메뉴 건너뛰기




Volumn 11, Issue 1, 2011, Pages 1144-1155

Optimizing reservoir features in oil exploration management based on fusion of soft computing

Author keywords

FCM; Feature selection; Soft computing; Well log features

Indexed keywords

BP NEURAL NETWORKS; CATEGORIZING FRAMEWORKS; CLASSIFICATION AND CLUSTERING; DATA MINING TASKS; EVALUATION CRITERIA; FCM; FEATURE SELECTION; FEATURE SELECTION ALGORITHM; FORECASTING MODELS; FUSION MODEL; FUZZY C-MEANS ALGORITHMS; HIDDEN LAYERS; KEY FEATURE; OIL EXPLORATION; OPTIMAL MODEL; OPTIMAL NUMBER; OPTIMAL STRUCTURES; RECOGNITION ACCURACY; SEARCH STRATEGIES; SOFT COMPUTING METHODS; TEST EFFECTIVENESS; TESTING SAMPLES;

EID: 77957900643     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2010.02.014     Document Type: Article
Times cited : (19)

References (61)
  • 3
    • 70350346892 scopus 로고
    • Pattern recognition and reduction of dimensionality
    • M. Ben-Bassat Pattern recognition and reduction of dimensionality P.R. Krishnaiah, L.N. Kanal, Handbook of Statistics-II 1982 North Holland 773 791
    • (1982) Handbook of Statistics-II , pp. 773-791
    • Ben-Bassat, M.1
  • 4
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • A. Jain, and D. Zongker Feature selection: evaluation, application, and small sample performance IEEE Transactions Pattern Analysis and Machine Intelligence 19 February (2) 1997 153 158
    • (1997) IEEE Transactions Pattern Analysis and Machine Intelligence , vol.19 , Issue.FEBRUARY 2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 6
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for Feature Subset Selection
    • R. Kohavi, and G.H. John Wrappers for Feature Subset Selection Artificial Intelligence 97 1-2 1997 273 324
    • (1997) Artificial Intelligence , vol.97 , Issue.12 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 9
    • 0036161242 scopus 로고    scopus 로고
    • Text categorization with support vector machines. How to represent texts in input space?
    • E. Leopold, and J. Kindermann Text categorization with support vector machines. How to represent texts in input space? Machine Learning 46 2002 423 444
    • (2002) Machine Learning , vol.46 , pp. 423-444
    • Leopold, E.1    Kindermann, J.2
  • 10
    • 0032663356 scopus 로고    scopus 로고
    • Image retrieval: Current techniques, promising directions and open issues
    • Y. Rui, T.S. Huang, and S. Chang Image retrieval: current techniques, promising directions and open issues Visual Communication and Image Representation 10 4 1999 39 62
    • (1999) Visual Communication and Image Representation , vol.10 , Issue.4 , pp. 39-62
    • Rui, Y.1    Huang, T.S.2    Chang, S.3
  • 11
    • 0034458530 scopus 로고    scopus 로고
    • Customer retention via data mining
    • K.S. Ng, and H. Liu Customer retention via data mining AI Rev. 14 6 2000 569 590
    • (2000) AI Rev. , vol.14 , Issue.6 , pp. 569-590
    • Ng, K.S.1    Liu, H.2
  • 12
    • 0034455983 scopus 로고    scopus 로고
    • Adaptive intrusion detection: A data mining approach
    • W. Lee, S.J. Stolfo, and K.W. Mok Adaptive intrusion detection: a data mining approach AI Rev. 14 6 2000 533 567
    • (2000) AI Rev. , vol.14 , Issue.6 , pp. 533-567
    • Lee, W.1    Stolfo, S.J.2    Mok, K.W.3
  • 15
    • 77957906859 scopus 로고    scopus 로고
    • The use of Self-organization Feature Mapping Network in reservoir recognition
    • Q. Fu, J.-L. Wang, and Z.-Y. Zhou The use of Self-organization Feature Mapping Network in reservoir recognition Journal of Tong Ji University 27 3 1999 371 374
    • (1999) Journal of Tong Ji University , vol.27 , Issue.3 , pp. 371-374
    • Fu, Q.1    Wang, J.-L.2    Zhou, Z.-Y.3
  • 16
  • 17
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature subset selection
    • P.M. Narendra, and K. Fukunaga A branch and bound algorithm for feature subset selection IEEE Transactions Computer 26 September (9) 1977 917 922
    • (1977) IEEE Transactions Computer , vol.26 , Issue.SEPTEMBER 9 , pp. 917-922
    • Narendra, P.M.1    Fukunaga, K.2
  • 19
    • 0003552733 scopus 로고
    • An Evaluation of Feature Selection Methods and Their Application to Computer Security
    • Dept. Computer Science
    • J. Doak, An Evaluation of Feature Selection Methods and Their Application to Computer Security, Technical Report, Univ. of California at Davis, Dept. Computer Science, 1992.
    • (1992) Technical Report, Univ. of California at Davis
    • Doak, J.1
  • 21
    • 0010739663 scopus 로고    scopus 로고
    • Filters, wrappers and a boosting-based hybrid for feature selection
    • S. Das Filters, wrappers and a boosting-based hybrid for feature selection Proc. 18th Int'l Conf. Machine Learning 2001 74 81
    • (2001) Proc. 18th Int'l Conf. Machine Learning , pp. 74-81
    • Das, S.1
  • 24
    • 17244382029 scopus 로고    scopus 로고
    • Optimal number of clusters and the best partition in fuzzy c-mean
    • K.J. Zhu, S.H. Su, and J.L. Li Optimal number of clusters and the best partition in fuzzy c-mean Systems Engineering-Theory & Practice 3 2005 52 61
    • (2005) Systems Engineering-Theory & Practice , vol.3 , pp. 52-61
    • Zhu, K.J.1    Su, S.H.2    Li, J.L.3
  • 25
    • 34548486246 scopus 로고    scopus 로고
    • Psychology with soft computing: An integrated approach and its applications
    • 10.1016/j.asoc.2007.03.001
    • A.G. Di Nuovo, V. Catania, S. Di Nuovo, and S. Buono Psychology with soft computing: an integrated approach and its applications Applied Soft Computing 2007 10.1016/j.asoc.2007.03.001
    • (2007) Applied Soft Computing
    • Di Nuovo, A.G.1    Catania, V.2    Di Nuovo, S.3    Buono, S.4
  • 26
    • 57849144858 scopus 로고
    • Optimization of clustering criteria by reformulation
    • R.J. Hathaway, and J.C. Bezdek Optimization of clustering criteria by reformulation IEEE Transactions Fuzzy Systems 3 2 1995 241 245
    • (1995) IEEE Transactions Fuzzy Systems , vol.3 , Issue.2 , pp. 241-245
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 36
    • 0002649659 scopus 로고    scopus 로고
    • Novel methods for subset selection with respect to problem knowledge
    • P. Pudil, and J. Novovicova Novel methods for subset selection with respect to problem knowledge IEEE Intelligent Systems 13 2 1998 66 74
    • (1998) IEEE Intelligent Systems , vol.13 , Issue.2 , pp. 66-74
    • Pudil, P.1    Novovicova, J.2
  • 38
    • 33845629152 scopus 로고
    • Using decision trees to improve case-based learning
    • C. Cardie Using decision trees to improve case-based learning P. Utgoff, Proc. 10th Int'l Conf. Machine Learning 1993 25 32
    • (1993) Proc. 10th Int'l Conf. Machine Learning , pp. 25-32
    • Cardie, C.1
  • 41
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • M.A. Hall Correlation-based feature selection for discrete and numeric class machine learning Proc. 17th Int'l Conf. Machine Learning 2000 359 366
    • (2000) Proc. 17th Int'l Conf. Machine Learning , pp. 359-366
    • Hall, M.A.1
  • 42
    • 84948597805 scopus 로고
    • A comparison of seven techniques for choosing subsets of pattern recognition
    • A.N. Mucciardi, and E.E. Gose A comparison of seven techniques for choosing subsets of pattern recognition IEEE Transactions Computers 20 1971 1023 1031
    • (1971) IEEE Transactions Computers , vol.20 , pp. 1023-1031
    • Mucciardi, A.N.1    Gose, E.E.2
  • 45
    • 85152626023 scopus 로고
    • Efficiently inducing determinations: A complete and systematic search algorithm that uses optimal pruning
    • J.C. Schlimmer Efficiently inducing determinations: a complete and systematic search algorithm that uses optimal pruning Proc. 10th Int'l Conf. Machine Learning 1993 284 290
    • (1993) Proc. 10th Int'l Conf. Machine Learning , pp. 284-290
    • Schlimmer, J.C.1
  • 47
    • 0002715112 scopus 로고    scopus 로고
    • A probabilistic approach to feature selection-a filter solution
    • H. Liu, and R. Setiono A probabilistic approach to feature selection-a filter solution Proc. 13th Int'l Conf. Machine Learning 1996 319 327
    • (1996) Proc. 13th Int'l Conf. Machine Learning , pp. 319-327
    • Liu, H.1    Setiono, R.2
  • 48
    • 0022030443 scopus 로고
    • FEATURE SELECTION FOR AUTOMATIC CLASSIFICATION OF NON-GAUSSIAN DATA.
    • I. Foroutan, and J. Sklansky Feature selection for automatic classification of non-gaussian data IEEE Transactions On Systems Man, and Cybernatics 17 2 1987 187 198 (Pubitemid 17614788)
    • (1985) IEEE Transactions on Systems, Man and Cybernetics , vol.SMC-17 , Issue.2 , pp. 187-198
    • Foroutan Iman1    Sklansky Jack2
  • 51
    • 0002878444 scopus 로고    scopus 로고
    • Feature subset selection and order identification for unsupervised learning
    • J.G. Dy, and C.E. Brodley Feature subset selection and order identification for unsupervised learning Proc. 17th Int'l Conf. Machine Learning 2000 247 254
    • (2000) Proc. 17th Int'l Conf. Machine Learning , pp. 247-254
    • Dy, J.G.1    Brodley, C.E.2
  • 52
    • 24344461871 scopus 로고    scopus 로고
    • Feature selection method based on genetic and simulated annealing algorithm
    • S. Liu, H. Hou, and X. Li Feature selection method based on genetic an simulated annealing algorithm Computer Engineering 31 16 2005 157 159 (Pubitemid 41257342)
    • (2005) Jisuanji Gongcheng/Computer Engineering , vol.31 , Issue.16 , pp. 157-159
    • Liu, S.1    Hou, H.2    Li, X.3
  • 54
    • 0012657799 scopus 로고
    • Prototype and feature selection by sampling and random mutation hill climbing algorithms
    • D.B. Skalak Prototype and feature selection by sampling and random mutation hill climbing algorithms Proc. 11th Int'l Conf. Machine Learning 1994 293 301
    • (1994) Proc. 11th Int'l Conf. Machine Learning , pp. 293-301
    • Skalak, D.B.1
  • 58
    • 34548484809 scopus 로고    scopus 로고
    • A new method of soft computing to estimate the economic contribution rate of education in China
    • H.X. Guo, F.Q. Diao, K.J. Zhu, and J.L. Li A new method of soft computing to estimate the economic contribution rate of education in China Applied Soft Computing 8 1 2008 499 506
    • (2008) Applied Soft Computing , vol.8 , Issue.1 , pp. 499-506
    • Guo, H.X.1    Diao, F.Q.2    Zhu, K.J.3    Li, J.L.4
  • 59
    • 17744371506 scopus 로고    scopus 로고
    • Applications of AI and soft computing for challenging problems in the oil industry
    • F. Aminzadeh Applications of AI and soft computing for challenging problems in the oil industry Journal of Petroleum Science and Engineering 47 2005 5 14
    • (2005) Journal of Petroleum Science and Engineering , vol.47 , pp. 5-14
    • Aminzadeh, F.1
  • 60
    • 56749110848 scopus 로고    scopus 로고
    • An improved genetic k-means algorithm for optimal clustering
    • T. Liu, H.X. Guo, K.J. Zhu, and S.W. Gao An improved genetic k-means algorithm for optimal clustering Mathematics in Practice and Theory 37 8 2007 104 111 (4)
    • (2007) Mathematics in Practice and Theory , vol.37 , Issue.8 , pp. 104-111
    • Liu, T.1    Guo, H.X.2    Zhu, K.J.3    Gao, S.W.4
  • 61
    • 2342429919 scopus 로고    scopus 로고
    • Survey of support vector machine theory
    • R. Xiao, J.-C. Wang, and F.-Y. Zhang Survey of support vector machine theory Computer Science 27 3 2000 1 3
    • (2000) Computer Science , vol.27 , Issue.3 , pp. 1-3
    • Xiao, R.1    Wang, J.-C.2    Zhang, F.-Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.