-
1
-
-
0036790999
-
From the cover: transitive functional annotation by shortest-path analysis of gene expression data
-
Zhou X., Kao M.C., Wong W.H. From the cover: transitive functional annotation by shortest-path analysis of gene expression data. Proc. Nat. Acad. Sci. U.S.A. 2002, 99(20):12783-12788.
-
(2002)
Proc. Nat. Acad. Sci. U.S.A.
, vol.99
, Issue.20
, pp. 12783-12788
-
-
Zhou, X.1
Kao, M.C.2
Wong, W.H.3
-
2
-
-
0344464762
-
Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
-
Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003, 19(17):2271-2282.
-
(2003)
Bioinformatics
, vol.19
, Issue.17
, pp. 2271-2282
-
-
Husmeier, D.1
-
3
-
-
0037941585
-
Module networks: discovering regulatory modules and their condition specific regulators from gene expression data
-
Segal E., Shapira M., Regev A., et al. Module networks: discovering regulatory modules and their condition specific regulators from gene expression data. Nat. Genet. 2003, 34(2):166-176.
-
(2003)
Nat. Genet.
, vol.34
, Issue.2
, pp. 166-176
-
-
Segal, E.1
Shapira, M.2
Regev, A.3
-
4
-
-
1442311573
-
Gene expression as a drug discovery tool
-
Evans W.E., Guy R.K. Gene expression as a drug discovery tool. Nat. Genet. 2004, 36(3):214-215.
-
(2004)
Nat. Genet.
, vol.36
, Issue.3
, pp. 214-215
-
-
Evans, W.E.1
Guy, R.K.2
-
5
-
-
0033536012
-
Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by Oligonucleotide array
-
Alon U., Barkai N., Notterman D.A., et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by Oligonucleotide array. Proc. Nat. Acad. Sci. U.S.A. 1999, 96(12):6745-6750.
-
(1999)
Proc. Nat. Acad. Sci. U.S.A.
, vol.96
, Issue.12
, pp. 6745-6750
-
-
Alon, U.1
Barkai, N.2
Notterman, D.A.3
-
6
-
-
0038160051
-
Cancer diagnosis using proteomic patterns
-
Conrads T.P., Zhou M., Petricoin E.F., et al. Cancer diagnosis using proteomic patterns. Expert Rev. Mol. Diagn. 2003, 3(4):411-420.
-
(2003)
Expert Rev. Mol. Diagn.
, vol.3
, Issue.4
, pp. 411-420
-
-
Conrads, T.P.1
Zhou, M.2
Petricoin, E.F.3
-
7
-
-
0033569406
-
Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
-
Golub T.R., Slonim D.K., Tamayo P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286(5439):531-537.
-
(1999)
Science
, vol.286
, Issue.5439
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
-
8
-
-
0036606299
-
Molecular profiling of non-small cell lung cancer and correlation with disease-free survival
-
Wigle D.A., Jurisica I., Radulovich N., et al. Molecular profiling of non-small cell lung cancer and correlation with disease-free survival. Cancer Res. 2002, 62(11):3005-3008.
-
(2002)
Cancer Res.
, vol.62
, Issue.11
, pp. 3005-3008
-
-
Wigle, D.A.1
Jurisica, I.2
Radulovich, N.3
-
9
-
-
0037381008
-
Gene expression-based classification of malignant gliomas correlates better with survival than histological classification
-
Nutt C.L., Mani D.R., Betensky R.A., et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res. 2003, 63(7):1602-1607.
-
(2003)
Cancer Res.
, vol.63
, Issue.7
, pp. 1602-1607
-
-
Nutt, C.L.1
Mani, D.R.2
Betensky, R.A.3
-
10
-
-
77957988489
-
Class prediction for high-dimensional class-imbalanced data
-
Blagus R., Lusa L. Class prediction for high-dimensional class-imbalanced data. BMC Bioinf. 2010, 11(523).
-
(2010)
BMC Bioinf.
, vol.11
, Issue.523
-
-
Blagus, R.1
Lusa, L.2
-
12
-
-
2242481419
-
Workshop on learning from imbalanced data sets
-
N. Japkowicz, Workshop on learning from imbalanced data sets, in: Proceedings of the 17th American Association for Artificial Intelligence, Austin, Texas, USA, 2000.
-
(2000)
in: Proceedings of the 17th American Association for Artificial Intelligence, Austin, Texas, USA
-
-
Japkowicz, N.1
-
13
-
-
84863235930
-
Workshop on learning from imbalanced data sets II
-
N.V. Chawla, N. Japkowicz, A. Kolcz, Workshop on learning from imbalanced data sets II, in: Proceedings of the 20th International Conference of Machine Learning, Washington, USA, 2003.
-
(2003)
in: Proceedings of the 20th International Conference of Machine Learning, Washington, USA
-
-
Chawla, N.V.1
Japkowicz, N.2
Kolcz, A.3
-
14
-
-
27144549260
-
Editorial: special issue on learning from imbalanced data sets
-
Chawla N.V., Japkowicz N., Kolcz A. Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explor. Newsl 2004, 6(1):1-6.
-
(2004)
ACM SIGKDD Explor. Newsl
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kolcz, A.3
-
15
-
-
85161651554
-
Data mining for direct marketing problems and solutions
-
C. Ling, C. Li, Data mining for direct marketing problems and solutions, in: Proceedings of the 4th ACM SIGKDD International Conference of Knowledge Discovery and Data Mining, New York, USA, 1998, pp.73-79.
-
(1998)
in: Proceedings of the 4th ACM SIGKDD International Conference of Knowledge Discovery and Data Mining, New York, USA
, pp. 73-79
-
-
Ling, C.1
Li, C.2
-
16
-
-
0346586663
-
SMOTE: synthetic minority over-sampling technique
-
Chawla N.V., Bowyer K.W., Hall L.O., et al. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16(1):321-357.
-
(2002)
J. Artif. Intell. Res.
, vol.16
, Issue.1
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
-
17
-
-
27144501672
-
Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning
-
H. Han, W.Y. Wang, B.H. Mao, Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning, in: Proceedings of the 2005 International Conference of Intelligent Computing, Hefei, China, 2005, pp.878-887.
-
(2005)
in: Proceedings of the 2005 International Conference of Intelligent Computing, Hefei, China
, pp. 878-887
-
-
Han, H.1
Wang, W.Y.2
Mao, B.H.3
-
18
-
-
0001972236
-
Addressing the curse of imbalanced training sets: one-sided selection
-
M. Kubat, S. Matwin, Addressing the curse of imbalanced training sets: one-sided selection, in: Proceedings of the 14th International Conference of Machine Learning, Nashville, Tennessee, USA, 1997, pp.179-186.
-
(1997)
in: Proceedings of the 14th International Conference of Machine Learning, Nashville, Tennessee, USA
, pp. 179-186
-
-
Kubat, M.1
Matwin, S.2
-
19
-
-
56349089205
-
ADASYN: adaptive synthetic sampling approach for imbalanced learning
-
H. He, Y. Bai, E.A. Garcia, et al., ADASYN: adaptive synthetic sampling approach for imbalanced learning, in: Proceedings of the 2008 International Joint Conference of Neural Networks, Hong Kong, China, 2008, pp.1322-1328.
-
(2008)
in: Proceedings of the 2008 International Joint Conference of Neural Networks, Hong Kong, China
, pp. 1322-1328
-
-
He, H.1
Bai, Y.2
Garcia, E.A.3
-
20
-
-
58349090428
-
Cluster-based under-sampling approaches for imbalanced data distributions
-
Yen S.J., Lee Y.S. Cluster-based under-sampling approaches for imbalanced data distributions. Expert. Syst. Appl. 2009, 36(3):5718-5727.
-
(2009)
Expert. Syst. Appl.
, vol.36
, Issue.3
, pp. 5718-5727
-
-
Yen, S.J.1
Lee, Y.S.2
-
21
-
-
84867577175
-
The foundations of cost-sensitive learning
-
C. Elkan, The foundations of cost-sensitive learning, in: Proceedings of the 17th International Joint Conference of Artificial Intelligence, Seattle, Washington, USA, 2001, pp.973-978.
-
(2001)
in: Proceedings of the 17th International Joint Conference of Artificial Intelligence, Seattle, Washington, USA
, pp. 973-978
-
-
Elkan, C.1
-
22
-
-
33749245586
-
Cost-sensitive learning by cost-proportionate example weighting
-
B. Zadrozny, J. Langford, N. Abe, Cost-sensitive learning by cost-proportionate example weighting, in: Proceedings of the 3rd International Conference of Data Mining, Melbourne, Florida, USA, 2003, pp.435-442.
-
(2003)
in: Proceedings of the 3rd International Conference of Data Mining, Melbourne, Florida, USA
, pp. 435-442
-
-
Zadrozny, B.1
Langford, J.2
Abe, N.3
-
23
-
-
0002106691
-
MetaCost: a general method for making classifiers cost-sensitive
-
P. Domingos, MetaCost: a general method for making classifiers cost-sensitive, in: Proceedings of the 5th ACM SIGKDD International Conference of Knowledge Discovery and Data Mining, San Diego, CA, USA 1999, PP.155-164.
-
(1999)
in: Proceedings of the 5th ACM SIGKDD International Conference of Knowledge Discovery and Data Mining, San Diego, CA, USA
, pp. 155-164
-
-
Domingos, P.1
-
24
-
-
34547673383
-
Cost-sensitive boosting for classification of imbalanced data
-
Sun Y., Kamel M.S., Wong A.K.C., et al. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit. 2007, 40(12):3358-3378.
-
(2007)
Pattern Recognit.
, vol.40
, Issue.12
, pp. 3358-3378
-
-
Sun, Y.1
Kamel, M.S.2
Wong, A.K.C.3
-
25
-
-
0013316935
-
AdaCost: misclassification cost-sensitive boosting
-
W. Fan, S.J. Stolfo, J. Zhang, et al., AdaCost: misclassification cost-sensitive boosting, in: Proceedings of the 16th International Conference of Machine Learning, Bled, Slovenia, 1999, pp.97-105.
-
(1999)
in: Proceedings of the 16th International Conference of Machine Learning, Bled, Slovenia
, pp. 97-105
-
-
Fan, W.1
Stolfo, S.J.2
Zhang, J.3
-
26
-
-
0004708854
-
Exploiting the cost (In)sensitivity of decision tree splitting criteria
-
C. Drummond, R.C. Holte, Exploiting the cost (In)sensitivity of decision tree splitting criteria, in: Proceedings of the 17th International Conference of Machine Learning, Stanford, CA, USA, 2000, pp.239-246.
-
(2000)
in: Proceedings of the 17th International Conference of Machine Learning, Stanford, CA, USA
, pp. 239-246
-
-
Drummond, C.1
Holte, R.C.2
-
27
-
-
31344442851
-
Training cost-sensitive neural networks with methods addressing the class imbalance problem
-
Zhou Z.H., Liu X.Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 2006, 18(1):63-77.
-
(2006)
IEEE Trans. Knowl. Data Eng.
, vol.18
, Issue.1
, pp. 63-77
-
-
Zhou, Z.H.1
Liu, X.Y.2
-
28
-
-
22944452794
-
Applying support vector machines to imbalanced data sets
-
R. Akbani, S. Kwek, N. Japkowicz, Applying support vector machines to imbalanced data sets, in: Proceedings of the 15th European Conference on Machine Learning, Pisa, Italy, 2004, pp.39-50.
-
(2004)
in: Proceedings of the 15th European Conference on Machine Learning, Pisa, Italy
, pp. 39-50
-
-
Akbani, R.1
Kwek, S.2
Japkowicz, N.3
-
29
-
-
84878098426
-
The influence of class imbalance on cost-sensitive learning: an empirical study
-
X.Y. Liu, Z.H. Zhou, The influence of class imbalance on cost-sensitive learning: an empirical study, in: Proceedings of the 6th IEEE International Conference on Data Mining, Hong Kong, China, 2006, pp.970-974.
-
(2006)
in: Proceedings of the 6th IEEE International Conference on Data Mining, Hong Kong, China
, pp. 970-974
-
-
Liu, X.Y.1
Zhou, Z.H.2
-
30
-
-
9444297357
-
SMOTEBoost: improving prediction of the minority class in boosting
-
N.V. Chawla, A. Lazarevic, L.O. Hall, et al., SMOTEBoost: improving prediction of the minority class in boosting, in: Proceedings of the 7th European Conference on Principles of Data Mining and Knowledge Discovery, Cavtat-Dubrovnik, Croatia, 2003, pp.107-119.
-
(2003)
in: Proceedings of the 7th European Conference on Principles of Data Mining and Knowledge Discovery, Cavtat-Dubrovnik, Croatia
, pp. 107-119
-
-
Chawla, N.V.1
Lazarevic, A.2
Hall, L.O.3
-
32
-
-
33746424489
-
Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
-
Tao D., Tang X., Li X., et al. Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28(7):1088-1099.
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, Issue.7
, pp. 1088-1099
-
-
Tao, D.1
Tang, X.2
Li, X.3
-
33
-
-
47249093354
-
Asymmetric bagging and feature selection for activities prediction of drug molecules
-
Li G.Z., Meng H.H., Lu W.C., et al. Asymmetric bagging and feature selection for activities prediction of drug molecules. BMC Bioinf. 2008, 9(S6):S7.
-
(2008)
BMC Bioinf.
, vol.9
, Issue.S6
-
-
Li, G.Z.1
Meng, H.H.2
Lu, W.C.3
-
34
-
-
77950294204
-
Roughly balanced bagging for imbalanced data
-
Hido S., Kashima H., Takahashi Y. Roughly balanced bagging for imbalanced data. Stat. Anal. Data Min. 2009, 2(5-6):412-426.
-
(2009)
Stat. Anal. Data Min.
, vol.2
, Issue.5-6
, pp. 412-426
-
-
Hido, S.1
Kashima, H.2
Takahashi, Y.3
-
36
-
-
76749153275
-
A modified ant colony optimization algorithm for tumor marker gene selection
-
Yu H.L., Gu G.C., Liu H.B., et al. A modified ant colony optimization algorithm for tumor marker gene selection. Genomics Proteomics Bioinf. 2009, 7(4):200-208.
-
(2009)
Genomics Proteomics Bioinf.
, vol.7
, Issue.4
, pp. 200-208
-
-
Yu, H.L.1
Gu, G.C.2
Liu, H.B.3
-
37
-
-
80054737651
-
The Class Imbalance Problem in Pattern Classification and Learning
-
V. García, J.S. Sánchez, R.A. Mollineda, et al., The Class Imbalance Problem in Pattern Classification and Learning, in: II Congreso Español de Informática, 2007, pp. 283-291.
-
(2007)
in: II Congreso Español de Informática
, pp. 283-291
-
-
García, V.1
Sánchez, J.S.2
Mollineda, R.A.3
-
38
-
-
0002400184
-
Distributed optimization by ant colonies
-
A. Colorni, M. Dorigo, V. Maniezzo, Distributed optimization by ant colonies. in: Proceedings of the 1st European Conference on Artificial Life, Paris, France, 1991, pp.134-142.
-
(1991)
in: Proceedings of the 1st European Conference on Artificial Life, Paris, France
, pp. 134-142
-
-
Colorni, A.1
Dorigo, M.2
Maniezzo, V.3
-
39
-
-
60249086880
-
An interactive simulation and analysis software for solving TSP using ant colony optimization algorithms
-
Uǧur A., Aydin D. An interactive simulation and analysis software for solving TSP using ant colony optimization algorithms. Adv. Eng. Software 2009, 40(5):341-349.
-
(2009)
Adv. Eng. Software
, vol.40
, Issue.5
, pp. 341-349
-
-
Uǧur, A.1
Aydin, D.2
-
40
-
-
78650195131
-
An ACO-based algorithm for parameter optimization of support vector machines
-
Zhang X., Chen X., He Z. An ACO-based algorithm for parameter optimization of support vector machines. Expert. Syst. Appl. 2010, 37(9):6618-6628.
-
(2010)
Expert. Syst. Appl.
, vol.37
, Issue.9
, pp. 6618-6628
-
-
Zhang, X.1
Chen, X.2
He, Z.3
-
41
-
-
77955305185
-
Three-dimension path planning for UCAV using hybrid meta-heuristic ACO-DE algorithm
-
Duan H., Yu Y., Zhang X., et al. Three-dimension path planning for UCAV using hybrid meta-heuristic ACO-DE algorithm. Simul. Modell. Pract. Theory 2010, 18(8):1104-1115.
-
(2010)
Simul. Modell. Pract. Theory
, vol.18
, Issue.8
, pp. 1104-1115
-
-
Duan, H.1
Yu, Y.2
Zhang, X.3
-
42
-
-
25444462754
-
An ant colony optimization algorithm for the 2D and 3D hydrophobic polar protein folding problem
-
Shmygelska A., Hoos H.H. An ant colony optimization algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinf. 2005, 6(30).
-
(2005)
BMC Bioinf.
, vol.6
, Issue.30
-
-
Shmygelska, A.1
Hoos, H.H.2
-
43
-
-
71549117908
-
A particle swarm based hybrid system for imbalanced medical data sampling
-
Yang P., Xu L., Zhou B., et al. A particle swarm based hybrid system for imbalanced medical data sampling. BMC Genomics 2009, 10(S3):S34.
-
(2009)
BMC Genomics
, vol.10
, Issue.S3
-
-
Yang, P.1
Xu, L.2
Zhou, B.3
-
45
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9(3):293-300.
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
46
-
-
17444386734
-
HykGene: a hybrid approach for selecting feature genes for phenotype classification using microarray gene expression data
-
Wang Y.H., Makedon F.S., Ford J.C., et al. HykGene: a hybrid approach for selecting feature genes for phenotype classification using microarray gene expression data. Bioinformatics 2005, 21(8):1530-1537.
-
(2005)
Bioinformatics
, vol.21
, Issue.8
, pp. 1530-1537
-
-
Wang, Y.H.1
Makedon, F.S.2
Ford, J.C.3
-
47
-
-
0003076895
-
Feature selection for high-dimensional genomic microarray data
-
E. Xing, M. Jordan, R. Karp, Feature selection for high-dimensional genomic microarray data, in: Proceedings of the 18th International Conference of Machine Learning, Williamstown, MA, USA, 2001, pp.601-608.
-
(2001)
in: Proceedings of the 18th International Conference of Machine Learning, Williamstown, MA, USA
, pp. 601-608
-
-
Xing, E.1
Jordan, M.2
Karp, R.3
-
48
-
-
3042532685
-
Filter versus wrapper gene selection approaches in DNA microarray domains
-
Inza I., Larranaga P., Blanco R. Filter versus wrapper gene selection approaches in DNA microarray domains. Artif. Intell. Med. 2004, 31(2):91-104.
-
(2004)
Artif. Intell. Med.
, vol.31
, Issue.2
, pp. 91-104
-
-
Inza, I.1
Larranaga, P.2
Blanco, R.3
-
49
-
-
43749097693
-
A combination of rough-based feature selection and RBF neural network for classification using gene expression data
-
Chiang J.H., Ho S.H. A combination of rough-based feature selection and RBF neural network for classification using gene expression data. IEEE Trans. Nanobiosci. 2008, 7(1):91-99.
-
(2008)
IEEE Trans. Nanobiosci.
, vol.7
, Issue.1
, pp. 91-99
-
-
Chiang, J.H.1
Ho, S.H.2
-
50
-
-
33746677949
-
A stable gene selection in microarray data analysis
-
Yang K., Cai Z., Li J., et al. A stable gene selection in microarray data analysis. BMC Bioinf. 2006, 7(228).
-
(2006)
BMC Bioinf.
, vol.7
, Issue.228
-
-
Yang, K.1
Cai, Z.2
Li, J.3
-
51
-
-
63149099851
-
Embedded gene selection for imbalanced microarray data analysis
-
G.Z. Li, H.H. Meng, J. Ni, Embedded gene selection for imbalanced microarray data analysis, in: Proceedings of the 3rd International Multi-symposiums on Computer and Computational Sciences, Shanghai, China, 2008, pp.17-24.
-
(2008)
in: Proceedings of the 3rd International Multi-symposiums on Computer and Computational Sciences, Shanghai, China
, pp. 17-24
-
-
Li, G.Z.1
Meng, H.H.2
Ni, J.3
-
52
-
-
70450190457
-
Gene selection for microarray expression data with imbalanced sample distributions
-
A.H.M. Kamal, X.Q. Zhu, R. Narayanan, Gene selection for microarray expression data with imbalanced sample distributions, in: Proceedings of the 2009 International Conference of Bioinformatics, Systems Biology and Intelligent Computing, Shanghai, China, 2009, pp.3-9.
-
(2009)
in: Proceedings of the 2009 International Conference of Bioinformatics, Systems Biology and Intelligent Computing, Shanghai, China
, pp. 3-9
-
-
Kamal, A.H.M.1
Zhu, X.Q.2
Narayanan, R.3
-
53
-
-
67349267305
-
Simultaneous genes and training samples selection by modified particle swarm optimization for gene expression data classification
-
Shen Q., Mei Z., Ye B.X. Simultaneous genes and training samples selection by modified particle swarm optimization for gene expression data classification. Comput. Biol. Med. 2009, 39(7):646-649.
-
(2009)
Comput. Biol. Med.
, vol.39
, Issue.7
, pp. 646-649
-
-
Shen, Q.1
Mei, Z.2
Ye, B.X.3
-
54
-
-
0037165140
-
Prediction of central nervous system embryonal tumour outcome based on gene expression
-
Pomeroy S.L., Tamayo P., Gaasenbeek M., et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002, 415(6870):436-442.
-
(2002)
Nature
, vol.415
, Issue.6870
, pp. 436-442
-
-
Pomeroy, S.L.1
Tamayo, P.2
Gaasenbeek, M.3
-
56
-
-
77956023732
-
Combating the small sample class imbalance problem using feature selection
-
Wasikowski M., Chen X.W. Combating the small sample class imbalance problem using feature selection. IEEE Trans. Knowl. Data Eng. 2010, 22(10):1388-1400.
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.10
, pp. 1388-1400
-
-
Wasikowski, M.1
Chen, X.W.2
|