029157548 scopus 로고
    • Opposing effects of oxidants and antioxidants on K+ channel activity and tone in rat vascular tissue
    • Reeve HL, Weir EK, Nelson DP, et al. Opposing effects of oxidants and antioxidants on K+ channel activity and tone in rat vascular tissue. Exp Physiol 1995; 80: 825-834.
    • (1995) Exp Physiol , vol.80 , pp. 825-834
    • Reeve, H.L.1    Weir, E.K.2    Nelson, D.P.3
  • 84
    • 0042064112 scopus 로고    scopus 로고
    • Modulation of voltage-dependent K+ channel by redox potential in pulmonary and ear arterial smooth muscle cells of the rabbit
    • Park MK, Bae YM, Lee SH, et al. Modulation of voltage-dependent K+ channel by redox potential in pulmonary and ear arterial smooth muscle cells of the rabbit. Pflugers Arch 1997; 434: 764-771.
    • (1997) Pflugers Arch , vol.434 , pp. 764-771
    • Park, M.K.1    Bae, Y.M.2    Lee, S.H.3
  • 85
    • 64249103563 scopus 로고    scopus 로고
    • Cellular localization of mitochondria contributes to Kv channel-mediated regulation of cellular excitability in pulmonary but not mesenteric circulation
    • Firth AL, Gordienko DV, Yuill KH, et al. Cellular localization of mitochondria contributes to Kv channel-mediated regulation of cellular excitability in pulmonary but not mesenteric circulation. Am J Physiol Lung Cell Mol Physiol 2009; 296: L347-L360.
    • (2009) Am J Physiol Lung Cell Mol Physiol , vol.296 , pp. L347-L360
    • Firth, A.L.1    Gordienko, D.V.2    Yuill, K.H.3
  • 86
    • 0035430621 scopus 로고    scopus 로고
    • Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5
    • Archer SL, London B, Hampl V, et al. Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5. FASEB J 2001; 15: 1801-1803.
    • (2001) FASEB J , vol.15 , pp. 1801-1803
    • Archer, S.L.1    London, B.2    Hampl, V.3
  • 87
    • 58849142043 scopus 로고    scopus 로고
    • Regulation of hypoxic pulmonary vasoconstriction: Basic mechanisms
    • Sommer N, Dietrich A, Schermuly RT, et al. Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. Eur Respir J 2008; 32: 1639-1651.
    • (2008) Eur Respir J , vol.32 , pp. 1639-1651
    • Sommer, N.1    Dietrich, A.2    Schermuly, R.T.3
  • 88
    • 0036667283 scopus 로고    scopus 로고
    • The mechanism(s) of hypoxic pulmonary vasoconstriction: Potassium channels, redox O2 sensors, and controversies
    • Archer S, Michelakis E. The mechanism(s) of hypoxic pulmonary vasoconstriction: Potassium channels, redox O2 sensors, and controversies. News Physiol Sci 2002; 17: 131-137.
    • (2002) News Physiol Sci , vol.17 , pp. 131-137
    • Archer, S.1    Michelakis, E.2
  • 89
    • 34047219789 scopus 로고    scopus 로고
    • Measurement of reactive oxygen species in cardiovascular studies
    • Dikalov S, Griendling KK, Harrison DG. Measurement of reactive oxygen species in cardiovascular studies. Hypertension 2007; 49: 717-727.
    • (2007) Hypertension , vol.49 , pp. 717-727
    • Dikalov, S.1    Griendling, K.K.2    Harrison, D.G.3
  • 90
    • 77649112162 scopus 로고    scopus 로고
    • Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells
    • Waypa GB, Marks JD, Guzy R, et al. Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ Res 2010; 106: 526-535.
    • (2010) Circ Res , vol.106 , pp. 526-535
    • Waypa, G.B.1    Marks, J.D.2    Guzy, R.3
  • 91
    • 33645678826 scopus 로고    scopus 로고
    • Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction
    • Weissmann N, Zeller S, Schfer RU, et al. Impact of mitochondria and NADPH oxidases on acute and sustained hypoxic pulmonary vasoconstriction. Am J Respir Cell Mol Biol 2006; 34: 505-513.
    • (2006) Am J Respir Cell Mol Biol , vol.34 , pp. 505-513
    • Weissmann, N.1    Zeller, S.2    Schfer, R.U.3
  • 92
    • 76249095846 scopus 로고    scopus 로고
    • Hypoxia increases ROS signaling and cytosolic Ca2+ in pulmonary artery smooth muscle cells of mouse lungs slices
    • Desireddi JR, Farrow KN, Marks JD, et al. Hypoxia increases ROS signaling and cytosolic Ca2+ in pulmonary artery smooth muscle cells of mouse lungs slices. Antioxid Redox Signal 2010; 12: 595-602.
    • (2010) Antioxid Redox Signal , vol.12 , pp. 595-602
    • Desireddi, J.R.1    Farrow, K.N.2    Marks, J.D.3
  • 93
    • 0027315383 scopus 로고
    • Characterization and mechanisms of H2O2-induced contractions of pulmonary arteries
    • Sheehan DW, Giese EC, Gugino SF, et al. Characterization and mechanisms of H2O2-induced contractions of pulmonary arteries. Am J Physiol 1993; 264: H1542-H1547.
    • (1993) Am J Physiol , vol.264 , pp. H1542-H1547
    • Sheehan, D.W.1    Giese, E.C.2    Gugino, S.F.3
  • 94
    • 0031078480 scopus 로고    scopus 로고
    • The effect of hydrogen peroxide on hypoxia, prostaglandin F2 alpha and potassium chloride induced contractions in isolated rat pulmonary arteries
    • Jones RD, Thompson JS, Morice AH. The effect of hydrogen peroxide on hypoxia, prostaglandin F2 alpha and potassium chloride induced contractions in isolated rat pulmonary arteries. Pulm Pharmacol Ther 1997; 10: 37-42.
    • (1997) Pulm Pharmacol Ther , vol.10 , pp. 37-42
    • Jones, R.D.1    Thompson, J.S.2    Morice, A.H.3
  • 95
    • 0347716453 scopus 로고    scopus 로고
    • Opposite effects of redox status on membrane potential, cytosolic calcium, and tone in pulmonary arteries and ductus arteriosus
    • Olschewski A, Hong Z, Peterson DA, et al. Opposite effects of redox status on membrane potential, cytosolic calcium, and tone in pulmonary arteries and ductus arteriosus. Am J Physiol Lung Cell Mol Physiol 2004; 286: L15-L22.
    • (2004) Am J Physiol Lung Cell Mol Physiol , vol.286 , pp. L15-L22
    • Olschewski, A.1    Hong, Z.2    Peterson, D.A.3
  • 96
    • 54349129263 scopus 로고    scopus 로고
    • Constriction of pulmonary artery by peroxide: Role of Ca2+ release and PKC
    • Pourmahram GE, Snetkov VA, Shaifta Y, et al. Constriction of pulmonary artery by peroxide: Role of Ca2+ release and PKC. Free Radic Biol Med 2008; 45: 1468-1476.
    • (2008) Free Radic Biol Med , vol.45 , pp. 1468-1476
    • Pourmahram, G.E.1    Snetkov, V.A.2    Shaifta, Y.3
  • 97
    • 0022227031 scopus 로고
    • Redox status and pulmonary vascular reactivity
    • Weir EK, Eaton JW, Chesler E. Redox status and pulmonary vascular reactivity. Chest 1985; 88: Suppl. 4, 249S-252S.
    • (1985) Chest , vol.88 , Issue.4 , pp. 249S-252S
    • Weir, E.K.1    Eaton, J.W.2    Chesler, E.3
  • 98
    • 34548038377 scopus 로고    scopus 로고
    • Superoxide dismutase mimetic tempol inhibits hypoxic pulmonary vasoconstriction in rats independently of nitric oxide production
    • Hodyc D, Snorek M, Brtnicky T, et al. Superoxide dismutase mimetic tempol inhibits hypoxic pulmonary vasoconstriction in rats independently of nitric oxide production. Exp Physiol 2007; 92: 945-951.
    • (2007) Exp Physiol , vol.92 , pp. 945-951
    • Hodyc, D.1    Snorek, M.2    Brtnicky, T.3
  • 99
    • 84923069024 scopus 로고    scopus 로고
    • Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: Focus on ion channels
    • Veit F, Pak O, Brandes RP, et al. Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels. Antioxid Redox Signal 2015; 22: 537-552.
    • (2015) Antioxid Redox Signal , vol.22 , pp. 537-552
    • Veit, F.1    Pak, O.2    Brandes, R.P.3
  • 100
    • 0031836524 scopus 로고    scopus 로고
    • Nitro blue tetrazolium inhibits but does not mimic hypoxic vasoconstriction in isolated rabbit lungs
    • Weissmann N, Grimminger F, Voswinckel R, et al. Nitro blue tetrazolium inhibits but does not mimic hypoxic vasoconstriction in isolated rabbit lungs. Am J Physiol 1998; 274: L721-L727.
    • (1998) Am J Physiol , vol.274 , pp. L721-L727
    • Weissmann, N.1    Grimminger, F.2    Voswinckel, R.3
  • 101
    • 0027193670 scopus 로고
    • Endogenous production of superoxide by rabbit lungs: Effects of hypoxia or metabolic inhibitors
    • Paky A, Michael JR, Burke-Wolin TM, et al. Endogenous production of superoxide by rabbit lungs: Effects of hypoxia or metabolic inhibitors. J Appl Physiol 1993; 74: 2868-2874.
    • (1993) J Appl Physiol , vol.74 , pp. 2868-2874
    • Paky, A.1    Michael, J.R.2    Burke-Wolin, T.M.3
  • 102
    • 33750449016 scopus 로고    scopus 로고
    • Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells
    • Waypa GB, Guzy R, Mungai PT, et al. Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells. Circ Res 2006; 99: 970-978.
    • (2006) Circ Res , vol.99 , pp. 970-978
    • Waypa, G.B.1    Guzy, R.2    Mungai, P.T.3
  • 103
    • 33846804067 scopus 로고    scopus 로고
    • Role of mitochondrial reactive oxygen species in hypoxia-dependent increase in intracellular calcium in pulmonary artery myocytes
    • Wang QS, Zheng YM, Dong L, et al. Role of mitochondrial reactive oxygen species in hypoxia-dependent increase in intracellular calcium in pulmonary artery myocytes. Free Radic Biol Med 2007; 42: 642-653.
    • (2007) Free Radic Biol Med , vol.42 , pp. 642-653
    • Wang, Q.S.1    Zheng, Y.M.2    Dong, L.3
  • 104
    • 84899974607 scopus 로고    scopus 로고
    • The contractile response of isolated small pulmonary arteries induced by activated macrophages
    • Zaloudikova M, Herget J, Vizek M. The contractile response of isolated small pulmonary arteries induced by activated macrophages. Physiol Res 2014; 63: 267-270.
    • (2014) Physiol Res , vol.63 , pp. 267-270
    • Zaloudikova, M.1    Herget, J.2    Vizek, M.3
  • 105
    • 0021996572 scopus 로고
    • Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria
    • Turrens JF, Alexandre A, Lehninger AL. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 1985; 237: 408-414.
    • (1985) Arch Biochem Biophys , vol.237 , pp. 408-414
    • Turrens, J.F.1    Alexandre, A.2    Lehninger, A.L.3
  • 106
    • 0037404364 scopus 로고    scopus 로고
    • Essential role of complex II of the respiratory chain in hypoxia-induced ROS generation in the pulmonary vasculature
    • Paddenberg R, Ishaq B, Goldenberg A, et al. Essential role of complex II of the respiratory chain in hypoxia-induced ROS generation in the pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol 2003; 284: L710-L719.
    • (2003) Am J Physiol Lung Cell Mol Physiol , vol.284 , pp. L710-L719
    • Paddenberg, R.1    Ishaq, B.2    Goldenberg, A.3
  • 107
    • 4544235673 scopus 로고    scopus 로고
    • Calcium, ATP, and ROS: A mitochondrial love-hate triangle
    • Brookes PS, Yoon Y, Robotham JL, et al. Calcium, ATP, and ROS: A mitochondrial love-hate triangle. Am J Physiol Cell Physiol 2004; 287: C817-C833.
    • (2004) Am J Physiol Cell Physiol , vol.287 , pp. C817-C833
    • Brookes, P.S.1    Yoon, Y.2    Robotham, J.L.3
  • 108
    • 33750709308 scopus 로고    scopus 로고
    • Opening mitoKATP increases superoxide generation from complex I of the electron transport chain
    • Andrukhiv A, Costa AD, West IC, et al. Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol Heart Circ Physiol 2006; 291: H2067-H2074.
    • (2006) Am J Physiol Heart Circ Physiol , vol.291 , pp. H2067-H2074
    • Andrukhiv, A.1    Costa, A.D.2    West, I.C.3
  • 109
    • 84884669583 scopus 로고    scopus 로고
    • Superoxide generation by complex III: From mechanistic rationales to functional consequences
    • Bleier L, Drse S. Superoxide generation by complex III: from mechanistic rationales to functional consequences. Biochim Biophys Acta 2013; 1827: 1320-1331.
    • (2013) Biochim Biophys Acta , vol.1827 , pp. 1320-1331
    • Bleier, L.1    Drse, S.2
  • 110
    • 79952444323 scopus 로고    scopus 로고
    • Primary role of mitochondrial Rieske iron-sulfur protein in hypoxic ROS production in pulmonary artery myocytes
    • Korde AS, Yadav VR, Zheng YM, et al. Primary role of mitochondrial Rieske iron-sulfur protein in hypoxic ROS production in pulmonary artery myocytes. Free Radic Biol Med 2011; 50: 945-952.
    • (2011) Free Radic Biol Med , vol.50 , pp. 945-952
    • Korde, A.S.1    Yadav, V.R.2    Zheng, Y.M.3
  • 111
    • 84873962657 scopus 로고    scopus 로고
    • Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation
    • Waypa GB, Marks JD, Guzy RD, et al. Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. Am J Respir Crit Care Med 2013; 187: 424-432.
    • (2013) Am J Respir Crit Care Med , vol.187 , pp. 424-432
    • Waypa, G.B.1    Marks, J.D.2    Guzy, R.D.3
  • 112
    • 80655145900 scopus 로고    scopus 로고
    • Lung cell hypoxia: Role of mitochondrial reactive oxygen species signaling in triggering responses
    • Schumacker PT. Lung cell hypoxia: Role of mitochondrial reactive oxygen species signaling in triggering responses. Proc Am Thorac Soc 2011; 8: 477-484.
    • (2011) Proc Am Thorac Soc , vol.8 , pp. 477-484
    • Schumacker, P.T.1
  • 113
    • 0141815741 scopus 로고    scopus 로고
    • Production of reactive oxygen species by mitochondria: Central role of complex III
    • Chen Q, Vazquez EJ, Moghaddas S, et al. Production of reactive oxygen species by mitochondria: Central role of complex III. J Biol Chem 2003; 278: 36027-36031.
    • (2003) J Biol Chem , vol.278 , pp. 36027-36031
    • Chen, Q.1    Vazquez, E.J.2    Moghaddas, S.3
  • 114
    • 84857956507 scopus 로고    scopus 로고
    • Mitochondrial complex II is essential for hypoxia-induced pulmonary vasoconstriction of intra-but not of pre-acinar arteries
    • Paddenberg R, Tiefenbach M, Faulhammer P, et al. Mitochondrial complex II is essential for hypoxia-induced pulmonary vasoconstriction of intra-but not of pre-acinar arteries. Cardiovasc Res 2012; 93: 702-710.
    • (2012) Cardiovasc Res , vol.93 , pp. 702-710
    • Paddenberg, R.1    Tiefenbach, M.2    Faulhammer, P.3
  • 115
    • 0030292423 scopus 로고    scopus 로고
    • Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction
    • Marshall C, Mamary AJ, Verhoeven AJ, et al. Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction. Am J Respir Cell Mol Biol 1996; 15: 633-644.
    • (1996) Am J Respir Cell Mol Biol , vol.15 , pp. 633-644
    • Marshall, C.1    Mamary, A.J.2    Verhoeven, A.J.3
  • 116
    • 84857233841 scopus 로고    scopus 로고
    • Hypoxia induces Kv channel current inhibition by increased NADPH oxidase-derived reactive oxygen species
    • Mittal M, Gu XQ, Pak O, et al. Hypoxia induces Kv channel current inhibition by increased NADPH oxidase-derived reactive oxygen species. Free Radic Biol Med 2012; 52: 1033-1042.
    • (2012) Free Radic Biol Med , vol.52 , pp. 1033-1042
    • Mittal, M.1    Gu, X.Q.2    Pak, O.3
  • 117
    • 0018712161 scopus 로고
    • Effects of oxygen tension and pH on the respiratory burst of human neutrophils
    • Gabig TG, Bearman SI, Babior BM. Effects of oxygen tension and pH on the respiratory burst of human neutrophils. Blood 1979; 53: 1133-1139.
    • (1979) Blood , vol.53 , pp. 1133-1139
    • Gabig, T.G.1    Bearman, S.I.2    Babior, B.M.3
  • 118
    • 26444602552 scopus 로고    scopus 로고
    • Detection of reactive oxygen species in isolated, perfused lungs by electron spin resonance spectroscopy
    • Weissmann N, Kuzkaya N, Fuchs B, et al. Detection of reactive oxygen species in isolated, perfused lungs by electron spin resonance spectroscopy. Respir Res 2005; 6: 86.
    • (2005) Respir Res , vol.6 , pp. 86
    • Weissmann, N.1    Kuzkaya, N.2    Fuchs, B.3
  • 119
    • 0032942286 scopus 로고    scopus 로고
    • Evidence for a role of protein kinase C in hypoxic pulmonary vasoconstriction
    • Weissmann N, Voswinckel R, Hardebusch T, et al. Evidence for a role of protein kinase C in hypoxic pulmonary vasoconstriction. Am J Physiol 1999; 276: L90-L95.
    • (1999) Am J Physiol , vol.276 , pp. L90-L95
    • Weissmann, N.1    Voswinckel, R.2    Hardebusch, T.3
  • 120
    • 8844220471 scopus 로고    scopus 로고
    • Protein kinases in vascular smooth muscle tone-role in the pulmonary vasculature and hypoxic pulmonary vasoconstriction
    • Ward JP, Knock GA, Snetkov VA, et al. Protein kinases in vascular smooth muscle tone-role in the pulmonary vasculature and hypoxic pulmonary vasoconstriction. Pharmacol Ther 2004; 104: 207-231.
    • (2004) Pharmacol Ther , vol.104 , pp. 207-231
    • Ward, J.P.1    Knock, G.A.2    Snetkov, V.A.3
  • 121
    • 53449086013 scopus 로고    scopus 로고
    • Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through mitochondrial ROS-PKC signaling axis in pulmonary artery smooth muscle cells
    • Rathore R, Zheng YM, Niu CF, et al. Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through mitochondrial ROS-PKC signaling axis in pulmonary artery smooth muscle cells. Free Radic Biol Med 2008; 45: 1223-1231.
    • (2008) Free Radic Biol Med , vol.45 , pp. 1223-1231
    • Rathore, R.1    Zheng, Y.M.2    Niu, C.F.3
  • 122
    • 79960024246 scopus 로고    scopus 로고
    • Ceramide inhibits KV currents and contributes to TP-receptor-induced vasoconstriction in rat and human pulmonary arteries
    • Moral-Sanz J, Gonzalez T, Menendez C, et al. Ceramide inhibits KV currents and contributes to TP-receptor-induced vasoconstriction in rat and human pulmonary arteries. Am J Physiol Cell Physiol 2011; 301: C186-C194.
    • (2011) Am J Physiol Cell Physiol , vol.301 , pp. C186-C194
    • Moral-Sanz, J.1    Gonzalez, T.2    Menendez, C.3
  • 123
    • 66049140154 scopus 로고    scopus 로고
    • Activation of neutral sphingomyelinase is involved in acute hypoxic pulmonary vasoconstriction
    • Cogolludo A, Moreno L, Frazziano G, et al. Activation of neutral sphingomyelinase is involved in acute hypoxic pulmonary vasoconstriction. Cardiovasc Res 2009; 82: 296-302.
    • (2009) Cardiovasc Res , vol.82 , pp. 296-302
    • Cogolludo, A.1    Moreno, L.2    Frazziano, G.3
  • 124
  • 125
    • 79960663273 scopus 로고    scopus 로고
    • Neutral sphingomyelinase, NADPH oxidase and reactive oxygen species. Role in acute hypoxic pulmonary vasoconstriction
    • Frazziano G, Moreno L, Moral-Sanz J, et al. Neutral sphingomyelinase, NADPH oxidase and reactive oxygen species. Role in acute hypoxic pulmonary vasoconstriction. J Cell Physiol 2011; 226: 2633-2640.
    • (2011) J Cell Physiol , vol.226 , pp. 2633-2640
    • Frazziano, G.1    Moreno, L.2    Moral-Sanz, J.3
  • 126
    • 0033529173 scopus 로고    scopus 로고
    • O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase
    • Archer SL, Reeve HL, Michelakis E, et al. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc Natl Acad Sci USA 1999; 96: 7944-7949.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 7944-7949
    • Archer, S.L.1    Reeve, H.L.2    Michelakis, E.3
  • 127
    • 27544443327 scopus 로고    scopus 로고
    • Molecular composition and regulation of the Nox family NAD(P)H oxidases
    • Sumimoto H, Miyano K, Takeya R. Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun 2005; 338: 677-686.
    • (2005) Biochem Biophys Res Commun , vol.338 , pp. 677-686
    • Sumimoto, H.1    Miyano, K.2    Takeya, R.3
  • 128
    • 34548330008 scopus 로고    scopus 로고
    • Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature
    • Mittal M, Roth M, König P, et al. Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res 2007; 101: 258-267.
    • (2007) Circ Res , vol.101 , pp. 258-267
    • Mittal, M.1    Roth, M.2    König, P.3
  • 129
    • 84875109316 scopus 로고    scopus 로고
    • Increased p22phox/Nox4 expression is involved in remodeling through hydrogen peroxide signaling in experimental persistent pulmonary hypertension of the newborn
    • Wedgwood S, Lakshminrusimha S, Czech L, et al. Increased p22phox/Nox4 expression is involved in remodeling through hydrogen peroxide signaling in experimental persistent pulmonary hypertension of the newborn. Antioxid Redox Signal 2013; 18: 1765-1776.
    • (2013) Antioxid Redox Signal , vol.18 , pp. 1765-1776
    • Wedgwood, S.1    Lakshminrusimha, S.2    Czech, L.3
  • 130
    • 79956121323 scopus 로고    scopus 로고
    • Nrf2 regulates hyperoxia-induced Nox4 expression in human lung endothelium: Identification of functional antioxidant response elements on the Nox4 promoter
    • Pendyala S, Moitra J, Kalari S, et al. Nrf2 regulates hyperoxia-induced Nox4 expression in human lung endothelium: Identification of functional antioxidant response elements on the Nox4 promoter. Free Radic Biol Med 2011; 50: 1749-1759.
    • (2011) Free Radic Biol Med , vol.50 , pp. 1749-1759
    • Pendyala, S.1    Moitra, J.2    Kalari, S.3
  • 131
    • 77952635756 scopus 로고    scopus 로고
    • Roles for Nox4 in the contractile response of bovine pulmonary arteries to hypoxia
    • Ahmad M, Kelly MR, Zhao X, et al. Roles for Nox4 in the contractile response of bovine pulmonary arteries to hypoxia. Am J Physiol Heart Circ Physiol 2010; 298: H1879-H1888.
    • (2010) Am J Physiol Heart Circ Physiol , vol.298 , pp. H1879-H1888
    • Ahmad, M.1    Kelly, M.R.2    Zhao, X.3
  • 132
    • 29044437140 scopus 로고    scopus 로고
    • Nox4 as an oxygen sensor to regulate TASK-1 activity
    • Lee YM, Kim BJ, Chun YS, et al. Nox4 as an oxygen sensor to regulate TASK-1 activity. Cell Signal 2006; 18: 499-507.
    • (2006) Cell Signal , vol.18 , pp. 499-507
    • Lee, Y.M.1    Kim, B.J.2    Chun, Y.S.3
  • 133
    • 33646816053 scopus 로고    scopus 로고
    • Impact of TASK-1 in human pulmonary artery smooth muscle cells
    • Olschewski A, Li Y, Tang B, et al. Impact of TASK-1 in human pulmonary artery smooth muscle cells. Circ Res 2006; 98: 1072-1080.
    • (2006) Circ Res , vol.98 , pp. 1072-1080
    • Olschewski, A.1    Li, Y.2    Tang, B.3
  • 134
    • 84872202945 scopus 로고    scopus 로고
    • Src tyrosine kinase is crucial for potassium channel function in human pulmonary arteries
    • Nagaraj C, Tang B, Balint Z, et al. Src tyrosine kinase is crucial for potassium channel function in human pulmonary arteries. Eur Respir J 2013; 41: 85-95.
    • (2013) Eur Respir J , vol.41 , pp. 85-95
    • Nagaraj, C.1    Tang, B.2    Balint, Z.3
  • 135
    • 0025887009 scopus 로고
    • Inhibition of hypoxic pulmonary vasoconstriction by diphenyleneiodonium
    • Thomas HM 3rd, Carson RC, Fried ED, et al. Inhibition of hypoxic pulmonary vasoconstriction by diphenyleneiodonium. Biochem Pharmacol 1991; 42: R9-R12.
    • (1991) Biochem Pharmacol , vol.42 , pp. R9-R12
    • Thomas, H.M.1    Carson, R.C.2    Fried, E.D.3
  • 136
    • 0029015294 scopus 로고
    • Effects of NADPH oxidase inhibitors on hypoxic vasoconstriction in buffer-perfused rabbit lungs
    • Grimminger F, Weissmann N, Spriestersbach R, et al. Effects of NADPH oxidase inhibitors on hypoxic vasoconstriction in buffer-perfused rabbit lungs. Am J Physiol 1995; 268: L747-L752.
    • (1995) Am J Physiol , vol.268 , pp. L747-L752
    • Grimminger, F.1    Weissmann, N.2    Spriestersbach, R.3
  • 137
    • 0033678986 scopus 로고    scopus 로고
    • The NADPH oxidase inhibitors iodonium diphenyl and cadmium sulphate inhibit hypoxic pulmonary vasoconstriction in isolated rat pulmonary arteries
    • Jones RD, Thompson JS, Morice AH. The NADPH oxidase inhibitors iodonium diphenyl and cadmium sulphate inhibit hypoxic pulmonary vasoconstriction in isolated rat pulmonary arteries. Physiol Res 2000; 49: 587-596.
    • (2000) Physiol Res , vol.49 , pp. 587-596
    • Jones, R.D.1    Thompson, J.S.2    Morice, A.H.3
  • 138
    • 0033679719 scopus 로고    scopus 로고
    • Hypoxic vasoconstriction in intact lungs a role for NADPH oxidase-derived H2O2
    • Weissmann N, Tadic A, Hönze J, et al. Hypoxic vasoconstriction in intact lungs: A role for NADPH oxidase-derived H2O2 Am J Physiol Lung Cell Mol Physiol 2000; 279: L683-L690.
    • (2000) Am J Physiol Lung Cell Mol Physiol , vol.279 , pp. L683-L690
    • Weissmann, N.1    Tadic, A.2    Hönze, J.3
  • 139
    • 0041461858 scopus 로고    scopus 로고
    • Hypoxia enhances a cGMP-independent nitric oxide relaxing mechanism in pulmonary arteries
    • Mingone CJ, Gupte SA, Iesaki T, et al. Hypoxia enhances a cGMP-independent nitric oxide relaxing mechanism in pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 2003; 285: L296-L304.
    • (2003) Am J Physiol Lung Cell Mol Physiol , vol.285 , pp. L296-L304
    • Mingone, C.J.1    Gupte, S.A.2    Iesaki, T.3
  • 140
    • 22444433668 scopus 로고    scopus 로고
    • Oxidant and redox signaling in vascular oxygen sensing mechanisms: Basic concepts, current controversies, and potential importance of cytosolic NADPH
    • Wolin MS, Ahmad M, Gupte SA. Oxidant and redox signaling in vascular oxygen sensing mechanisms: basic concepts, current controversies, and potential importance of cytosolic NADPH. Am J Physiol Lung Cell Mol Physiol 2005; 289: L159-L173.
    • (2005) Am J Physiol Lung Cell Mol Physiol , vol.289 , pp. L159-L173
    • Wolin, M.S.1    Ahmad, M.2    Gupte, S.A.3
  • 141
    • 77953530947 scopus 로고    scopus 로고
    • Activation of glucose-6-phosphate dehydrogenase promotes acute hypoxic pulmonary artery contraction
    • Gupte RS, Rawat DK, Chettimada S, et al. Activation of glucose-6-phosphate dehydrogenase promotes acute hypoxic pulmonary artery contraction. J Biol Chem 2010; 285: 19561-19571.
    • (2010) J Biol Chem , vol.285 , pp. 19561-19571
    • Gupte, R.S.1    Rawat, D.K.2    Chettimada, S.3
  • 142
    • 84923106525 scopus 로고    scopus 로고
    • Redox regulation of ion channels in the pulmonary circulation
    • Olschewski A, Weir EK. Redox regulation of ion channels in the pulmonary circulation. Antioxid Redox Signal 2015; 22: 465-485.
    • (2015) Antioxid Redox Signal , vol.22 , pp. 465-485
    • Olschewski, A.1    Weir, E.K.2
  • 143
    • 0024600471 scopus 로고
    • Effects of verapamil and BAY K 8644 on the hypoxic contraction of the isolated human pulmonary artery
    • Ohe M, Ogata M, Shirato K, et al. Effects of verapamil and BAY K 8644 on the hypoxic contraction of the isolated human pulmonary artery. Tohoku J Exp Med 1989; 157: 81-82.
    • (1989) Tohoku J Exp Med , vol.157 , pp. 81-82
    • Ohe, M.1    Ogata, M.2    Shirato, K.3
  • 144
    • 0017281685 scopus 로고
    • Attenuation of hypoxic pulmonary vasoconstriction by verapamil in intact dogs
    • Tucker A, McMurtry IF, Grover RF, et al. Attenuation of hypoxic pulmonary vasoconstriction by verapamil in intact dogs. Proc Soc Exp Biol Med 1976; 151: 611-614.
    • (1976) Proc Soc Exp Biol Med , vol.151 , pp. 611-614
    • Tucker, A.1    McMurtry, I.F.2    Grover, R.F.3
  • 145
    • 77957920016 scopus 로고    scopus 로고
    • A role for receptor-operated Ca2+ entry in human pulmonary artery smooth muscle cells in response to hypoxia
    • Tang C, To WK, Meng F, et al. A role for receptor-operated Ca2+ entry in human pulmonary artery smooth muscle cells in response to hypoxia. Physiol Res 2010; 59: 909-918.
    • (2010) Physiol Res , vol.59 , pp. 909-918
    • Tang, C.1    To, W.K.2    Meng, F.3
  • 146
    • 34447555642 scopus 로고    scopus 로고
    • Hydrogen peroxide-induced Ca2+ mobilization in pulmonary arterial smooth muscle cells
    • Lin MJ, Yang XR, Cao YN, et al. Hydrogen peroxide-induced Ca2+ mobilization in pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2007; 292: L1598-L1608.
    • (2007) Am J Physiol Lung Cell Mol Physiol , vol.292 , pp. L1598-L1608
    • Lin, M.J.1    Yang, X.R.2    Cao, Y.N.3
  • 147
    • 78649479405 scopus 로고    scopus 로고
    • Hypoxia induces intracellular Ca2+ release by causing reactive oxygen species-mediated dissociation of FK506-binding protein 12.6 from ryanodine receptor 2 in pulmonary artery myocytes
    • Liao B, Zheng YM, Yadav VR, et al. Hypoxia induces intracellular Ca2+ release by causing reactive oxygen species-mediated dissociation of FK506-binding protein 12.6 from ryanodine receptor 2 in pulmonary artery myocytes. Antioxid Redox Signal 2011; 14: 37-47.
    • (2011) Antioxid Redox Signal , vol.14 , pp. 37-47
    • Liao, B.1    Zheng, Y.M.2    Yadav, V.R.3
  • 148
    • 20844432485 scopus 로고    scopus 로고
    • Inhibition of hypoxic pulmonary vasoconstriction by antagonists of store-operated Ca2+ and nonselective cation channels
    • Weigand L, Foxson J, Wang J, et al. Inhibition of hypoxic pulmonary vasoconstriction by antagonists of store-operated Ca2+ and nonselective cation channels. Am J Physiol Lung Cell Mol Physiol 2005; 289: L5-L13.
    • (2005) Am J Physiol Lung Cell Mol Physiol , vol.289 , pp. L5-L13
    • Weigand, L.1    Foxson, J.2    Wang, J.3
  • 149
    • 84937511107 scopus 로고    scopus 로고
    • TRPV4 is required for hypoxic pulmonary vasoconstriction
    • Goldenberg NM, Wang L, Ranke H, et al. TRPV4 is required for hypoxic pulmonary vasoconstriction. Anesthesiology 2015; 122: 1338-1348.
    • (2015) Anesthesiology , vol.122 , pp. 1338-1348
    • Goldenberg, N.M.1    Wang, L.2    Ranke, H.3
  • 150
    • 0017662620 scopus 로고
    • Sodium ions as blocking agents and charge carriers in the potassium channel of the squid giant axon
    • French RJ, Wells JB. Sodium ions as blocking agents and charge carriers in the potassium channel of the squid giant axon. J Gen Physiol 1977; 70: 707-724.
    • (1977) J Gen Physiol , vol.70 , pp. 707-724
    • French, R.J.1    Wells, J.B.2
  • 151
    • 79551610438 scopus 로고    scopus 로고
    • Diacylglycerol regulates acute hypoxic pulmonary vasoconstriction via TRPC6
    • Fuchs B, Rupp M, Ghofrani HA, et al. Diacylglycerol regulates acute hypoxic pulmonary vasoconstriction via TRPC6. Respir Res 2011; 12: 20.
    • (2011) Respir Res , vol.12 , pp. 20
    • Fuchs, B.1    Rupp, M.2    Ghofrani, H.A.3
  • 152
    • 84856692677 scopus 로고    scopus 로고
    • Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice
    • Weissmann N, Sydykov A, Kalwa H, et al. Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice. Nat Commun 2012; 3: 649.
    • (2012) Nat Commun , vol.3 , pp. 649
    • Weissmann, N.1    Sydykov, A.2    Kalwa, H.3
  • 153
    • 34247600505 scopus 로고    scopus 로고
    • Silica induces macrophage cytokines through phosphatidylcholine-specific phospholipase C with hydrogen peroxide
    • Liu H, Zhang H, Forman HJ. Silica induces macrophage cytokines through phosphatidylcholine-specific phospholipase C with hydrogen peroxide. Am J Respir Cell Mol Biol 2007; 36: 594-599.
    • (2007) Am J Respir Cell Mol Biol , vol.36 , pp. 594-599
    • Liu, H.1    Zhang, H.2    Forman, H.J.3
  • 154
    • 0033105530 scopus 로고    scopus 로고
    • A phosphatidylcholine-specific phospholipase C regulates activation of p42/44 mitogen-activated protein kinases in lipopolysaccharide-stimulated human alveolar macrophages
    • Monick MM, Carter AB, Gudmundsson G, et al. A phosphatidylcholine-specific phospholipase C regulates activation of p42/44 mitogen-activated protein kinases in lipopolysaccharide-stimulated human alveolar macrophages. J Immunol 1999; 162: 3005-3012.
    • (1999) J Immunol , vol.162 , pp. 3005-3012
    • Monick, M.M.1    Carter, A.B.2    Gudmundsson, G.3
  • 155
    • 84961289697 scopus 로고    scopus 로고
    • CFTR and sphingolipids mediate hypoxic pulmonary vasoconstriction
    • Tabeling C, Yu H, Wang L, et al. CFTR and sphingolipids mediate hypoxic pulmonary vasoconstriction. Proc Natl Acad Sci USA 2015; 112: E1614-E1623.
    • (2015) Proc Natl Acad Sci USA , vol.112 , pp. E1614-E1623
    • Tabeling, C.1    Yu, H.2    Wang, L.3
  • 156
    • 33750688219 scopus 로고    scopus 로고
    • Mitochondrial ROS-PKC signaling axis is uniquely involved in hypoxic increase in [Ca2+]i in pulmonary artery smooth muscle cells
    • Rathore R, Zheng YM, Li XQ, et al. Mitochondrial ROS-PKC signaling axis is uniquely involved in hypoxic increase in [Ca2+]i in pulmonary artery smooth muscle cells. Biochem Biophys Res Commun 2006; 351: 784-790.
    • (2006) Biochem Biophys Res Commun , vol.351 , pp. 784-790
    • Rathore, R.1    Zheng, Y.M.2    Li, X.Q.3
  • 157
    • 0037378367 scopus 로고    scopus 로고
    • Protein kinase C-null mice have decreased hypoxic pulmonary vasoconstriction
    • Littler CM, Morris KG Jr, Fagan KA, et al. Protein kinase C-null mice have decreased hypoxic pulmonary vasoconstriction. Am J Physiol Heart Circ Physiol 2003; 284: H1321-H1331.
    • (2003) Am J Physiol Heart Circ Physiol , vol.284 , pp. H1321-H1331
    • Littler, C.M.1    Morris, K.G.2    Fagan, K.A.3
  • 158
    • 0026650228 scopus 로고
    • Pulmonary arterial hypoxic contraction: Signal transduction
    • Jin N, Packer CS, Rhoades RA. Pulmonary arterial hypoxic contraction: Signal transduction. Am J Physiol 1992; 263: L73-L78.
    • (1992) Am J Physiol , vol.263 , pp. L73-L78
    • Jin, N.1    Packer, C.S.2    Rhoades, R.A.3
  • 159
    • 8644286380 scopus 로고    scopus 로고
    • Hypoxic pulmonary vasoconstriction and pulmonary artery tissue cytokine expression are mediated by protein kinase C
    • Tsai BM, Wang M, Pitcher JM, et al. Hypoxic pulmonary vasoconstriction and pulmonary artery tissue cytokine expression are mediated by protein kinase C. Am J Physiol Lung Cell Mol Physiol 2004; 287: L1215-L1219.
    • (2004) Am J Physiol Lung Cell Mol Physiol , vol.287 , pp. L1215-L1219
    • Tsai, B.M.1    Wang, M.2    Pitcher, J.M.3
  • 160
    • 0141841763 scopus 로고    scopus 로고
    • Capacitative calcium entry as a pulmonary specific vasoconstrictor mechanism in small muscular arteries of the rat
    • Snetkov VA, Aaronson PI, Ward JP, et al. Capacitative calcium entry as a pulmonary specific vasoconstrictor mechanism in small muscular arteries of the rat. Br J Pharmacol 2003; 140: 97-106.
    • (2003) Br J Pharmacol , vol.140 , pp. 97-106
    • Snetkov, V.A.1    Aaronson, P.I.2    Ward, J.P.3
  • 161
    • 67651202231 scopus 로고    scopus 로고
    • ASIC1 contributes to pulmonary vascular smooth muscle store-operated Ca2+ entry
    • Jernigan NL, Paffett ML, Walker BR, et al. ASIC1 contributes to pulmonary vascular smooth muscle store-operated Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 2009; 297: L271-L285.
    • (2009) Am J Physiol Lung Cell Mol Physiol , vol.297 , pp. L271-L285
    • Jernigan, N.L.1    Paffett, M.L.2    Walker, B.R.3
  • 162
    • 84891540234 scopus 로고    scopus 로고
    • Role of ASIC1 in the development of chronic hypoxia-induced pulmonary hypertension
    • Nitta CH, Osmond DA, Herbert LM, et al. Role of ASIC1 in the development of chronic hypoxia-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 2014; 306: H41-H52.
    • (2014) Am J Physiol Heart Circ Physiol , vol.306 , pp. H41-H52
    • Nitta, C.H.1    Osmond, D.A.2    Herbert, L.M.3
  • 163
    • 0030609065 scopus 로고    scopus 로고
    • Ca2+ release from intracellular stores is an initial step in hypoxic pulmonary vasoconstriction of rat pulmonary artery resistance vessels
    • Gelband CH, Gelband H. Ca2+ release from intracellular stores is an initial step in hypoxic pulmonary vasoconstriction of rat pulmonary artery resistance vessels. Circulation 1997; 96: 3647-3654.
    • (1997) Circulation , vol.96 , pp. 3647-3654
    • Gelband, C.H.1    Gelband, H.2
  • 164
    • 0036090048 scopus 로고    scopus 로고
    • Ca2+ release from ryanodine-sensitive store contributes to mechanism of hypoxic vasoconstriction in rat lungs
    • Morio Y, McMurtry IF. Ca2+ release from ryanodine-sensitive store contributes to mechanism of hypoxic vasoconstriction in rat lungs. J Appl Physiol 2002; 92: 527-534.
    • (2002) J Appl Physiol , vol.92 , pp. 527-534
    • Morio, Y.1    McMurtry, I.F.2
  • 165
    • 0030870880 scopus 로고    scopus 로고
    • Prominent role of intracellular Ca2+ release in hypoxic vasoconstriction of canine pulmonary artery
    • Jabr RI, Toland H, Gelband CH, et al. Prominent role of intracellular Ca2+ release in hypoxic vasoconstriction of canine pulmonary artery. Br J Pharmacol 1997; 122: 21-30.
    • (1997) Br J Pharmacol , vol.122 , pp. 21-30
    • Jabr, R.I.1    Toland, H.2    Gelband, C.H.3
  • 166
    • 0037192509 scopus 로고    scopus 로고
    • Characterization of hypoxia-induced [Ca2+]i rise in rabbit pulmonary arterial smooth muscle cells
    • Kang TM, Park MK, Uhm DY. Characterization of hypoxia-induced [Ca2+]i rise in rabbit pulmonary arterial smooth muscle cells. Life Sci 2002; 70: 2321-2333.
    • (2002) Life Sci , vol.70 , pp. 2321-2333
    • Kang, T.M.1    Park, M.K.2    Uhm, D.Y.3
  • 167
    • 0034890091 scopus 로고    scopus 로고
    • Hypoxic release of calcium from the sarcoplasmic reticulum of pulmonary artery smooth muscle
    • Dipp M, Nye PC, Evans AM. Hypoxic release of calcium from the sarcoplasmic reticulum of pulmonary artery smooth muscle. Am J Physiol Lung Cell Mol Physiol 2001; 281: L318-L325.
    • (2001) Am J Physiol Lung Cell Mol Physiol , vol.281 , pp. L318-L325
    • Dipp, M.1    Nye, P.C.2    Evans, A.M.3
  • 168
    • 84862189266 scopus 로고    scopus 로고
    • Extracellular calcium-sensing receptor is critical in hypoxic pulmonary vasoconstriction
    • Zhang J, Zhou J, Cai L, et al. Extracellular calcium-sensing receptor is critical in hypoxic pulmonary vasoconstriction. Antioxid Redox Signal 2012; 17: 471-484.
    • (2012) Antioxid Redox Signal , vol.17 , pp. 471-484
    • Zhang, J.1    Zhou, J.2    Cai, L.3
  • 169
    • 33748468804 scopus 로고    scopus 로고
    • Hypoxic pulmonary vasoconstriction is/is not mediated by increased production of reactive oxygen species
    • Aaronson PI. Hypoxic pulmonary vasoconstriction is/is not mediated by increased production of reactive oxygen species. J Appl Physiol 2006; 101: 1000.
    • (2006) J Appl Physiol , vol.101 , pp. 1000
    • Aaronson, P.I.1
  • 170
    • 0029953806 scopus 로고    scopus 로고
    • Adenine nucleotides via activation of ATP-sensitive K+ channels modulate hypoxic response in rat pulmonary artery
    • Shigemori K, Ishizaki T, Matsukawa S, et al. Adenine nucleotides via activation of ATP-sensitive K+ channels modulate hypoxic response in rat pulmonary artery. Am J Physiol 1996; 270: L803-L809.
    • (1996) Am J Physiol , vol.270 , pp. L803-L809
    • Shigemori, K.1    Ishizaki, T.2    Matsukawa, S.3
  • 171
    • 0034058481 scopus 로고    scopus 로고
    • Energy state, pH, and vasomotor tone during hypoxia in precontracted pulmonary and femoral arteries
    • Leach RM, Sheehan DW, Chacko VP, et al. Energy state, pH, and vasomotor tone during hypoxia in precontracted pulmonary and femoral arteries. Am J Physiol Lung Cell Mol Physiol 2000; 278: L294-L304.
    • (2000) Am J Physiol Lung Cell Mol Physiol , vol.278 , pp. L294-L304
    • Leach, R.M.1    Sheehan, D.W.2    Chacko, V.P.3
  • 173
    • 52049125207 scopus 로고    scopus 로고
    • AMP-activated protein kinase and hypoxic pulmonary vasoconstriction
    • Robertson TP, Mustard KJ, Lewis TH, et al. AMP-activated protein kinase and hypoxic pulmonary vasoconstriction. Eur J Pharmacol 2008; 595: 39-43.
    • (2008) Eur J Pharmacol , vol.595 , pp. 39-43
    • Robertson, T.P.1    Mustard, K.J.2    Lewis, T.H.3
  • 174
    • 15744366406 scopus 로고    scopus 로고
    • MitoKATP channel activation in the postanoxic developing heart protects E-C coupling via NO-, ROS-, and PKC-dependent pathways
    • Sarre A, Lange N, Kucera P, et al. MitoKATP channel activation in the postanoxic developing heart protects E-C coupling via NO-, ROS-, and PKC-dependent pathways. Am J Physiol Heart Circ Physiol 2005; 288: H1611-H1619.
    • (2005) Am J Physiol Heart Circ Physiol , vol.288 , pp. H1611-H1619
    • Sarre, A.1    Lange, N.2    Kucera, P.3
  • 175
    • 67651235799 scopus 로고    scopus 로고
    • Impact of modulators of mitochondrial ATP-sensitive potassium channel (mitoKATP) on hypoxic pulmonary vasoconstriction
    • Paddenberg R, Faulhammer P, Goldenberg A, et al. Impact of modulators of mitochondrial ATP-sensitive potassium channel (mitoKATP) on hypoxic pulmonary vasoconstriction. Adv Exp Med Biol 2009; 648: 361-368.
    • (2009) Adv Exp Med Biol , vol.648 , pp. 361-368
    • Paddenberg, R.1    Faulhammer, P.2    Goldenberg, A.3
  • 176
    • 76749121885 scopus 로고    scopus 로고
    • 5-Hydroxydecanoate and coenzyme A are inhibitors of native sarcolemmal KATP channels in inside-out patches
    • Li X, Rapedius M, Baukrowitz T, et al. 5-Hydroxydecanoate and coenzyme A are inhibitors of native sarcolemmal KATP channels in inside-out patches. Biochim Biophys Acta 2010; 1800: 385-391.
    • (2010) Biochim Biophys Acta , vol.1800 , pp. 385-391
    • Li, X.1    Rapedius, M.2    Baukrowitz, T.3
  • 177
    • 84884384095 scopus 로고    scopus 로고
    • Thiosulfate: A readily accessible source of hydrogen sulfide in oxygen sensing
    • Olson KR, Deleon ER, Gao Y, et al. Thiosulfate: A readily accessible source of hydrogen sulfide in oxygen sensing. Am J Physiol Regul Integr Comp Physiol 2013; 305: R592-R603.
    • (2013) Am J Physiol Regul Integr Comp Physiol , vol.305 , pp. R592-R603
    • Olson, K.R.1    Deleon, E.R.2    Gao, Y.3
  • 178
    • 73549125228 scopus 로고    scopus 로고
    • Hypoxic pulmonary vasodilation: A paradigm shift with a hydrogen sulfide mechanism
    • Olson KR, Whitfield NL, Bearden SE, et al. Hypoxic pulmonary vasodilation: A paradigm shift with a hydrogen sulfide mechanism. Am J Physiol Regul Integr Comp Physiol 2010; 298: R51-R60.
    • (2010) Am J Physiol Regul Integr Comp Physiol , vol.298 , pp. R51-R60
    • Olson, K.R.1    Whitfield, N.L.2    Bearden, S.E.3
  • 179
    • 84865768879 scopus 로고    scopus 로고
    • Hydrogen sulfide mediates hypoxic vasoconstriction through a production of mitochondrial ROS in trout gills
    • Skovgaard N, Olson KR. Hydrogen sulfide mediates hypoxic vasoconstriction through a production of mitochondrial ROS in trout gills. Am J Physiol Regul Integr Comp Physiol 2012; 303: R487-R494.
    • (2012) Am J Physiol Regul Integr Comp Physiol , vol.303 , pp. R487-R494
    • Skovgaard, N.1    Olson, K.R.2
  • 180
    • 84920982869 scopus 로고    scopus 로고
    • Hypoxic pulmonary vasoconstriction in isolated rat pulmonary arteries is not inhibited by antagonists of H2S-synthesizing pathways
    • Prieto-Lloret J, Shaifta Y, Ward JP, et al. Hypoxic pulmonary vasoconstriction in isolated rat pulmonary arteries is not inhibited by antagonists of H2S-synthesizing pathways. J Physiol 2015; 593: 385-401.
    • (2015) J Physiol , vol.593 , pp. 385-401
    • Prieto-Lloret, J.1    Shaifta, Y.2    Ward, J.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.