메뉴 건너뛰기




Volumn 311, Issue , 2015, Pages 341-349

Hypertension Type Classification Using Hierarchical Ensemble of One-Class Classifiers for Imbalanced Data

Author keywords

classifier ensemble; hypertension; imbalanced data; one class classifier; pattern classification

Indexed keywords

ARTIFICIAL INTELLIGENCE; PATTERN RECOGNITION;

EID: 84906309048     PISSN: 21945357     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-319-09879-1_34     Document Type: Conference Paper
Times cited : (8)

References (21)
  • 2
    • 34547455416 scopus 로고    scopus 로고
    • Two-stage classifier for diagnosis of hypertension type
    • In: Maglaveras, N., Chouvarda, I., Koutkias, V., Brause, R. (eds.), Springer, Heidelberg
    • Wozniak, M.: Two-stage classifier for diagnosis of hypertension type. In: Maglaveras, N., Chouvarda, I., Koutkias, V., Brause, R. (eds.) ISBMDA 2006. LNCS (LNBI), vol. 4345, pp. 433-440. Springer, Heidelberg (2006)
    • (2006) ISBMDA 2006. LNCS (LNBI) , vol.4345 , pp. 433-440
    • Wozniak, M.1
  • 3
    • 84880930315 scopus 로고    scopus 로고
    • Esh/esc guidelines for the management of arterial hypertension: The task force for the management of arterial hypertension of the european society of hypertension (esh) and of the european society of cardiology (esc)
    • Mancia, G., et al.: Esh/esc guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the european society of hypertension (esh) and of the european society of cardiology (esc). European Heart Journal 34(28), 2159-2219 (2013)
    • (2013) European Heart Journal , vol.34 , Issue.28 , pp. 2159-2219
    • Mancia, G.1
  • 7
    • 50549093573 scopus 로고    scopus 로고
    • On the k-nn performance in a challenging scenario of imbalance and overlapping
    • Garcia, V., Mollineda, R.A., Sánchez, J.S.: On the k-nn performance in a challenging scenario of imbalance and overlapping. Pattern Analysis and Applications 11(3-4), 269-280 (2008)
    • (2008) Pattern Analysis and Applications , vol.11 , Issue.3-4 , pp. 269-280
    • Garcia, V.1    Mollineda, R.A.2    Sánchez, J.S.3
  • 8
    • 84858834586 scopus 로고    scopus 로고
    • Identification of different types of minority class examples in imbalanced data
    • In: Corchado, E., Snáš;el, V., Abraham, A., Wozniak, M., Graña, M., Cho, S.-B. (eds.), Springer, Heidelberg
    • Napierala, K., Stefanowski, J.: Identification of different types of minority class examples in imbalanced data. In: Corchado, E., Snáš;el, V., Abraham, A., Wozniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part II. LNCS (LNAI), vol. 7209, pp. 139-150. Springer, Heidelberg (2012)
    • (2012) HAIS 2012, Part II. LNCS (LNAI) , vol.7209 , pp. 139-150
    • Napierala, K.1    Stefanowski, J.2
  • 9
    • 84856964446 scopus 로고    scopus 로고
    • Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. open problems on intrinsic data characteristics
    • Lopez, V., Fernandez, A., Moreno-Torres, J.G., Herrera, F.: Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. open problems on intrinsic data characteristics. Expert Systems with Applications 39(7), 6585-6608 (2012)
    • (2012) Expert Systems With Applications , vol.39 , Issue.7 , pp. 6585-6608
    • Lopez, V.1    Fernandez, A.2    Moreno-Torres, J.G.3    Herrera, F.4
  • 12
    • 9444297357 scopus 로고    scopus 로고
    • Smoteboost: Improving prediction of the minority class in boosting
    • In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.), Springer, Heidelberg
    • Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: Smoteboost: Improving prediction of the minority class in boosting. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 107-119. Springer, Heidelberg (2003)
    • (2003) PKDD 2003. LNCS (LNAI) , vol.2838 , pp. 107-119
    • Chawla, N.V.1    Lazarevic, A.2    Hall, L.O.3    Bowyer, K.W.4
  • 14
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Sun, Y., Kamel, M.S., Wong, A.K.C., Wang, Y.: Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition 40(12), 3358-3378 (2007)
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 15
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax, D.M.J., Duin, R.P.W.: Support vector data description. Machine Learning 54(1), 45-66 (2004)
    • (2004) Machine Learning , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 17
    • 35348821822 scopus 로고    scopus 로고
    • Intrusion detection in computer networks by a modular ensemble of one-class classifiers
    • Giacinto, G., Perdisci, R., Del Rio, M., Roli, F.: Intrusion detection in computer networks by a modular ensemble of one-class classifiers. Inf. Fusion 9, 69-82 (2008)
    • (2008) Inf. Fusion , vol.9 , pp. 69-82
    • Giacinto, G.1    Perdisci, R.2    Del Rio, M.3    Roli, F.4
  • 18
    • 84887613816 scopus 로고    scopus 로고
    • Diversity measures for one-class classifier ensembles
    • Krawczyk, B., Wozniak, M.: Diversity measures for one-class classifier ensembles. Neurocomputing 126, 36-44 (2014)
    • (2014) Neurocomputing , vol.126 , pp. 36-44
    • Krawczyk, B.1    Wozniak, M.2
  • 19
    • 84894427964 scopus 로고    scopus 로고
    • Clustering-based ensembles for one-class classification
    • Krawczyk, B., Wozniak, M., Cyganek, B.: Clustering-based ensembles for one-class classification. Information Sciences 264, 182-195 (2014)
    • (2014) Information Sciences , vol.264 , pp. 182-195
    • Krawczyk, B.1    Wozniak, M.2    Cyganek, B.3
  • 20
    • 82455199200 scopus 로고    scopus 로고
    • Soft computing methods applied to combination of one-class classifiers
    • Wilk, T., Wozniak, M.: Soft computing methods applied to combination of one-class classifiers. Neurocomput. 75, 185-193 (2012)
    • (2012) Neurocomput , vol.75 , pp. 185-193
    • Wilk, T.1    Wozniak, M.2
  • 21
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5 x 2 cv f test for comparing supervised classification learning algorithms
    • Alpaydin, E.: Combined 5 x 2 cv f test for comparing supervised classification learning algorithms. Neural Computation 11(8), 1885-1892 (1999)
    • (1999) Neural Computation , vol.11 , Issue.8 , pp. 1885-1892
    • Alpaydin, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.