메뉴 건너뛰기




Volumn 101, Issue , 2013, Pages 309-318

ACOSampling: An ant colony optimization-based undersampling method for classifying imbalanced DNA microarray data

Author keywords

Ant colony optimization; Class imbalance; DNA microarray; Support vector machine; Undersampling

Indexed keywords

ACO ALGORITHMS; ANT COLONIES; ANT COLONY OPTIMIZATION (ACO); CLASS IMBALANCE; CLASS IMBALANCE PROBLEMS; DNA MICRO-ARRAY; DNA MICROARRAY DATA; DNA MICROARRAY DATASETS; FILTER-LESS; HIGH FREQUENCY; HIGH NOISE; LOCAL OPTIMAL; OPTIMAL TRAINING; PREDICTION PERFORMANCE; SMALL SAMPLES; TRAINING SETS; UNDER-SAMPLING;

EID: 84868621497     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.08.018     Document Type: Article
Times cited : (168)

References (56)
  • 1
    • 0036790999 scopus 로고    scopus 로고
    • From the cover: transitive functional annotation by shortest-path analysis of gene expression data
    • Zhou X., Kao M.C., Wong W.H. From the cover: transitive functional annotation by shortest-path analysis of gene expression data. Proc. Nat. Acad. Sci. U.S.A. 2002, 99(20):12783-12788.
    • (2002) Proc. Nat. Acad. Sci. U.S.A. , vol.99 , Issue.20 , pp. 12783-12788
    • Zhou, X.1    Kao, M.C.2    Wong, W.H.3
  • 2
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003, 19(17):2271-2282.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 3
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: discovering regulatory modules and their condition specific regulators from gene expression data
    • Segal E., Shapira M., Regev A., et al. Module networks: discovering regulatory modules and their condition specific regulators from gene expression data. Nat. Genet. 2003, 34(2):166-176.
    • (2003) Nat. Genet. , vol.34 , Issue.2 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3
  • 4
    • 1442311573 scopus 로고    scopus 로고
    • Gene expression as a drug discovery tool
    • Evans W.E., Guy R.K. Gene expression as a drug discovery tool. Nat. Genet. 2004, 36(3):214-215.
    • (2004) Nat. Genet. , vol.36 , Issue.3 , pp. 214-215
    • Evans, W.E.1    Guy, R.K.2
  • 5
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by Oligonucleotide array
    • Alon U., Barkai N., Notterman D.A., et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by Oligonucleotide array. Proc. Nat. Acad. Sci. U.S.A. 1999, 96(12):6745-6750.
    • (1999) Proc. Nat. Acad. Sci. U.S.A. , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3
  • 7
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T.R., Slonim D.K., Tamayo P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286(5439):531-537.
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 8
    • 0036606299 scopus 로고    scopus 로고
    • Molecular profiling of non-small cell lung cancer and correlation with disease-free survival
    • Wigle D.A., Jurisica I., Radulovich N., et al. Molecular profiling of non-small cell lung cancer and correlation with disease-free survival. Cancer Res. 2002, 62(11):3005-3008.
    • (2002) Cancer Res. , vol.62 , Issue.11 , pp. 3005-3008
    • Wigle, D.A.1    Jurisica, I.2    Radulovich, N.3
  • 9
    • 0037381008 scopus 로고    scopus 로고
    • Gene expression-based classification of malignant gliomas correlates better with survival than histological classification
    • Nutt C.L., Mani D.R., Betensky R.A., et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res. 2003, 63(7):1602-1607.
    • (2003) Cancer Res. , vol.63 , Issue.7 , pp. 1602-1607
    • Nutt, C.L.1    Mani, D.R.2    Betensky, R.A.3
  • 10
    • 77957988489 scopus 로고    scopus 로고
    • Class prediction for high-dimensional class-imbalanced data
    • Blagus R., Lusa L. Class prediction for high-dimensional class-imbalanced data. BMC Bioinf. 2010, 11(523).
    • (2010) BMC Bioinf. , vol.11 , Issue.523
    • Blagus, R.1    Lusa, L.2
  • 11
  • 14
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: special issue on learning from imbalanced data sets
    • Chawla N.V., Japkowicz N., Kolcz A. Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explor. Newsl 2004, 6(1):1-6.
    • (2004) ACM SIGKDD Explor. Newsl , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kolcz, A.3
  • 16
    • 0346586663 scopus 로고    scopus 로고
    • SMOTE: synthetic minority over-sampling technique
    • Chawla N.V., Bowyer K.W., Hall L.O., et al. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16(1):321-357.
    • (2002) J. Artif. Intell. Res. , vol.16 , Issue.1 , pp. 321-357
    • Chawla, N.V.1    Bowyer, K.W.2    Hall, L.O.3
  • 20
    • 58349090428 scopus 로고    scopus 로고
    • Cluster-based under-sampling approaches for imbalanced data distributions
    • Yen S.J., Lee Y.S. Cluster-based under-sampling approaches for imbalanced data distributions. Expert. Syst. Appl. 2009, 36(3):5718-5727.
    • (2009) Expert. Syst. Appl. , vol.36 , Issue.3 , pp. 5718-5727
    • Yen, S.J.1    Lee, Y.S.2
  • 24
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Sun Y., Kamel M.S., Wong A.K.C., et al. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit. 2007, 40(12):3358-3378.
    • (2007) Pattern Recognit. , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3
  • 27
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Zhou Z.H., Liu X.Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 2006, 18(1):63-77.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.H.1    Liu, X.Y.2
  • 32
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • Tao D., Tang X., Li X., et al. Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28(7):1088-1099.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.7 , pp. 1088-1099
    • Tao, D.1    Tang, X.2    Li, X.3
  • 33
    • 47249093354 scopus 로고    scopus 로고
    • Asymmetric bagging and feature selection for activities prediction of drug molecules
    • Li G.Z., Meng H.H., Lu W.C., et al. Asymmetric bagging and feature selection for activities prediction of drug molecules. BMC Bioinf. 2008, 9(S6):S7.
    • (2008) BMC Bioinf. , vol.9 , Issue.S6
    • Li, G.Z.1    Meng, H.H.2    Lu, W.C.3
  • 34
    • 77950294204 scopus 로고    scopus 로고
    • Roughly balanced bagging for imbalanced data
    • Hido S., Kashima H., Takahashi Y. Roughly balanced bagging for imbalanced data. Stat. Anal. Data Min. 2009, 2(5-6):412-426.
    • (2009) Stat. Anal. Data Min. , vol.2 , Issue.5-6 , pp. 412-426
    • Hido, S.1    Kashima, H.2    Takahashi, Y.3
  • 36
    • 76749153275 scopus 로고    scopus 로고
    • A modified ant colony optimization algorithm for tumor marker gene selection
    • Yu H.L., Gu G.C., Liu H.B., et al. A modified ant colony optimization algorithm for tumor marker gene selection. Genomics Proteomics Bioinf. 2009, 7(4):200-208.
    • (2009) Genomics Proteomics Bioinf. , vol.7 , Issue.4 , pp. 200-208
    • Yu, H.L.1    Gu, G.C.2    Liu, H.B.3
  • 39
    • 60249086880 scopus 로고    scopus 로고
    • An interactive simulation and analysis software for solving TSP using ant colony optimization algorithms
    • Uǧur A., Aydin D. An interactive simulation and analysis software for solving TSP using ant colony optimization algorithms. Adv. Eng. Software 2009, 40(5):341-349.
    • (2009) Adv. Eng. Software , vol.40 , Issue.5 , pp. 341-349
    • Uǧur, A.1    Aydin, D.2
  • 40
    • 78650195131 scopus 로고    scopus 로고
    • An ACO-based algorithm for parameter optimization of support vector machines
    • Zhang X., Chen X., He Z. An ACO-based algorithm for parameter optimization of support vector machines. Expert. Syst. Appl. 2010, 37(9):6618-6628.
    • (2010) Expert. Syst. Appl. , vol.37 , Issue.9 , pp. 6618-6628
    • Zhang, X.1    Chen, X.2    He, Z.3
  • 41
    • 77955305185 scopus 로고    scopus 로고
    • Three-dimension path planning for UCAV using hybrid meta-heuristic ACO-DE algorithm
    • Duan H., Yu Y., Zhang X., et al. Three-dimension path planning for UCAV using hybrid meta-heuristic ACO-DE algorithm. Simul. Modell. Pract. Theory 2010, 18(8):1104-1115.
    • (2010) Simul. Modell. Pract. Theory , vol.18 , Issue.8 , pp. 1104-1115
    • Duan, H.1    Yu, Y.2    Zhang, X.3
  • 42
    • 25444462754 scopus 로고    scopus 로고
    • An ant colony optimization algorithm for the 2D and 3D hydrophobic polar protein folding problem
    • Shmygelska A., Hoos H.H. An ant colony optimization algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinf. 2005, 6(30).
    • (2005) BMC Bioinf. , vol.6 , Issue.30
    • Shmygelska, A.1    Hoos, H.H.2
  • 43
    • 71549117908 scopus 로고    scopus 로고
    • A particle swarm based hybrid system for imbalanced medical data sampling
    • Yang P., Xu L., Zhou B., et al. A particle swarm based hybrid system for imbalanced medical data sampling. BMC Genomics 2009, 10(S3):S34.
    • (2009) BMC Genomics , vol.10 , Issue.S3
    • Yang, P.1    Xu, L.2    Zhou, B.3
  • 45
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9(3):293-300.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 46
    • 17444386734 scopus 로고    scopus 로고
    • HykGene: a hybrid approach for selecting feature genes for phenotype classification using microarray gene expression data
    • Wang Y.H., Makedon F.S., Ford J.C., et al. HykGene: a hybrid approach for selecting feature genes for phenotype classification using microarray gene expression data. Bioinformatics 2005, 21(8):1530-1537.
    • (2005) Bioinformatics , vol.21 , Issue.8 , pp. 1530-1537
    • Wang, Y.H.1    Makedon, F.S.2    Ford, J.C.3
  • 48
    • 3042532685 scopus 로고    scopus 로고
    • Filter versus wrapper gene selection approaches in DNA microarray domains
    • Inza I., Larranaga P., Blanco R. Filter versus wrapper gene selection approaches in DNA microarray domains. Artif. Intell. Med. 2004, 31(2):91-104.
    • (2004) Artif. Intell. Med. , vol.31 , Issue.2 , pp. 91-104
    • Inza, I.1    Larranaga, P.2    Blanco, R.3
  • 49
    • 43749097693 scopus 로고    scopus 로고
    • A combination of rough-based feature selection and RBF neural network for classification using gene expression data
    • Chiang J.H., Ho S.H. A combination of rough-based feature selection and RBF neural network for classification using gene expression data. IEEE Trans. Nanobiosci. 2008, 7(1):91-99.
    • (2008) IEEE Trans. Nanobiosci. , vol.7 , Issue.1 , pp. 91-99
    • Chiang, J.H.1    Ho, S.H.2
  • 50
    • 33746677949 scopus 로고    scopus 로고
    • A stable gene selection in microarray data analysis
    • Yang K., Cai Z., Li J., et al. A stable gene selection in microarray data analysis. BMC Bioinf. 2006, 7(228).
    • (2006) BMC Bioinf. , vol.7 , Issue.228
    • Yang, K.1    Cai, Z.2    Li, J.3
  • 53
    • 67349267305 scopus 로고    scopus 로고
    • Simultaneous genes and training samples selection by modified particle swarm optimization for gene expression data classification
    • Shen Q., Mei Z., Ye B.X. Simultaneous genes and training samples selection by modified particle swarm optimization for gene expression data classification. Comput. Biol. Med. 2009, 39(7):646-649.
    • (2009) Comput. Biol. Med. , vol.39 , Issue.7 , pp. 646-649
    • Shen, Q.1    Mei, Z.2    Ye, B.X.3
  • 54
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumour outcome based on gene expression
    • Pomeroy S.L., Tamayo P., Gaasenbeek M., et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002, 415(6870):436-442.
    • (2002) Nature , vol.415 , Issue.6870 , pp. 436-442
    • Pomeroy, S.L.1    Tamayo, P.2    Gaasenbeek, M.3
  • 56
    • 77956023732 scopus 로고    scopus 로고
    • Combating the small sample class imbalance problem using feature selection
    • Wasikowski M., Chen X.W. Combating the small sample class imbalance problem using feature selection. IEEE Trans. Knowl. Data Eng. 2010, 22(10):1388-1400.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1388-1400
    • Wasikowski, M.1    Chen, X.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.