-
1
-
-
84858183302
-
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae
-
Ljungdahl PO, Daignan-Fornier B. 2012. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 190:885-929. http://dx.doi.org/10.1534/genetics.111.133306.
-
(2012)
Genetics
, vol.190
, pp. 885-929
-
-
Ljungdahl, P.O.1
Daignan-Fornier, B.2
-
2
-
-
4344685444
-
Nutritional homeostasis in batch and steady-state culture of yeast
-
Saldanha AJ, Brauer MJ, Botstein D. 2004. Nutritional homeostasis in batch and steady-state culture of yeast. Mol Biol Cell 15:4089-4104. http://dx.doi.org/10.1091/mbc.E04-04-0306.
-
(2004)
Mol Biol Cell
, vol.15
, pp. 4089-4104
-
-
Saldanha, A.J.1
Brauer, M.J.2
Botstein, D.3
-
3
-
-
84897627707
-
Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells
-
van Heerden JH, Wortel MT, Bruggeman FJ, Heijnen JJ, Bollen YJM, Planqué R, Hulshof J, O'Toole TG, Wahl SA, Teusink B. 2014. Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells. Science 343:1245114. http://dx.doi.org/10.1126/science.1245114.
-
(2014)
Science
, vol.343
-
-
van Heerden, J.H.1
Wortel, M.T.2
Bruggeman, F.J.3
Heijnen, J.J.4
Bollen, Y.J.M.5
Planqué, R.6
Hulshof, J.7
O'Toole, T.G.8
Wahl, S.A.9
Teusink, B.10
-
4
-
-
0028838971
-
Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling
-
Hunter T. 1995. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80:225-236. http://dx.doi.org/10.1016/0092-8674(95)90405-0.
-
(1995)
Cell
, vol.80
, pp. 225-236
-
-
Hunter, T.1
-
5
-
-
84891817304
-
The structure-function linkage database
-
Akiva E, Brown S, Almonacid DE, Barber AE, Custer AF, Hicks MA, Huang CC, Lauck F, Mashiyama ST, Meng EC, Mischel D, Morris JH, Ojha S, Schnoes AM, Stryke D, Yunes JM, Ferrin TE, Holliday GL, Babbitt PC. 2014. The structure-function linkage database. Nucleic Acids Res 42:D521-D530. http://dx.doi.org/10.1093/nar/gkt1130.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. D521-D530
-
-
Akiva, E.1
Brown, S.2
Almonacid, D.E.3
Barber, A.E.4
Custer, A.F.5
Hicks, M.A.6
Huang, C.C.7
Lauck, F.8
Mashiyama, S.T.9
Meng, E.C.10
Mischel, D.11
Morris, J.H.12
Ojha, S.13
Schnoes, A.M.14
Stryke, D.15
Yunes, J.M.16
Ferrin, T.E.17
Holliday, G.L.18
Babbitt, P.C.19
-
6
-
-
0019932629
-
Purification and properties of a new enzyme, DL-2-haloacid dehalogenase, from Pseudomonas sp
-
Motosugi K, Esaki N, Soda K. 1982. Purification and properties of a new enzyme, DL-2-haloacid dehalogenase, from Pseudomonas sp. J Bacteriol 150:522-527.
-
(1982)
J Bacteriol
, vol.150
, pp. 522-527
-
-
Motosugi, K.1
Esaki, N.2
Soda, K.3
-
7
-
-
1542267779
-
Analysis of the substrate specificity loop of the HAD superfamily cap domain
-
Lahiri SD, Zhang G, Dai J, Dunaway-Mariano D, Allen KN. 2004. Analysis of the substrate specificity loop of the HAD superfamily cap domain. Biochemistry 43:2812-2820. http://dx.doi.org/10.1021/bi0356810.
-
(2004)
Biochemistry
, vol.43
, pp. 2812-2820
-
-
Lahiri, S.D.1
Zhang, G.2
Dai, J.3
Dunaway-Mariano, D.4
Allen, K.N.5
-
8
-
-
0028116826
-
Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity: application of an iterative approach to database search
-
Koonin EV, Tatusov RL. 1994. Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity: application of an iterative approach to database search. J Mol Biol 244:125-132. http://dx.doi.org/10.1006/jmbi.1994.1711.
-
(1994)
J Mol Biol
, vol.244
, pp. 125-132
-
-
Koonin, E.V.1
Tatusov, R.L.2
-
9
-
-
79959967962
-
Characterization and regulation of a bacterial sugar phosphatase of the haloalkanoate dehalogenase superfamily, AraL, from Bacillus subtilis
-
Godinho LM, de Sá-Nogueira I. 2011. Characterization and regulation of a bacterial sugar phosphatase of the haloalkanoate dehalogenase superfamily, AraL, from Bacillus subtilis. FEBS J 278:2511-2524. http://dx.doi.org/10.1111/j.1742-4658.2011.08177.x.
-
(2011)
FEBS J
, vol.278
, pp. 2511-2524
-
-
Godinho, L.M.1
de Sá-Nogueira, I.2
-
10
-
-
31544471658
-
Structure and activity analyses of Escherichia coli K-12 NagD provide insight into the evolution of biochemical function in the haloalkanoic acid dehalogenase superfamily
-
Tremblay LW, Dunaway-Mariano D, Allen KN. 2006. Structure and activity analyses of Escherichia coli K-12 NagD provide insight into the evolution of biochemical function in the haloalkanoic acid dehalogenase superfamily. Biochemistry 45:1183-1193. http://dx.doi.org/10.1021/bi051842j.
-
(2006)
Biochemistry
, vol.45
, pp. 1183-1193
-
-
Tremblay, L.W.1
Dunaway-Mariano, D.2
Allen, K.N.3
-
11
-
-
34247508562
-
Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose
-
Ni H, Laplaza JM, Jeffries TW. 2007. Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose. Appl Environ Microbiol 73:2061-2066. http://dx.doi.org/10.1128/AEM.02564-06.
-
(2007)
Appl Environ Microbiol
, vol.73
, pp. 2061-2066
-
-
Ni, H.1
Laplaza, J.M.2
Jeffries, T.W.3
-
12
-
-
84874499132
-
Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae
-
Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, Jin Y-S. 2013. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One 8:e57048. http://dx.doi.org/10.1371/journal.pone.0057048.
-
(2013)
PLoS One
, vol.8
-
-
Kim, S.R.1
Skerker, J.M.2
Kang, W.3
Lesmana, A.4
Wei, N.5
Arkin, A.P.6
Jin, Y.-S.7
-
13
-
-
84858748257
-
Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural
-
Fujitomi K, Sanda T, Hasunuma T, Kondo A. 2012. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Bioresour Technol 111:161-166. http://dx.doi.org/10.1016/j.biortech.2012.01.161.
-
(2012)
Bioresour Technol
, vol.111
, pp. 161-166
-
-
Fujitomi, K.1
Sanda, T.2
Hasunuma, T.3
Kondo, A.4
-
14
-
-
57049166496
-
Deleting the paranitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose
-
Van Vleet JH, Jeffries TW, Olsson L. 2008. Deleting the paranitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose. Metab Eng 10:360-369. http://dx.doi.org/10.1016/j.ymben.2007.12.002.
-
(2008)
Metab Eng
, vol.10
, pp. 360-369
-
-
Van Vleet, J.H.1
Jeffries, T.W.2
Olsson, L.3
-
15
-
-
84906947676
-
Synergistic effects of TAL1 over-expression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain
-
Li Y-C, Gou Z-X, Liu Z-S, Tang Y-Q, Akamatsu T, Kida K. 2014. Synergistic effects of TAL1 over-expression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain. Biotechnol Lett 36:2011-2021. http://dx.doi.org/10.1007/s10529-014-1581-7.
-
(2014)
Biotechnol Lett
, vol.36
, pp. 2011-2021
-
-
Li, Y.-C.1
Gou, Z.-X.2
Liu, Z.-S.3
Tang, Y.-Q.4
Akamatsu, T.5
Kida, K.6
-
16
-
-
84922851448
-
Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields
-
Lee S-M, Jellison T, Alper H. 2014. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol Biofuels 7:122. http://dx.doi.org/10.1186/s13068-014-0122-x.
-
(2014)
Biotechnol Biofuels
, vol.7
, pp. 122
-
-
Lee, S.-M.1
Jellison, T.2
Alper, H.3
-
17
-
-
84882640990
-
Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism
-
Kim SR, Park Y-C, Jin Y-S, Seo J-H. 2013. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 31: 851-861. http://dx.doi.org/10.1016/j.biotechadv.2013.03.004.
-
(2013)
Biotechnol Adv
, vol.31
, pp. 851-861
-
-
Kim, S.R.1
Park, Y.-C.2
Jin, Y.-S.3
Seo, J.-H.4
-
18
-
-
80052919515
-
Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae
-
Williams JA (ed), Humana Press, Totowa, NJ
-
Hegemann J, Heick S. 2011. Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae, p 189-206. In Williams JA (ed), Strain engineering, vol 765. Humana Press, Totowa, NJ.
-
(2011)
Strain engineering
, vol.765
, pp. 189-206
-
-
Hegemann, J.1
Heick, S.2
-
19
-
-
34347206860
-
High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
-
Gietz RD, Schiestl RH. 2007. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31-34. http://dx.doi.org/10.1038/nprot.2007.13.
-
(2007)
Nat Protoc
, vol.2
, pp. 31-34
-
-
Gietz, R.D.1
Schiestl, R.H.2
-
20
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. 2013. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336-4343. http://dx.doi.org/10.1093/nar/gkt135.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 4336-4343
-
-
DiCarlo, J.E.1
Norville, J.E.2
Mali, P.3
Rios, X.4
Aach, J.5
Church, G.M.6
-
22
-
-
33747779674
-
Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production
-
Larochelle M, Drouin S, Robert F, Turcotte B. 2006. Oxidative stress-activated zinc cluster protein Stb5 has dual activator/repressor functions required for pentose phosphate pathway regulation and NADPH production. Mol Cell Biol 26:6690-6701. http://dx.doi.org/10.1128/MCB.02450-05.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 6690-6701
-
-
Larochelle, M.1
Drouin, S.2
Robert, F.3
Turcotte, B.4
-
23
-
-
71749118125
-
The Saccharomyces cerevisiae YMR315W gene encodes an NADP(H)-specific oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation
-
Hector RE, Bowman MJ, Skory CD, Cotta MA. 2009. The Saccharomyces cerevisiae YMR315W gene encodes an NADP(H)-specific oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation. New Biotechnol 26:171-180. http://dx.doi.org/10.1016/j.nbt.2009.08.008.
-
(2009)
New Biotechnol
, vol.26
, pp. 171-180
-
-
Hector, R.E.1
Bowman, M.J.2
Skory, C.D.3
Cotta, M.A.4
-
24
-
-
0032054379
-
A specific alkaline phosphatase from Saccharomyces cerevisiae with protein phosphatase activity
-
Tuleva B, Vasileva-Tonkova E, Galabova D. 1998. A specific alkaline phosphatase from Saccharomyces cerevisiae with protein phosphatase activity. FEMS Microbiol Lett 161:139-144. http://dx.doi.org/10.1111/j.1574-6968.1998.tb12940.x.
-
(1998)
FEMS Microbiol Lett
, vol.161
, pp. 139-144
-
-
Tuleva, B.1
Vasileva-Tonkova, E.2
Galabova, D.3
-
25
-
-
80052246522
-
Physiological and toxic effects of purine intermediate 5-amino-4-imidazolecarboxamide ribonucleotide (AICAR) in yeast
-
Hürlimann HC, Laloo B, Simon-Kayser B, Saint-Marc C, Coulpier F, Lemoine S, Daignan-Fornier B, Pinson B. 2011. Physiological and toxic effects of purine intermediate 5-amino-4-imidazolecarboxamide ribonucleotide (AICAR) in yeast. J Biol Chem 286:30994-31002. http://dx.doi.org/10.1074/jbc.M111.262659.
-
(2011)
J Biol Chem
, vol.286
, pp. 30994-31002
-
-
Hürlimann, H.C.1
Laloo, B.2
Simon-Kayser, B.3
Saint-Marc, C.4
Coulpier, F.5
Lemoine, S.6
Daignan-Fornier, B.7
Pinson, B.8
-
26
-
-
33846023053
-
Genome-wide analysis of substrate specificities of the Escherichia coli haloacid dehalogenaselike phosphatase family
-
Kuznetsova E, Proudfoot M, Gonzalez CF, Brown G, Omelchenko MV, Borozan I, Carmel L, Wolf YI, Mori H, Savchenko AV, Arrowsmith CH, Koonin EV, Edwards AM, Yakunin AF. 2006. Genome-wide analysis of substrate specificities of the Escherichia coli haloacid dehalogenaselike phosphatase family. J Biol Chem 281:36149-36161. http://dx.doi.org/10.1074/jbc.M605449200.
-
(2006)
J Biol Chem
, vol.281
, pp. 36149-36161
-
-
Kuznetsova, E.1
Proudfoot, M.2
Gonzalez, C.F.3
Brown, G.4
Omelchenko, M.V.5
Borozan, I.6
Carmel, L.7
Wolf, Y.I.8
Mori, H.9
Savchenko, A.V.10
Arrowsmith, C.H.11
Koonin, E.V.12
Edwards, A.M.13
Yakunin, A.F.14
-
27
-
-
0025074317
-
Cloning and characterization of the N-acetylglucosamine operon of Escherichia coli
-
Peri KG, Goldie H, Waygood EB. 1990. Cloning and characterization of the N-acetylglucosamine operon of Escherichia coli. Biochem Cell Biol 68:123-137. http://dx.doi.org/10.1139/o90-017.
-
(1990)
Biochem Cell Biol
, vol.68
, pp. 123-137
-
-
Peri, K.G.1
Goldie, H.2
Waygood, E.B.3
-
28
-
-
34447136818
-
Identification of the photorespiratory 2-phosphoglycolate phosphatase, PGLP1, in Arabidopsis
-
Schwarte S, Bauwe H. 2007. Identification of the photorespiratory 2-phosphoglycolate phosphatase, PGLP1, in Arabidopsis. Plant Physiol 144:1580-1586. http://dx.doi.org/10.1104/pp.107.099192.
-
(2007)
Plant Physiol
, vol.144
, pp. 1580-1586
-
-
Schwarte, S.1
Bauwe, H.2
-
29
-
-
0346118933
-
Human pyridoxal phosphatase: molecular cloning, functional expression, and tissue distribution
-
Jang YM, Kim DW, Kang T-C, Won MH, Baek N-I, Moon BJ, Choi SY, Kwon O-S. 2003. Human pyridoxal phosphatase: molecular cloning, functional expression, and tissue distribution. J Biol Chem 278:50040-50046. http://dx.doi.org/10.1074/jbc.M309619200.
-
(2003)
J Biol Chem
, vol.278
, pp. 50040-50046
-
-
Jang, Y.M.1
Kim, D.W.2
Kang, T.-C.3
Won, M.H.4
Baek, N.-I.5
Moon, B.J.6
Choi, S.Y.7
Kwon, O.-S.8
-
30
-
-
0029994841
-
A new efficient gene disruption cassette for repeated use in budding yeast
-
Güldener U, Heck S, Fiedler T, Beinhauer J, Hegemann JH. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519-2524. http://dx.doi.org/10.1093/nar/24.13.2519.
-
(1996)
Nucleic Acids Res
, vol.24
, pp. 2519-2524
-
-
Güldener, U.1
Heck, S.2
Fiedler, T.3
Beinhauer, J.4
Hegemann, J.H.5
-
31
-
-
0032579440
-
Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications
-
Baker Brachmann C, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115-132. http://dx.doi.org/10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2.
-
(1998)
Yeast
, vol.14
, pp. 115-132
-
-
Baker Brachmann, C.1
Davies, A.2
Cost, G.J.3
Caputo, E.4
Li, J.5
Hieter, P.6
Boeke, J.D.7
-
32
-
-
0037173615
-
Functional profiling of the Saccharomyces cerevisiae genome
-
Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian K-D, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, et al. 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387-391. http://dx.doi.org/10.1038/nature00935.
-
(2002)
Nature
, vol.418
, pp. 387-391
-
-
Giaever, G.1
Chu, A.M.2
Ni, L.3
Connelly, C.4
Riles, L.5
Veronneau, S.6
Dow, S.7
Lucau-Danila, A.8
Anderson, K.9
Andre, B.10
Arkin, A.P.11
Astromoff, A.12
El Bakkoury, M.13
Bangham, R.14
Benito, R.15
Brachat, S.16
Campanaro, S.17
Curtiss, M.18
Davis, K.19
Deutschbauer, A.20
Entian, K.-D.21
Flaherty, P.22
Foury, F.23
Garfinkel, D.J.24
Gerstein, M.25
Gotte, D.26
Guldener, U.27
Hegemann, J.H.28
Hempel, S.29
Herman, Z.30
Jaramillo, D.F.31
Kelly, D.E.32
Kelly, S.L.33
Kotter, P.34
LaBonte, D.35
Lamb, D.C.36
Lan, N.37
Liang, H.38
Liao, H.39
Liu, L.40
Luo, C.41
Lussier, M.42
Mao, R.43
Menard, P.44
Ooi, S.L.45
Revuelta, J.L.46
Roberts, C.J.47
Rose, M.48
Ross-Macdonald, P.49
Scherens, B.50
more..
-
33
-
-
0026548118
-
A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae
-
Hosaka K, Nikawa J-i, Kodaki T, Yamashita S. 1992. A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae. J Biochem 111:352-358.
-
(1992)
J Biochem
, vol.111
, pp. 352-358
-
-
Hosaka, K.1
Nikawa, J.-I.2
Kodaki, T.3
Yamashita, S.4
|