메뉴 건너뛰기




Volumn 34, Issue , 2016, Pages 88-96

PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae

Author keywords

Cas9 guided genome editing technique; GC TOF MS; Metabolomics; NMR; RNA seq

Indexed keywords

CARBON; CHEMICAL ACTIVATION; ENCODING (SYMBOLS); METABOLISM; NUCLEAR MAGNETIC RESONANCE; PHYSIOLOGY; YEAST;

EID: 84953774938     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2015.12.007     Document Type: Article
Times cited : (73)

References (60)
  • 1
    • 0029160251 scopus 로고
    • Isolation and characterization of the gene encoding xylose reductase from Kluyveromyces Lactis
    • Billard P., Menart S., Fleer R., Bolotinfukuhara M. Isolation and characterization of the gene encoding xylose reductase from Kluyveromyces Lactis. Gene 1995, 162:93-97.
    • (1995) Gene , vol.162 , pp. 93-97
    • Billard, P.1    Menart, S.2    Fleer, R.3    Bolotinfukuhara, M.4
  • 2
    • 64749094343 scopus 로고    scopus 로고
    • Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae
    • Brat D., Boles E., Wiedemann B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2009, 75:2304-2311.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 2304-2311
    • Brat, D.1    Boles, E.2    Wiedemann, B.3
  • 3
    • 84876061998 scopus 로고    scopus 로고
    • Sedoheptulose accumulation under CO2 enrichment in leaves of Kalanchoe pinnata: a novel mechanism to enhance C and P homeostasis?
    • Ceusters J., Godts C., Peshev D., Vergauwen R., Dyubankova N., Lescrinier E., De Proft M.P., Van den Ende W. Sedoheptulose accumulation under CO2 enrichment in leaves of Kalanchoe pinnata: a novel mechanism to enhance C and P homeostasis?. J. Exp. Bot. 2013, 64:1497-1507.
    • (2013) J. Exp. Bot. , vol.64 , pp. 1497-1507
    • Ceusters, J.1    Godts, C.2    Peshev, D.3    Vergauwen, R.4    Dyubankova, N.5    Lescrinier, E.6    De Proft, M.P.7    Van den Ende, W.8
  • 5
    • 84890317534 scopus 로고    scopus 로고
    • Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution
    • Diao L., Liu Y., Qian F., Yang J., Jiang Y., Yang S. Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. BMC Biotechnol. 2013, 13:110.
    • (2013) BMC Biotechnol. , vol.13 , pp. 110
    • Diao, L.1    Liu, Y.2    Qian, F.3    Yang, J.4    Jiang, Y.5    Yang, S.6
  • 7
    • 84940030208 scopus 로고    scopus 로고
    • Systematic applications of metabolomics in metabolic engineering
    • Dromms R.A., Styczynski M.P. Systematic applications of metabolomics in metabolic engineering. Metabolites 2012, 2:1090-1122.
    • (2012) Metabolites , vol.2 , pp. 1090-1122
    • Dromms, R.A.1    Styczynski, M.P.2
  • 8
    • 84898053053 scopus 로고    scopus 로고
    • Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose
    • Farwick A., Bruder S., Schadeweg V., Oreb M., Boles E. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc. Natl. Acad. Sci. U. S. A 2014, 111:5159-5164.
    • (2014) Proc. Natl. Acad. Sci. U. S. A , vol.111 , pp. 5159-5164
    • Farwick, A.1    Bruder, S.2    Schadeweg, V.3    Oreb, M.4    Boles, E.5
  • 9
    • 84858748257 scopus 로고    scopus 로고
    • Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural
    • Fujitomi K., Sanda T., Hasunuma T., Kondo A. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Bioresour. Technol. 2012, 111:161-166.
    • (2012) Bioresour. Technol. , vol.111 , pp. 161-166
    • Fujitomi, K.1    Sanda, T.2    Hasunuma, T.3    Kondo, A.4
  • 11
    • 79551482115 scopus 로고    scopus 로고
    • Understanding and engineering of microbial cells based on proteomics and its conjunction with other omics studies
    • Han M.J., Lee J.W., Lee S.Y. Understanding and engineering of microbial cells based on proteomics and its conjunction with other omics studies. Proteomics. 2011, 11:721-743.
    • (2011) Proteomics. , vol.11 , pp. 721-743
    • Han, M.J.1    Lee, J.W.2    Lee, S.Y.3
  • 12
    • 84892374041 scopus 로고    scopus 로고
    • Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural
    • Hasunuma T., Ismail K.S., Nambu Y., Kondo A. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. J. Biosci. Bioeng. 2014, 117:165-169.
    • (2014) J. Biosci. Bioeng. , vol.117 , pp. 165-169
    • Hasunuma, T.1    Ismail, K.S.2    Nambu, Y.3    Kondo, A.4
  • 13
    • 0031832290 scopus 로고    scopus 로고
    • Genetically engineered Saccharomyces yeast capable of effective co-fermentation of glucose and xylose
    • Ho N.W.Y., Chen Z., Brainard A.P. Genetically engineered Saccharomyces yeast capable of effective co-fermentation of glucose and xylose. Appl. Env. Microbiol. 1998, 64:1852-1859.
    • (1998) Appl. Env. Microbiol. , vol.64 , pp. 1852-1859
    • Ho, N.W.Y.1    Chen, Z.2    Brainard, A.P.3
  • 15
    • 29144502422 scopus 로고    scopus 로고
    • Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach
    • Jin Y.-S., Alper H., Yang Y.-T., Stephanopoulos G. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl. Environ. Microbiol. 2005, 71:8249-8256.
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 8249-8256
    • Jin, Y.-S.1    Alper, H.2    Yang, Y.-T.3    Stephanopoulos, G.4
  • 16
    • 1242264261 scopus 로고    scopus 로고
    • Metabolic engineering for improved fermentation of pentoses by yeasts
    • Jeffries T.W., Jin Y.S. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 2004, 63:495-509.
    • (2004) Appl. Microbiol. Biotechnol. , vol.63 , pp. 495-509
    • Jeffries, T.W.1    Jin, Y.S.2
  • 17
    • 0024815151 scopus 로고
    • Molecular characterization of a specific para-nitrophenylphosphatase gene, Pho13, and its mapping by chromosome fragmentation in Saccharomyces cerevisiae
    • Kaneko Y., Tohe A., Banno I., Oshima Y. Molecular characterization of a specific para-nitrophenylphosphatase gene, Pho13, and its mapping by chromosome fragmentation in Saccharomyces cerevisiae. Mol. Gen. Genet. 1989, 220:133-139.
    • (1989) Mol. Gen. Genet. , vol.220 , pp. 133-139
    • Kaneko, Y.1    Tohe, A.2    Banno, I.3    Oshima, Y.4
  • 18
    • 33845807902 scopus 로고    scopus 로고
    • High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa K., Fromanger R., Hahn-Hagerdal B., Gorwa-Grauslund M.F. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2007, 73:1039-1046.
    • (2007) Appl. Microbiol. Biotechnol. , vol.73 , pp. 1039-1046
    • Karhumaa, K.1    Fromanger, R.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 19
    • 33847202270 scopus 로고    scopus 로고
    • Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa K., Garcia Sanchez R., Hahn-Hagerdal B., Gorwa-Grauslund M.F. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb. Cell. Fact. 2007, 6:5.
    • (2007) Microb. Cell. Fact. , vol.6 , pp. 5
    • Karhumaa, K.1    Garcia Sanchez, R.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 20
    • 84874088716 scopus 로고    scopus 로고
    • Evaluation and optimization of metabolome sample preparation methods for Saccharomyces cerevisiae
    • Kim S., do Lee, Wohlgemuth Y., Park G., Fiehn H.S., Kim, K.H.O. Evaluation and optimization of metabolome sample preparation methods for Saccharomyces cerevisiae. Anal. Chem. 2013, 85:2169-2176.
    • (2013) Anal. Chem. , vol.85 , pp. 2169-2176
    • Kim, S.1    do, L.2    Wohlgemuth, Y.3    Park, G.4    Fiehn, H.S.5    Kim, K.H.O.6
  • 21
    • 84882640990 scopus 로고    scopus 로고
    • Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism
    • Kim S.R., Park Y.C., Jin Y.S., Seo J.H. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol. Adv. 2013, 31:851-861.
    • (2013) Biotechnol. Adv. , vol.31 , pp. 851-861
    • Kim, S.R.1    Park, Y.C.2    Jin, Y.S.3    Seo, J.H.4
  • 22
    • 84874499132 scopus 로고    scopus 로고
    • Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae
    • Kim S.R., Skerker J.M., Kang W., Lesmana A., Wei N., Arkin A.P., Jin Y.S. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. Plos One 2013, 8:e57048.
    • (2013) Plos One , vol.8 , pp. e57048
    • Kim, S.R.1    Skerker, J.M.2    Kang, W.3    Lesmana, A.4    Wei, N.5    Arkin, A.P.6    Jin, Y.S.7
  • 24
    • 13244262739 scopus 로고    scopus 로고
    • Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
    • Kuyper M., Hartog M.M., Toirkens M.J., Almering M.J., Winkler A.A., van Dijken J.P., Pronk J.T. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. Fems Yeast Res. 2005, 5:399-409.
    • (2005) Fems Yeast Res. , vol.5 , pp. 399-409
    • Kuyper, M.1    Hartog, M.M.2    Toirkens, M.J.3    Almering, M.J.4    Winkler, A.A.5    van Dijken, J.P.6    Pronk, J.T.7
  • 25
    • 21744438324 scopus 로고    scopus 로고
    • Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain
    • Kuyper M., Toirkens M.J., Diderich J.A., Winkler A.A., van Dijken J.P., Pronk J.T. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. Fems Yeast Res. 2005, 5:925-934.
    • (2005) Fems Yeast Res. , vol.5 , pp. 925-934
    • Kuyper, M.1    Toirkens, M.J.2    Diderich, J.A.3    Winkler, A.A.4    van Dijken, J.P.5    Pronk, J.T.6
  • 26
    • 84903748219 scopus 로고    scopus 로고
    • Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae
    • Latimer L.N., Lee M.E., Medina-Cleghorn D., Kohnz R.A., Nomura D.K., Dueber J.E. Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metab. Eng. 2014, 25:20-29.
    • (2014) Metab. Eng. , vol.25 , pp. 20-29
    • Latimer, L.N.1    Lee, M.E.2    Medina-Cleghorn, D.3    Kohnz, R.A.4    Nomura, D.K.5    Dueber, J.E.6
  • 27
    • 43649098283 scopus 로고    scopus 로고
    • High quality metabolomic data for Chlamydomonas reinhardtii
    • Lee do Y., Fiehn O. High quality metabolomic data for Chlamydomonas reinhardtii. Plant Methods 2008, 4:7.
    • (2008) Plant Methods , vol.4 , pp. 7
    • Lee do, Y.1    Fiehn, O.2
  • 28
    • 84918511607 scopus 로고    scopus 로고
    • Atmospheric vs. anaerobic processing of metabolome samples for the metabolite profiling of a strict anaerobic bacterium, Clostridium acetobutylicum
    • Lee S.H., Kim S., Kwon M.A., Jung Y.H., Shin Y.A., Kim K.H. Atmospheric vs. anaerobic processing of metabolome samples for the metabolite profiling of a strict anaerobic bacterium, Clostridium acetobutylicum. Biotechnol. Bioeng. 2014, 111:2528-2536.
    • (2014) Biotechnol. Bioeng. , vol.111 , pp. 2528-2536
    • Lee, S.H.1    Kim, S.2    Kwon, M.A.3    Jung, Y.H.4    Shin, Y.A.5    Kim, K.H.6
  • 29
    • 84922851448 scopus 로고    scopus 로고
    • Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields
    • Lee S.M., Jellison T., Alper H.S. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol. Biofuels 2014, 7.
    • (2014) Biotechnol. Biofuels , vol.7
    • Lee, S.M.1    Jellison, T.2    Alper, H.S.3
  • 30
    • 84906947676 scopus 로고    scopus 로고
    • Synergistic effects of TAL1 over-expression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain
    • Li Y.C., Gou Z.X., Liu Z.S., Tang Y.Q., Akamatsu T., Kida K. Synergistic effects of TAL1 over-expression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain. Biotechnol. Lett. 2014, 36:2011-2021.
    • (2014) Biotechnol. Lett. , vol.36 , pp. 2011-2021
    • Li, Y.C.1    Gou, Z.X.2    Liu, Z.S.3    Tang, Y.Q.4    Akamatsu, T.5    Kida, K.6
  • 31
    • 72149123391 scopus 로고    scopus 로고
    • Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation
    • Liu E.K., Hu Y. Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem. Eng. J. 2010, 48:204-210.
    • (2010) Biochem. Eng. J. , vol.48 , pp. 204-210
    • Liu, E.K.1    Hu, Y.2
  • 32
    • 35148890697 scopus 로고    scopus 로고
    • Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain
    • Lu C., Jeffries T. Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl. Environ. Microbiol. 2007, 73:6072-6077.
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 6072-6077
    • Lu, C.1    Jeffries, T.2
  • 34
    • 84860836081 scopus 로고    scopus 로고
    • Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae
    • Matsushika A., Goshima T., Fujii T., Inoue H., Sawayama S., Yano S. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae. Enzym. Microb. Technol. 2012, 51:16-25.
    • (2012) Enzym. Microb. Technol. , vol.51 , pp. 16-25
    • Matsushika, A.1    Goshima, T.2    Fujii, T.3    Inoue, H.4    Sawayama, S.5    Yano, S.6
  • 35
    • 68349109625 scopus 로고    scopus 로고
    • Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
    • Matsushika A., Inoue H., Kodaki T., Sawayama S. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 2009, 84:37-53.
    • (2009) Appl. Microbiol. Biotechnol. , vol.84 , pp. 37-53
    • Matsushika, A.1    Inoue, H.2    Kodaki, T.3    Sawayama, S.4
  • 36
    • 84879993970 scopus 로고    scopus 로고
    • Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae
    • Matsushika A., Nagashima A., Goshima T., Hoshino T. Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae. Plos One 2013, 8:e69005.
    • (2013) Plos One , vol.8 , pp. e69005
    • Matsushika, A.1    Nagashima, A.2    Goshima, T.3    Hoshino, T.4
  • 37
    • 34247508562 scopus 로고    scopus 로고
    • Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose
    • Ni H., Laplaza J.M., Jeffries T.W. Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose. Appl. Environ. Microbiol. 2007, 73:2061-2066.
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 2061-2066
    • Ni, H.1    Laplaza, J.M.2    Jeffries, T.W.3
  • 38
    • 0034214004 scopus 로고    scopus 로고
    • The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: utilization of industrial media
    • Olsson L., Nielsen J. The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: utilization of industrial media. Enzym. Microb. Technol. 2000, 26:785-792.
    • (2000) Enzym. Microb. Technol. , vol.26 , pp. 785-792
    • Olsson, L.1    Nielsen, J.2
  • 39
    • 0035123631 scopus 로고    scopus 로고
    • A new method for the preparation of crystalline L-arabinose from arabinoxylan by enzymatic hydrolysis and selective fermentation with yeast
    • Park N.H., Yoshida S., Takakashi A., Kawabata Y., Sun H.J., Kusakabe I. A new method for the preparation of crystalline L-arabinose from arabinoxylan by enzymatic hydrolysis and selective fermentation with yeast. Biotechnol. Lett. 2001, 23:411-416.
    • (2001) Biotechnol. Lett. , vol.23 , pp. 411-416
    • Park, N.H.1    Yoshida, S.2    Takakashi, A.3    Kawabata, Y.4    Sun, H.J.5    Kusakabe, I.6
  • 40
    • 27644446855 scopus 로고    scopus 로고
    • Global physiological understanding and metabolic engineering of microorganisms based on omics studies
    • Park S.J., Lee S.Y., Cho J., Kim T.Y., Lee J.W., Park J.H., Han M.J. Global physiological understanding and metabolic engineering of microorganisms based on omics studies. Appl. Microbiol. Biotechnol. 2005, 68:567-579.
    • (2005) Appl. Microbiol. Biotechnol. , vol.68 , pp. 567-579
    • Park, S.J.1    Lee, S.Y.2    Cho, J.3    Kim, T.Y.4    Lee, J.W.5    Park, J.H.6    Han, M.J.7
  • 41
    • 84929429110 scopus 로고    scopus 로고
    • Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation
    • Peng B.Y., Huang S.C., Liu T.T., Geng A.L. Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation. Microb. Cell. Fact. 2015, 14.
    • (2015) Microb. Cell. Fact. , vol.14
    • Peng, B.Y.1    Huang, S.C.2    Liu, T.T.3    Geng, A.L.4
  • 42
    • 84855419323 scopus 로고    scopus 로고
    • Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae
    • Peng B.Y., Shen Y., Li X.W., Chen X., Hou J., Bao X.M. Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. Metab. Eng. 2012, 14:9-18.
    • (2012) Metab. Eng. , vol.14 , pp. 9-18
    • Peng, B.Y.1    Shen, Y.2    Li, X.W.3    Chen, X.4    Hou, J.5    Bao, X.M.6
  • 43
    • 78650327471 scopus 로고    scopus 로고
    • Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase
    • Runquist D., Hahn-Hagerdal B., Bettiga M. Increased ethanol productivity in xylose-utilizing Saccharomyces cerevisiae via a randomly mutagenized xylose reductase. Appl. Environ. Microbiol. 2010, 76:7796-7802.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 7796-7802
    • Runquist, D.1    Hahn-Hagerdal, B.2    Bettiga, M.3
  • 44
    • 84925451973 scopus 로고    scopus 로고
    • Multiplex engineering of industrial yeast genomes using CRISPRm
    • Ryan O.W., Cate J.H. Multiplex engineering of industrial yeast genomes using CRISPRm. Methods Enzym. 2014, 546:473-489.
    • (2014) Methods Enzym. , vol.546 , pp. 473-489
    • Ryan, O.W.1    Cate, J.H.2
  • 46
    • 84922783974 scopus 로고    scopus 로고
    • Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae
    • Sakihama Y., Hasunuma T., Kondo A. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae. J. Biosci. Bioeng. 2015, 119:297-302.
    • (2015) J. Biosci. Bioeng. , vol.119 , pp. 297-302
    • Sakihama, Y.1    Hasunuma, T.2    Kondo, A.3
  • 48
    • 0025021348 scopus 로고
    • Intermediary metabolite concentrations in xylulose and glucose fermenting Saccharomyces cerevisiae cells
    • Senac T., Hahn-Hagerdal B. Intermediary metabolite concentrations in xylulose and glucose fermenting Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 1990, 56:120-126.
    • (1990) Appl. Environ. Microbiol. , vol.56 , pp. 120-126
    • Senac, T.1    Hahn-Hagerdal, B.2
  • 49
    • 0037394596 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose
    • Sonderegger M., Sauer U. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol. 2003, 69:1990-1998.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 1990-1998
    • Sonderegger, M.1    Sauer, U.2
  • 52
    • 84886384450 scopus 로고    scopus 로고
    • Isolation and characterization of a mutant recombinant Saccharomyces cerevisiae strain with high efficiency xylose utilization
    • Tomitaka M., Taguchi H., Fukuda K., Akamatsu T., Kida K. Isolation and characterization of a mutant recombinant Saccharomyces cerevisiae strain with high efficiency xylose utilization. J. Biosci. Bioeng. 2013, 116:706-715.
    • (2013) J. Biosci. Bioeng. , vol.116 , pp. 706-715
    • Tomitaka, M.1    Taguchi, H.2    Fukuda, K.3    Akamatsu, T.4    Kida, K.5
  • 53
    • 0032054379 scopus 로고    scopus 로고
    • A specific alkaline phosphatase from Saccharomyces cerevisiae with protein phosphatase activity
    • Tuleva B., Vasileva-Tonkova E., Galabova D. A specific alkaline phosphatase from Saccharomyces cerevisiae with protein phosphatase activity. FEMS Microbiol. Lett. 1998, 161:139-144.
    • (1998) FEMS Microbiol. Lett. , vol.161 , pp. 139-144
    • Tuleva, B.1    Vasileva-Tonkova, E.2    Galabova, D.3
  • 55
    • 57049166496 scopus 로고    scopus 로고
    • Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose
    • Van Vleet J.H., Jeffries T.W., Olsson L. Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose. Metab. Eng. 2008, 10:360-369.
    • (2008) Metab. Eng. , vol.10 , pp. 360-369
    • Van Vleet, J.H.1    Jeffries, T.W.2    Olsson, L.3
  • 56
    • 20544457864 scopus 로고    scopus 로고
    • Metabolic engineering in the -omics era: Elucidating and modulating regulatory networks
    • Vemuri G.N., Aristidou A.A. Metabolic engineering in the -omics era: Elucidating and modulating regulatory networks. Microbiol. Mol. Biol. R. 2005, 69:197.
    • (2005) Microbiol. Mol. Biol. R. , vol.69 , pp. 197
    • Vemuri, G.N.1    Aristidou, A.A.2
  • 57
    • 0028829654 scopus 로고
    • Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase
    • Walfridsson M., Hallborn J., Penttila M., Keranen S., Hahn-Hagerdal B. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl. Environ. Microbiol. 1995, 61:4184-4190.
    • (1995) Appl. Environ. Microbiol. , vol.61 , pp. 4184-4190
    • Walfridsson, M.1    Hallborn, J.2    Penttila, M.3    Keranen, S.4    Hahn-Hagerdal, B.5
  • 58
    • 59949093124 scopus 로고    scopus 로고
    • Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains
    • Wisselink H.W., Toirkens M.J., Wu Q., Pronk J.T., van Maris A.J.A. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl. Environ. Microbiol. 2009, 75:907-914.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 907-914
    • Wisselink, H.W.1    Toirkens, M.J.2    Wu, Q.3    Pronk, J.T.4    van Maris, A.J.A.5
  • 59
    • 84917705615 scopus 로고    scopus 로고
    • Construction of a quadruple auxotrophic mutant of an industrial polyploid Saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease
    • Zhang G.C., Kong I.I., Kim H., Liu J.J., Cate J.H., Jin Y.S. Construction of a quadruple auxotrophic mutant of an industrial polyploid Saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease. Appl. Environ. Microbiol. 2014, 80:7694-7701.
    • (2014) Appl. Environ. Microbiol. , vol.80 , pp. 7694-7701
    • Zhang, G.C.1    Kong, I.I.2    Kim, H.3    Liu, J.J.4    Cate, J.H.5    Jin, Y.S.6
  • 60
    • 84869043924 scopus 로고    scopus 로고
    • Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
    • Zhou H., Cheng J.S., Wang B.L., Fink G.R., Stephanopoulos G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab. Eng. 2012, 14:611-622.
    • (2012) Metab. Eng. , vol.14 , pp. 611-622
    • Zhou, H.1    Cheng, J.S.2    Wang, B.L.3    Fink, G.R.4    Stephanopoulos, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.