-
1
-
-
0029160251
-
Isolation and characterization of the gene encoding xylose reductase from Kluyveromyces Lactis
-
Billard P., Menart S., Fleer R., Bolotinfukuhara M. Isolation and characterization of the gene encoding xylose reductase from Kluyveromyces Lactis. Gene 1995, 162:93-97.
-
(1995)
Gene
, vol.162
, pp. 93-97
-
-
Billard, P.1
Menart, S.2
Fleer, R.3
Bolotinfukuhara, M.4
-
2
-
-
64749094343
-
Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae
-
Brat D., Boles E., Wiedemann B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2009, 75:2304-2311.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 2304-2311
-
-
Brat, D.1
Boles, E.2
Wiedemann, B.3
-
3
-
-
84876061998
-
Sedoheptulose accumulation under CO2 enrichment in leaves of Kalanchoe pinnata: a novel mechanism to enhance C and P homeostasis?
-
Ceusters J., Godts C., Peshev D., Vergauwen R., Dyubankova N., Lescrinier E., De Proft M.P., Van den Ende W. Sedoheptulose accumulation under CO2 enrichment in leaves of Kalanchoe pinnata: a novel mechanism to enhance C and P homeostasis?. J. Exp. Bot. 2013, 64:1497-1507.
-
(2013)
J. Exp. Bot.
, vol.64
, pp. 1497-1507
-
-
Ceusters, J.1
Godts, C.2
Peshev, D.3
Vergauwen, R.4
Dyubankova, N.5
Lescrinier, E.6
De Proft, M.P.7
Van den Ende, W.8
-
4
-
-
54349088296
-
Metabolite profiling of human colon carcinoma--deregulation of TCA cycle and amino acid turnover
-
Denkert C., Budczies J., Weichert W., Wohlgemuth G., Scholz M., Kind T., Niesporek S., Noske A., Buckendahl A., Dietel M., Fiehn O. Metabolite profiling of human colon carcinoma--deregulation of TCA cycle and amino acid turnover. Mol. Cancer. 2008, 7:72.
-
(2008)
Mol. Cancer.
, vol.7
, pp. 72
-
-
Denkert, C.1
Budczies, J.2
Weichert, W.3
Wohlgemuth, G.4
Scholz, M.5
Kind, T.6
Niesporek, S.7
Noske, A.8
Buckendahl, A.9
Dietel, M.10
Fiehn, O.11
-
5
-
-
84890317534
-
Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution
-
Diao L., Liu Y., Qian F., Yang J., Jiang Y., Yang S. Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. BMC Biotechnol. 2013, 13:110.
-
(2013)
BMC Biotechnol.
, vol.13
, pp. 110
-
-
Diao, L.1
Liu, Y.2
Qian, F.3
Yang, J.4
Jiang, Y.5
Yang, S.6
-
6
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
DiCarlo J.E., Norville J.E., Mali P., Rios X., Aach J., Church G.M. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013, 41:4336-4343.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 4336-4343
-
-
DiCarlo, J.E.1
Norville, J.E.2
Mali, P.3
Rios, X.4
Aach, J.5
Church, G.M.6
-
7
-
-
84940030208
-
Systematic applications of metabolomics in metabolic engineering
-
Dromms R.A., Styczynski M.P. Systematic applications of metabolomics in metabolic engineering. Metabolites 2012, 2:1090-1122.
-
(2012)
Metabolites
, vol.2
, pp. 1090-1122
-
-
Dromms, R.A.1
Styczynski, M.P.2
-
8
-
-
84898053053
-
Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose
-
Farwick A., Bruder S., Schadeweg V., Oreb M., Boles E. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc. Natl. Acad. Sci. U. S. A 2014, 111:5159-5164.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A
, vol.111
, pp. 5159-5164
-
-
Farwick, A.1
Bruder, S.2
Schadeweg, V.3
Oreb, M.4
Boles, E.5
-
9
-
-
84858748257
-
Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural
-
Fujitomi K., Sanda T., Hasunuma T., Kondo A. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Bioresour. Technol. 2012, 111:161-166.
-
(2012)
Bioresour. Technol.
, vol.111
, pp. 161-166
-
-
Fujitomi, K.1
Sanda, T.2
Hasunuma, T.3
Kondo, A.4
-
10
-
-
34548789083
-
Metabolic engineering for pentose utilization in Saccharomyces cerevisiae
-
Hahn-Hagerdal B., Karhumaa K., Jeppsson M., Gorwa-Grauslund M.F. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 2007, 108:147-177.
-
(2007)
Adv. Biochem. Eng. Biotechnol.
, vol.108
, pp. 147-177
-
-
Hahn-Hagerdal, B.1
Karhumaa, K.2
Jeppsson, M.3
Gorwa-Grauslund, M.F.4
-
11
-
-
79551482115
-
Understanding and engineering of microbial cells based on proteomics and its conjunction with other omics studies
-
Han M.J., Lee J.W., Lee S.Y. Understanding and engineering of microbial cells based on proteomics and its conjunction with other omics studies. Proteomics. 2011, 11:721-743.
-
(2011)
Proteomics.
, vol.11
, pp. 721-743
-
-
Han, M.J.1
Lee, J.W.2
Lee, S.Y.3
-
12
-
-
84892374041
-
Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural
-
Hasunuma T., Ismail K.S., Nambu Y., Kondo A. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. J. Biosci. Bioeng. 2014, 117:165-169.
-
(2014)
J. Biosci. Bioeng.
, vol.117
, pp. 165-169
-
-
Hasunuma, T.1
Ismail, K.S.2
Nambu, Y.3
Kondo, A.4
-
13
-
-
0031832290
-
Genetically engineered Saccharomyces yeast capable of effective co-fermentation of glucose and xylose
-
Ho N.W.Y., Chen Z., Brainard A.P. Genetically engineered Saccharomyces yeast capable of effective co-fermentation of glucose and xylose. Appl. Env. Microbiol. 1998, 64:1852-1859.
-
(1998)
Appl. Env. Microbiol.
, vol.64
, pp. 1852-1859
-
-
Ho, N.W.Y.1
Chen, Z.2
Brainard, A.P.3
-
14
-
-
84923021733
-
Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae
-
Jakociunas T., Bonde I., Herrgard M., Harrison S.J., Kristensen M., Pedersen L.E., Jensen M.K., Keasling J.D. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 2015, 28:213-222.
-
(2015)
Metab. Eng.
, vol.28
, pp. 213-222
-
-
Jakociunas, T.1
Bonde, I.2
Herrgard, M.3
Harrison, S.J.4
Kristensen, M.5
Pedersen, L.E.6
Jensen, M.K.7
Keasling, J.D.8
-
15
-
-
29144502422
-
Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach
-
Jin Y.-S., Alper H., Yang Y.-T., Stephanopoulos G. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl. Environ. Microbiol. 2005, 71:8249-8256.
-
(2005)
Appl. Environ. Microbiol.
, vol.71
, pp. 8249-8256
-
-
Jin, Y.-S.1
Alper, H.2
Yang, Y.-T.3
Stephanopoulos, G.4
-
16
-
-
1242264261
-
Metabolic engineering for improved fermentation of pentoses by yeasts
-
Jeffries T.W., Jin Y.S. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 2004, 63:495-509.
-
(2004)
Appl. Microbiol. Biotechnol.
, vol.63
, pp. 495-509
-
-
Jeffries, T.W.1
Jin, Y.S.2
-
17
-
-
0024815151
-
Molecular characterization of a specific para-nitrophenylphosphatase gene, Pho13, and its mapping by chromosome fragmentation in Saccharomyces cerevisiae
-
Kaneko Y., Tohe A., Banno I., Oshima Y. Molecular characterization of a specific para-nitrophenylphosphatase gene, Pho13, and its mapping by chromosome fragmentation in Saccharomyces cerevisiae. Mol. Gen. Genet. 1989, 220:133-139.
-
(1989)
Mol. Gen. Genet.
, vol.220
, pp. 133-139
-
-
Kaneko, Y.1
Tohe, A.2
Banno, I.3
Oshima, Y.4
-
18
-
-
33845807902
-
High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae
-
Karhumaa K., Fromanger R., Hahn-Hagerdal B., Gorwa-Grauslund M.F. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2007, 73:1039-1046.
-
(2007)
Appl. Microbiol. Biotechnol.
, vol.73
, pp. 1039-1046
-
-
Karhumaa, K.1
Fromanger, R.2
Hahn-Hagerdal, B.3
Gorwa-Grauslund, M.F.4
-
19
-
-
33847202270
-
Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
-
Karhumaa K., Garcia Sanchez R., Hahn-Hagerdal B., Gorwa-Grauslund M.F. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb. Cell. Fact. 2007, 6:5.
-
(2007)
Microb. Cell. Fact.
, vol.6
, pp. 5
-
-
Karhumaa, K.1
Garcia Sanchez, R.2
Hahn-Hagerdal, B.3
Gorwa-Grauslund, M.F.4
-
20
-
-
84874088716
-
Evaluation and optimization of metabolome sample preparation methods for Saccharomyces cerevisiae
-
Kim S., do Lee, Wohlgemuth Y., Park G., Fiehn H.S., Kim, K.H.O. Evaluation and optimization of metabolome sample preparation methods for Saccharomyces cerevisiae. Anal. Chem. 2013, 85:2169-2176.
-
(2013)
Anal. Chem.
, vol.85
, pp. 2169-2176
-
-
Kim, S.1
do, L.2
Wohlgemuth, Y.3
Park, G.4
Fiehn, H.S.5
Kim, K.H.O.6
-
21
-
-
84882640990
-
Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism
-
Kim S.R., Park Y.C., Jin Y.S., Seo J.H. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol. Adv. 2013, 31:851-861.
-
(2013)
Biotechnol. Adv.
, vol.31
, pp. 851-861
-
-
Kim, S.R.1
Park, Y.C.2
Jin, Y.S.3
Seo, J.H.4
-
22
-
-
84874499132
-
Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae
-
Kim S.R., Skerker J.M., Kang W., Lesmana A., Wei N., Arkin A.P., Jin Y.S. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. Plos One 2013, 8:e57048.
-
(2013)
Plos One
, vol.8
, pp. e57048
-
-
Kim, S.R.1
Skerker, J.M.2
Kang, W.3
Lesmana, A.4
Wei, N.5
Arkin, A.P.6
Jin, Y.S.7
-
23
-
-
84922874601
-
Deletion of PHO13 encoding HAD type IIA phosphatase results in upregulation of the pentose phosphate pathway in yeast
-
Kim S.R., Xu H., Lesmana A., Kuzmanovic U., Au M., Florencia C., Oh E.J., Zhang G., Kim K.H., Jin Y.-S. Deletion of PHO13 encoding HAD type IIA phosphatase results in upregulation of the pentose phosphate pathway in yeast. Appl. Env. Microbiol. 2015, 81:1601-1609.
-
(2015)
Appl. Env. Microbiol.
, vol.81
, pp. 1601-1609
-
-
Kim, S.R.1
Xu, H.2
Lesmana, A.3
Kuzmanovic, U.4
Au, M.5
Florencia, C.6
Oh, E.J.7
Zhang, G.8
Kim, K.H.9
Jin, Y.-S.10
-
24
-
-
13244262739
-
Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
-
Kuyper M., Hartog M.M., Toirkens M.J., Almering M.J., Winkler A.A., van Dijken J.P., Pronk J.T. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. Fems Yeast Res. 2005, 5:399-409.
-
(2005)
Fems Yeast Res.
, vol.5
, pp. 399-409
-
-
Kuyper, M.1
Hartog, M.M.2
Toirkens, M.J.3
Almering, M.J.4
Winkler, A.A.5
van Dijken, J.P.6
Pronk, J.T.7
-
25
-
-
21744438324
-
Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain
-
Kuyper M., Toirkens M.J., Diderich J.A., Winkler A.A., van Dijken J.P., Pronk J.T. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. Fems Yeast Res. 2005, 5:925-934.
-
(2005)
Fems Yeast Res.
, vol.5
, pp. 925-934
-
-
Kuyper, M.1
Toirkens, M.J.2
Diderich, J.A.3
Winkler, A.A.4
van Dijken, J.P.5
Pronk, J.T.6
-
26
-
-
84903748219
-
Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae
-
Latimer L.N., Lee M.E., Medina-Cleghorn D., Kohnz R.A., Nomura D.K., Dueber J.E. Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metab. Eng. 2014, 25:20-29.
-
(2014)
Metab. Eng.
, vol.25
, pp. 20-29
-
-
Latimer, L.N.1
Lee, M.E.2
Medina-Cleghorn, D.3
Kohnz, R.A.4
Nomura, D.K.5
Dueber, J.E.6
-
27
-
-
43649098283
-
High quality metabolomic data for Chlamydomonas reinhardtii
-
Lee do Y., Fiehn O. High quality metabolomic data for Chlamydomonas reinhardtii. Plant Methods 2008, 4:7.
-
(2008)
Plant Methods
, vol.4
, pp. 7
-
-
Lee do, Y.1
Fiehn, O.2
-
28
-
-
84918511607
-
Atmospheric vs. anaerobic processing of metabolome samples for the metabolite profiling of a strict anaerobic bacterium, Clostridium acetobutylicum
-
Lee S.H., Kim S., Kwon M.A., Jung Y.H., Shin Y.A., Kim K.H. Atmospheric vs. anaerobic processing of metabolome samples for the metabolite profiling of a strict anaerobic bacterium, Clostridium acetobutylicum. Biotechnol. Bioeng. 2014, 111:2528-2536.
-
(2014)
Biotechnol. Bioeng.
, vol.111
, pp. 2528-2536
-
-
Lee, S.H.1
Kim, S.2
Kwon, M.A.3
Jung, Y.H.4
Shin, Y.A.5
Kim, K.H.6
-
29
-
-
84922851448
-
Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields
-
Lee S.M., Jellison T., Alper H.S. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol. Biofuels 2014, 7.
-
(2014)
Biotechnol. Biofuels
, vol.7
-
-
Lee, S.M.1
Jellison, T.2
Alper, H.S.3
-
30
-
-
84906947676
-
Synergistic effects of TAL1 over-expression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain
-
Li Y.C., Gou Z.X., Liu Z.S., Tang Y.Q., Akamatsu T., Kida K. Synergistic effects of TAL1 over-expression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain. Biotechnol. Lett. 2014, 36:2011-2021.
-
(2014)
Biotechnol. Lett.
, vol.36
, pp. 2011-2021
-
-
Li, Y.C.1
Gou, Z.X.2
Liu, Z.S.3
Tang, Y.Q.4
Akamatsu, T.5
Kida, K.6
-
31
-
-
72149123391
-
Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation
-
Liu E.K., Hu Y. Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem. Eng. J. 2010, 48:204-210.
-
(2010)
Biochem. Eng. J.
, vol.48
, pp. 204-210
-
-
Liu, E.K.1
Hu, Y.2
-
32
-
-
35148890697
-
Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain
-
Lu C., Jeffries T. Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl. Environ. Microbiol. 2007, 73:6072-6077.
-
(2007)
Appl. Environ. Microbiol.
, vol.73
, pp. 6072-6077
-
-
Lu, C.1
Jeffries, T.2
-
33
-
-
84930638003
-
CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae
-
Mans R., van Rossum H.M., Wijsman M., Backx A., Kuijpers N.G., van den Broek M., Daran-Lapujade P., Pronk J.T., van Maris A.J., Daran J.M. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. Fems Yeast Res. 2015, 15.
-
(2015)
Fems Yeast Res.
, vol.15
-
-
Mans, R.1
van Rossum, H.M.2
Wijsman, M.3
Backx, A.4
Kuijpers, N.G.5
van den Broek, M.6
Daran-Lapujade, P.7
Pronk, J.T.8
van Maris, A.J.9
Daran, J.M.10
-
34
-
-
84860836081
-
Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae
-
Matsushika A., Goshima T., Fujii T., Inoue H., Sawayama S., Yano S. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae. Enzym. Microb. Technol. 2012, 51:16-25.
-
(2012)
Enzym. Microb. Technol.
, vol.51
, pp. 16-25
-
-
Matsushika, A.1
Goshima, T.2
Fujii, T.3
Inoue, H.4
Sawayama, S.5
Yano, S.6
-
35
-
-
68349109625
-
Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
-
Matsushika A., Inoue H., Kodaki T., Sawayama S. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 2009, 84:37-53.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.84
, pp. 37-53
-
-
Matsushika, A.1
Inoue, H.2
Kodaki, T.3
Sawayama, S.4
-
36
-
-
84879993970
-
Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae
-
Matsushika A., Nagashima A., Goshima T., Hoshino T. Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae. Plos One 2013, 8:e69005.
-
(2013)
Plos One
, vol.8
, pp. e69005
-
-
Matsushika, A.1
Nagashima, A.2
Goshima, T.3
Hoshino, T.4
-
37
-
-
34247508562
-
Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose
-
Ni H., Laplaza J.M., Jeffries T.W. Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose. Appl. Environ. Microbiol. 2007, 73:2061-2066.
-
(2007)
Appl. Environ. Microbiol.
, vol.73
, pp. 2061-2066
-
-
Ni, H.1
Laplaza, J.M.2
Jeffries, T.W.3
-
38
-
-
0034214004
-
The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: utilization of industrial media
-
Olsson L., Nielsen J. The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: utilization of industrial media. Enzym. Microb. Technol. 2000, 26:785-792.
-
(2000)
Enzym. Microb. Technol.
, vol.26
, pp. 785-792
-
-
Olsson, L.1
Nielsen, J.2
-
39
-
-
0035123631
-
A new method for the preparation of crystalline L-arabinose from arabinoxylan by enzymatic hydrolysis and selective fermentation with yeast
-
Park N.H., Yoshida S., Takakashi A., Kawabata Y., Sun H.J., Kusakabe I. A new method for the preparation of crystalline L-arabinose from arabinoxylan by enzymatic hydrolysis and selective fermentation with yeast. Biotechnol. Lett. 2001, 23:411-416.
-
(2001)
Biotechnol. Lett.
, vol.23
, pp. 411-416
-
-
Park, N.H.1
Yoshida, S.2
Takakashi, A.3
Kawabata, Y.4
Sun, H.J.5
Kusakabe, I.6
-
40
-
-
27644446855
-
Global physiological understanding and metabolic engineering of microorganisms based on omics studies
-
Park S.J., Lee S.Y., Cho J., Kim T.Y., Lee J.W., Park J.H., Han M.J. Global physiological understanding and metabolic engineering of microorganisms based on omics studies. Appl. Microbiol. Biotechnol. 2005, 68:567-579.
-
(2005)
Appl. Microbiol. Biotechnol.
, vol.68
, pp. 567-579
-
-
Park, S.J.1
Lee, S.Y.2
Cho, J.3
Kim, T.Y.4
Lee, J.W.5
Park, J.H.6
Han, M.J.7
-
41
-
-
84929429110
-
Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation
-
Peng B.Y., Huang S.C., Liu T.T., Geng A.L. Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation. Microb. Cell. Fact. 2015, 14.
-
(2015)
Microb. Cell. Fact.
, vol.14
-
-
Peng, B.Y.1
Huang, S.C.2
Liu, T.T.3
Geng, A.L.4
-
42
-
-
84855419323
-
Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae
-
Peng B.Y., Shen Y., Li X.W., Chen X., Hou J., Bao X.M. Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. Metab. Eng. 2012, 14:9-18.
-
(2012)
Metab. Eng.
, vol.14
, pp. 9-18
-
-
Peng, B.Y.1
Shen, Y.2
Li, X.W.3
Chen, X.4
Hou, J.5
Bao, X.M.6
-
43
-
-
78650327471
-
Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase
-
Runquist D., Hahn-Hagerdal B., Bettiga M. Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl. Environ. Microbiol. 2010, 76:7796-7802.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 7796-7802
-
-
Runquist, D.1
Hahn-Hagerdal, B.2
Bettiga, M.3
-
44
-
-
84925451973
-
Multiplex engineering of industrial yeast genomes using CRISPRm
-
Ryan O.W., Cate J.H. Multiplex engineering of industrial yeast genomes using CRISPRm. Methods Enzym. 2014, 546:473-489.
-
(2014)
Methods Enzym.
, vol.546
, pp. 473-489
-
-
Ryan, O.W.1
Cate, J.H.2
-
45
-
-
33747894577
-
TM4 microarray software suite
-
Saeed A.I., Bhagabati N.K., Braisted J.C., Liang W., Sharov V., Howe E.A., Li J., Thiagarajan M., White J.A., Quackenbush J. TM4 microarray software suite. Methods Enzym. 2006, 411:134-193.
-
(2006)
Methods Enzym.
, vol.411
, pp. 134-193
-
-
Saeed, A.I.1
Bhagabati, N.K.2
Braisted, J.C.3
Liang, W.4
Sharov, V.5
Howe, E.A.6
Li, J.7
Thiagarajan, M.8
White, J.A.9
Quackenbush, J.10
-
46
-
-
84922783974
-
Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae
-
Sakihama Y., Hasunuma T., Kondo A. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae. J. Biosci. Bioeng. 2015, 119:297-302.
-
(2015)
J. Biosci. Bioeng.
, vol.119
, pp. 297-302
-
-
Sakihama, Y.1
Hasunuma, T.2
Kondo, A.3
-
47
-
-
77953368385
-
Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering
-
Sanchez R.G., Karhumaa K., Fonseca C., Nogue V.S., Almeida J.R.M., Larsson C.U., Bengtsson O., Bettiga M., Hahn-Hagerdal B., Gorwa-Grauslund M.F. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol. Biofuels 2010, 3.
-
(2010)
Biotechnol. Biofuels
, vol.3
-
-
Sanchez, R.G.1
Karhumaa, K.2
Fonseca, C.3
Nogue, V.S.4
Almeida, J.R.M.5
Larsson, C.U.6
Bengtsson, O.7
Bettiga, M.8
Hahn-Hagerdal, B.9
Gorwa-Grauslund, M.F.10
-
48
-
-
0025021348
-
Intermediary metabolite concentrations in xylulose and glucose fermenting Saccharomyces cerevisiae cells
-
Senac T., Hahn-Hagerdal B. Intermediary metabolite concentrations in xylulose and glucose fermenting Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 1990, 56:120-126.
-
(1990)
Appl. Environ. Microbiol.
, vol.56
, pp. 120-126
-
-
Senac, T.1
Hahn-Hagerdal, B.2
-
49
-
-
0037394596
-
Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose
-
Sonderegger M., Sauer U. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol. 2003, 69:1990-1998.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 1990-1998
-
-
Sonderegger, M.1
Sauer, U.2
-
50
-
-
0026128502
-
Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae
-
Takuma S., Nakashima N., Tantirungkij M., Kinoshita S., Okada H., Seki T., Yoshida T. Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 1991, 28-9:327-340.
-
(1991)
Appl. Biochem. Biotechnol.
, pp. 327-340
-
-
Takuma, S.1
Nakashima, N.2
Tantirungkij, M.3
Kinoshita, S.4
Okada, H.5
Seki, T.6
Yoshida, T.7
-
51
-
-
0027415073
-
Construction of xylose assimilating Saccharomyces cerevisiae
-
Tantirungkij M., Nakashima N., Seki T., Yoshida T. Construction of xylose assimilating Saccharomyces cerevisiae. J. Ferment. Bioeng. 1993, 75:83-88.
-
(1993)
J. Ferment. Bioeng.
, vol.75
, pp. 83-88
-
-
Tantirungkij, M.1
Nakashima, N.2
Seki, T.3
Yoshida, T.4
-
52
-
-
84886384450
-
Isolation and characterization of a mutant recombinant Saccharomyces cerevisiae strain with high efficiency xylose utilization
-
Tomitaka M., Taguchi H., Fukuda K., Akamatsu T., Kida K. Isolation and characterization of a mutant recombinant Saccharomyces cerevisiae strain with high efficiency xylose utilization. J. Biosci. Bioeng. 2013, 116:706-715.
-
(2013)
J. Biosci. Bioeng.
, vol.116
, pp. 706-715
-
-
Tomitaka, M.1
Taguchi, H.2
Fukuda, K.3
Akamatsu, T.4
Kida, K.5
-
53
-
-
0032054379
-
A specific alkaline phosphatase from Saccharomyces cerevisiae with protein phosphatase activity
-
Tuleva B., Vasileva-Tonkova E., Galabova D. A specific alkaline phosphatase from Saccharomyces cerevisiae with protein phosphatase activity. FEMS Microbiol. Lett. 1998, 161:139-144.
-
(1998)
FEMS Microbiol. Lett.
, vol.161
, pp. 139-144
-
-
Tuleva, B.1
Vasileva-Tonkova, E.2
Galabova, D.3
-
54
-
-
38549138986
-
BioMagResBank
-
Ulrich E.L., Akutsu H., Doreleijers J.F., Harano Y., Ioannidis Y.E., Lin J., Livny M., Mading S., Maziuk D., Miller Z., Nakatani E., Schulte C.F., Tolmie D.E., Wenger R.K., Yao H.Y., Markley J.L. BioMagResBank. Nucleic Acids Res. 2008, 36:D402-D408.
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. D402-D408
-
-
Ulrich, E.L.1
Akutsu, H.2
Doreleijers, J.F.3
Harano, Y.4
Ioannidis, Y.E.5
Lin, J.6
Livny, M.7
Mading, S.8
Maziuk, D.9
Miller, Z.10
Nakatani, E.11
Schulte, C.F.12
Tolmie, D.E.13
Wenger, R.K.14
Yao, H.Y.15
Markley, J.L.16
-
55
-
-
57049166496
-
Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose
-
Van Vleet J.H., Jeffries T.W., Olsson L. Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose. Metab. Eng. 2008, 10:360-369.
-
(2008)
Metab. Eng.
, vol.10
, pp. 360-369
-
-
Van Vleet, J.H.1
Jeffries, T.W.2
Olsson, L.3
-
56
-
-
20544457864
-
Metabolic engineering in the -omics era: Elucidating and modulating regulatory networks
-
Vemuri G.N., Aristidou A.A. Metabolic engineering in the -omics era: Elucidating and modulating regulatory networks. Microbiol. Mol. Biol. R. 2005, 69:197.
-
(2005)
Microbiol. Mol. Biol. R.
, vol.69
, pp. 197
-
-
Vemuri, G.N.1
Aristidou, A.A.2
-
57
-
-
0028829654
-
Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase
-
Walfridsson M., Hallborn J., Penttila M., Keranen S., Hahn-Hagerdal B. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl. Environ. Microbiol. 1995, 61:4184-4190.
-
(1995)
Appl. Environ. Microbiol.
, vol.61
, pp. 4184-4190
-
-
Walfridsson, M.1
Hallborn, J.2
Penttila, M.3
Keranen, S.4
Hahn-Hagerdal, B.5
-
58
-
-
59949093124
-
Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains
-
Wisselink H.W., Toirkens M.J., Wu Q., Pronk J.T., van Maris A.J.A. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl. Environ. Microbiol. 2009, 75:907-914.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 907-914
-
-
Wisselink, H.W.1
Toirkens, M.J.2
Wu, Q.3
Pronk, J.T.4
van Maris, A.J.A.5
-
59
-
-
84917705615
-
Construction of a quadruple auxotrophic mutant of an industrial polyploid Saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease
-
Zhang G.C., Kong I.I., Kim H., Liu J.J., Cate J.H., Jin Y.S. Construction of a quadruple auxotrophic mutant of an industrial polyploid Saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease. Appl. Environ. Microbiol. 2014, 80:7694-7701.
-
(2014)
Appl. Environ. Microbiol.
, vol.80
, pp. 7694-7701
-
-
Zhang, G.C.1
Kong, I.I.2
Kim, H.3
Liu, J.J.4
Cate, J.H.5
Jin, Y.S.6
-
60
-
-
84869043924
-
Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
-
Zhou H., Cheng J.S., Wang B.L., Fink G.R., Stephanopoulos G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab. Eng. 2012, 14:611-622.
-
(2012)
Metab. Eng.
, vol.14
, pp. 611-622
-
-
Zhou, H.1
Cheng, J.S.2
Wang, B.L.3
Fink, G.R.4
Stephanopoulos, G.5
|