메뉴 건너뛰기




Volumn 81, Issue 5, 2015, Pages 1601-1609

Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL SYSTEMS; FERMENTATION; GLUCOSE; PHOSPHATASES; SIGNAL ENCODING;

EID: 84922874601     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.03474-14     Document Type: Article
Times cited : (61)

References (33)
  • 1
    • 84858183302 scopus 로고    scopus 로고
    • Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae
    • Ljungdahl PO, Daignan-Fornier B. 2012. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 190:885-929. http://dx.doi.org/10.1534/genetics.111.133306.
    • (2012) Genetics , vol.190 , pp. 885-929
    • Ljungdahl, P.O.1    Daignan-Fornier, B.2
  • 2
    • 4344685444 scopus 로고    scopus 로고
    • Nutritional homeostasis in batch and steady-state culture of yeast
    • Saldanha AJ, Brauer MJ, Botstein D. 2004. Nutritional homeostasis in batch and steady-state culture of yeast. Mol Biol Cell 15:4089-4104. http://dx.doi.org/10.1091/mbc.E04-04-0306.
    • (2004) Mol Biol Cell , vol.15 , pp. 4089-4104
    • Saldanha, A.J.1    Brauer, M.J.2    Botstein, D.3
  • 4
    • 0028838971 scopus 로고
    • Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling
    • Hunter T. 1995. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80:225-236. http://dx.doi.org/10.1016/0092-8674(95)90405-0.
    • (1995) Cell , vol.80 , pp. 225-236
    • Hunter, T.1
  • 6
    • 0019932629 scopus 로고
    • Purification and properties of a new enzyme, DL-2-haloacid dehalogenase, from Pseudomonas sp
    • Motosugi K, Esaki N, Soda K. 1982. Purification and properties of a new enzyme, DL-2-haloacid dehalogenase, from Pseudomonas sp. J Bacteriol 150:522-527.
    • (1982) J Bacteriol , vol.150 , pp. 522-527
    • Motosugi, K.1    Esaki, N.2    Soda, K.3
  • 7
    • 1542267779 scopus 로고    scopus 로고
    • Analysis of the substrate specificity loop of the HAD superfamily cap domain
    • Lahiri SD, Zhang G, Dai J, Dunaway-Mariano D, Allen KN. 2004. Analysis of the substrate specificity loop of the HAD superfamily cap domain. Biochemistry 43:2812-2820. http://dx.doi.org/10.1021/bi0356810.
    • (2004) Biochemistry , vol.43 , pp. 2812-2820
    • Lahiri, S.D.1    Zhang, G.2    Dai, J.3    Dunaway-Mariano, D.4    Allen, K.N.5
  • 8
    • 0028116826 scopus 로고
    • Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity: application of an iterative approach to database search
    • Koonin EV, Tatusov RL. 1994. Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity: application of an iterative approach to database search. J Mol Biol 244:125-132. http://dx.doi.org/10.1006/jmbi.1994.1711.
    • (1994) J Mol Biol , vol.244 , pp. 125-132
    • Koonin, E.V.1    Tatusov, R.L.2
  • 9
    • 79959967962 scopus 로고    scopus 로고
    • Characterization and regulation of a bacterial sugar phosphatase of the haloalkanoate dehalogenase superfamily, AraL, from Bacillus subtilis
    • Godinho LM, de Sá-Nogueira I. 2011. Characterization and regulation of a bacterial sugar phosphatase of the haloalkanoate dehalogenase superfamily, AraL, from Bacillus subtilis. FEBS J 278:2511-2524. http://dx.doi.org/10.1111/j.1742-4658.2011.08177.x.
    • (2011) FEBS J , vol.278 , pp. 2511-2524
    • Godinho, L.M.1    de Sá-Nogueira, I.2
  • 10
    • 31544471658 scopus 로고    scopus 로고
    • Structure and activity analyses of Escherichia coli K-12 NagD provide insight into the evolution of biochemical function in the haloalkanoic acid dehalogenase superfamily
    • Tremblay LW, Dunaway-Mariano D, Allen KN. 2006. Structure and activity analyses of Escherichia coli K-12 NagD provide insight into the evolution of biochemical function in the haloalkanoic acid dehalogenase superfamily. Biochemistry 45:1183-1193. http://dx.doi.org/10.1021/bi051842j.
    • (2006) Biochemistry , vol.45 , pp. 1183-1193
    • Tremblay, L.W.1    Dunaway-Mariano, D.2    Allen, K.N.3
  • 11
    • 34247508562 scopus 로고    scopus 로고
    • Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose
    • Ni H, Laplaza JM, Jeffries TW. 2007. Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose. Appl Environ Microbiol 73:2061-2066. http://dx.doi.org/10.1128/AEM.02564-06.
    • (2007) Appl Environ Microbiol , vol.73 , pp. 2061-2066
    • Ni, H.1    Laplaza, J.M.2    Jeffries, T.W.3
  • 12
    • 84874499132 scopus 로고    scopus 로고
    • Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae
    • Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, Jin Y-S. 2013. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One 8:e57048. http://dx.doi.org/10.1371/journal.pone.0057048.
    • (2013) PLoS One , vol.8
    • Kim, S.R.1    Skerker, J.M.2    Kang, W.3    Lesmana, A.4    Wei, N.5    Arkin, A.P.6    Jin, Y.-S.7
  • 13
    • 84858748257 scopus 로고    scopus 로고
    • Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural
    • Fujitomi K, Sanda T, Hasunuma T, Kondo A. 2012. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Bioresour Technol 111:161-166. http://dx.doi.org/10.1016/j.biortech.2012.01.161.
    • (2012) Bioresour Technol , vol.111 , pp. 161-166
    • Fujitomi, K.1    Sanda, T.2    Hasunuma, T.3    Kondo, A.4
  • 14
    • 57049166496 scopus 로고    scopus 로고
    • Deleting the paranitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose
    • Van Vleet JH, Jeffries TW, Olsson L. 2008. Deleting the paranitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose. Metab Eng 10:360-369. http://dx.doi.org/10.1016/j.ymben.2007.12.002.
    • (2008) Metab Eng , vol.10 , pp. 360-369
    • Van Vleet, J.H.1    Jeffries, T.W.2    Olsson, L.3
  • 15
    • 84906947676 scopus 로고    scopus 로고
    • Synergistic effects of TAL1 over-expression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain
    • Li Y-C, Gou Z-X, Liu Z-S, Tang Y-Q, Akamatsu T, Kida K. 2014. Synergistic effects of TAL1 over-expression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain. Biotechnol Lett 36:2011-2021. http://dx.doi.org/10.1007/s10529-014-1581-7.
    • (2014) Biotechnol Lett , vol.36 , pp. 2011-2021
    • Li, Y.-C.1    Gou, Z.-X.2    Liu, Z.-S.3    Tang, Y.-Q.4    Akamatsu, T.5    Kida, K.6
  • 16
    • 84922851448 scopus 로고    scopus 로고
    • Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields
    • Lee S-M, Jellison T, Alper H. 2014. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol Biofuels 7:122. http://dx.doi.org/10.1186/s13068-014-0122-x.
    • (2014) Biotechnol Biofuels , vol.7 , pp. 122
    • Lee, S.-M.1    Jellison, T.2    Alper, H.3
  • 17
    • 84882640990 scopus 로고    scopus 로고
    • Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism
    • Kim SR, Park Y-C, Jin Y-S, Seo J-H. 2013. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 31: 851-861. http://dx.doi.org/10.1016/j.biotechadv.2013.03.004.
    • (2013) Biotechnol Adv , vol.31 , pp. 851-861
    • Kim, S.R.1    Park, Y.-C.2    Jin, Y.-S.3    Seo, J.-H.4
  • 18
    • 80052919515 scopus 로고    scopus 로고
    • Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae
    • Williams JA (ed), Humana Press, Totowa, NJ
    • Hegemann J, Heick S. 2011. Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae, p 189-206. In Williams JA (ed), Strain engineering, vol 765. Humana Press, Totowa, NJ.
    • (2011) Strain engineering , vol.765 , pp. 189-206
    • Hegemann, J.1    Heick, S.2
  • 19
    • 34347206860 scopus 로고    scopus 로고
    • High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
    • Gietz RD, Schiestl RH. 2007. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31-34. http://dx.doi.org/10.1038/nprot.2007.13.
    • (2007) Nat Protoc , vol.2 , pp. 31-34
    • Gietz, R.D.1    Schiestl, R.H.2
  • 20
    • 84876575031 scopus 로고    scopus 로고
    • Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
    • DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. 2013. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336-4343. http://dx.doi.org/10.1093/nar/gkt135.
    • (2013) Nucleic Acids Res , vol.41 , pp. 4336-4343
    • DiCarlo, J.E.1    Norville, J.E.2    Mali, P.3    Rios, X.4    Aach, J.5    Church, G.M.6
  • 22
    • 33747779674 scopus 로고    scopus 로고
    • Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production
    • Larochelle M, Drouin S, Robert F, Turcotte B. 2006. Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production. Mol Cell Biol 26:6690-6701. http://dx.doi.org/10.1128/MCB.02450-05.
    • (2006) Mol Cell Biol , vol.26 , pp. 6690-6701
    • Larochelle, M.1    Drouin, S.2    Robert, F.3    Turcotte, B.4
  • 23
    • 71749118125 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae YMR315W gene encodes an NADP(H)-specific oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation
    • Hector RE, Bowman MJ, Skory CD, Cotta MA. 2009. The Saccharomyces cerevisiae YMR315W gene encodes an NADP(H)-specific oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation. New Biotechnol 26:171-180. http://dx.doi.org/10.1016/j.nbt.2009.08.008.
    • (2009) New Biotechnol , vol.26 , pp. 171-180
    • Hector, R.E.1    Bowman, M.J.2    Skory, C.D.3    Cotta, M.A.4
  • 24
    • 0032054379 scopus 로고    scopus 로고
    • A specific alkaline phosphatase from Saccharomyces cerevisiae with protein phosphatase activity
    • Tuleva B, Vasileva-Tonkova E, Galabova D. 1998. A specific alkaline phosphatase from Saccharomyces cerevisiae with protein phosphatase activity. FEMS Microbiol Lett 161:139-144. http://dx.doi.org/10.1111/j.1574-6968.1998.tb12940.x.
    • (1998) FEMS Microbiol Lett , vol.161 , pp. 139-144
    • Tuleva, B.1    Vasileva-Tonkova, E.2    Galabova, D.3
  • 25
    • 80052246522 scopus 로고    scopus 로고
    • Physiological and toxic effects of purine intermediate 5-amino-4-imidazolecarboxamide ribonucleotide (AICAR) in yeast
    • Hürlimann HC, Laloo B, Simon-Kayser B, Saint-Marc C, Coulpier F, Lemoine S, Daignan-Fornier B, Pinson B. 2011. Physiological and toxic effects of purine intermediate 5-amino-4-imidazolecarboxamide ribonucleotide (AICAR) in yeast. J Biol Chem 286:30994-31002. http://dx.doi.org/10.1074/jbc.M111.262659.
    • (2011) J Biol Chem , vol.286 , pp. 30994-31002
    • Hürlimann, H.C.1    Laloo, B.2    Simon-Kayser, B.3    Saint-Marc, C.4    Coulpier, F.5    Lemoine, S.6    Daignan-Fornier, B.7    Pinson, B.8
  • 27
    • 0025074317 scopus 로고
    • Cloning and characterization of the N-acetylglucosamine operon of Escherichia coli
    • Peri KG, Goldie H, Waygood EB. 1990. Cloning and characterization of the N-acetylglucosamine operon of Escherichia coli. Biochem Cell Biol 68:123-137. http://dx.doi.org/10.1139/o90-017.
    • (1990) Biochem Cell Biol , vol.68 , pp. 123-137
    • Peri, K.G.1    Goldie, H.2    Waygood, E.B.3
  • 28
    • 34447136818 scopus 로고    scopus 로고
    • Identification of the photorespiratory 2-phosphoglycolate phosphatase, PGLP1, in Arabidopsis
    • Schwarte S, Bauwe H. 2007. Identification of the photorespiratory 2-phosphoglycolate phosphatase, PGLP1, in Arabidopsis. Plant Physiol 144:1580-1586. http://dx.doi.org/10.1104/pp.107.099192.
    • (2007) Plant Physiol , vol.144 , pp. 1580-1586
    • Schwarte, S.1    Bauwe, H.2
  • 29
    • 0346118933 scopus 로고    scopus 로고
    • Human pyridoxal phosphatase: molecular cloning, functional expression, and tissue distribution
    • Jang YM, Kim DW, Kang T-C, Won MH, Baek N-I, Moon BJ, Choi SY, Kwon O-S. 2003. Human pyridoxal phosphatase: molecular cloning, functional expression, and tissue distribution. J Biol Chem 278:50040-50046. http://dx.doi.org/10.1074/jbc.M309619200.
    • (2003) J Biol Chem , vol.278 , pp. 50040-50046
    • Jang, Y.M.1    Kim, D.W.2    Kang, T.-C.3    Won, M.H.4    Baek, N.-I.5    Moon, B.J.6    Choi, S.Y.7    Kwon, O.-S.8
  • 30
    • 0029994841 scopus 로고    scopus 로고
    • A new efficient gene disruption cassette for repeated use in budding yeast
    • Güldener U, Heck S, Fiedler T, Beinhauer J, Hegemann JH. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519-2524. http://dx.doi.org/10.1093/nar/24.13.2519.
    • (1996) Nucleic Acids Res , vol.24 , pp. 2519-2524
    • Güldener, U.1    Heck, S.2    Fiedler, T.3    Beinhauer, J.4    Hegemann, J.H.5
  • 31
    • 0032579440 scopus 로고    scopus 로고
    • Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications
    • Baker Brachmann C, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115-132. http://dx.doi.org/10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2.
    • (1998) Yeast , vol.14 , pp. 115-132
    • Baker Brachmann, C.1    Davies, A.2    Cost, G.J.3    Caputo, E.4    Li, J.5    Hieter, P.6    Boeke, J.D.7
  • 33
    • 0026548118 scopus 로고
    • A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae
    • Hosaka K, Nikawa J-i, Kodaki T, Yamashita S. 1992. A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae. J Biochem 111:352-358.
    • (1992) J Biochem , vol.111 , pp. 352-358
    • Hosaka, K.1    Nikawa, J.-I.2    Kodaki, T.3    Yamashita, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.