메뉴 건너뛰기




Volumn 14, Issue 4, 2015, Pages

Using Sample Selection to Improve Accuracy and Simplicity of Rules Extracted from Neural Networks for Credit Scoring Applications

Author keywords

Credit scoring; ensembles; feedforward neural networks; rule extraction

Indexed keywords

CLASSIFICATION (OF INFORMATION); EXTRACTION; STATISTICS;

EID: 84951752839     PISSN: 14690268     EISSN: None     Source Type: Journal    
DOI: 10.1142/S1469026815500212     Document Type: Article
Times cited : (10)

References (45)
  • 2
    • 84951729165 scopus 로고    scopus 로고
    • A neural network ensemble classier for e ective intrusion detection using fuzzy clustering, RBF networks
    • M. Amini, J. Rezaeenour, E. Hadavandi, A neural network ensemble classier for e ective intrusion detection using fuzzy clustering, RBF networks, to appear in Int. J. Artif. Intell. Tools (2015).
    • (2015) Int. J. Artif. Intell. Tools
    • Amini, M.1    Rezaeenour, J.2    Hadavandi, E.3
  • 3
    • 55349138530 scopus 로고    scopus 로고
    • Irvine, CA: School of of Information, Computer Sciences University of California. Available at
    • A. Asuncion, D. J. Newman, UCI Repository of machine learning databases. Irvine, CA: School of of Information, Computer Sciences, University of California. Available at http://www.ics.uci.edu/-mlearn/MLRepository.html (2007).
    • (2007) UCI Repository of Machine Learning Databases
    • Asuncion, A.1    Newman, D.J.2
  • 6
    • 0001024110 scopus 로고
    • First-and second-order methods for learning: Between steepest descent
    • R. Battiti, First-and second-order methods for learning: Between steepest descent, Newton's method, Neural Comput. 4 (1992) 141-166.
    • (1992) Newton's Method, Neural Comput. , vol.4 , pp. 141-166
    • Battiti, R.1
  • 8
    • 84890407171 scopus 로고    scopus 로고
    • Relationship between data size, accuracy, diversity, clusters in neural netwrok ensembles
    • C.-Y. Chiu, B. Verma, Relationship between data size, accuracy, diversity, clusters in neural netwrok ensembles, Int. J. Comput. Intell. Appl. 12(4) (2013) 1340005.
    • (2013) Int. J. Comput. Intell. Appl. , vol.12 , Issue.4 , pp. 1340005
    • Chiu, C.-Y.1    Verma, B.2
  • 9
    • 84897965802 scopus 로고    scopus 로고
    • AUC optimization vs. Error rate minimization
    • C. Cortes, M. Mohri, AUC optimization vs. error rate minimization, Adv. Neural Inf. Process. Syst. 16 (2004) 312-320.
    • (2004) Adv. Neural Inf. Process. Syst. , vol.16 , pp. 312-320
    • Cortes, C.1    Mohri, M.2
  • 11
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • T. Fawcett, An introduction to ROC analysis, Pattern Recogn. Lett. 27 (2006) 861-874.
    • (2006) Pattern Recogn. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 12
    • 78650417769 scopus 로고    scopus 로고
    • Multiple classier architectures, their application to credit assessment
    • S. Finlay, Multiple classier architectures, their application to credit assessment, Eur. J. Oper. Res. 210 (2011) 368-378.
    • (2011) Eur. J. Oper. Res. , vol.210 , pp. 368-378
    • Finlay, S.1
  • 13
    • 84865218900 scopus 로고    scopus 로고
    • On the use of data ltering techniques for credit risk prediction with instance-based models
    • V. Garcia, A. I. Marqu-ez, J. S. S-anchez, On the use of data ltering techniques for credit risk prediction with instance-based models, Expert Syst. Appl. 39 (2012) 13267-13276.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 13267-13276
    • Garcia, V.1    Marquez, A.I.2    Sanchez, J.S.3
  • 16
    • 78649516309 scopus 로고    scopus 로고
    • Neural networks for credit risk evaluation: Investigation of di erent neural models, learning schemes
    • A. Khashman, Neural networks for credit risk evaluation: Investigation of di erent neural models, learning schemes, Expert Syst. Appl. 37 (2010) 6233-6239.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 6233-6239
    • Khashman, A.1
  • 17
    • 84855202615 scopus 로고    scopus 로고
    • A corporate credit rating model using multi-class support vector machines with an original pairwise partitioning approach
    • K. Kim, H. Ahn, A corporate credit rating model using multi-class support vector machines with an original pairwise partitioning approach, Comput. Oper. Res. 39 (2012) 1800-1811.
    • (2012) Comput. Oper. Res. , vol.39 , pp. 1800-1811
    • Kim, K.1    Ahn, H.2
  • 18
    • 84929168318 scopus 로고    scopus 로고
    • An ensemble system based on hybrid EGARCH-ANN with di erent distributional assumptions to predict S&P500 Intraday Volatility
    • S. Lahmiri, M. Boukadoum, An ensemble system based on hybrid EGARCH-ANN with di erent distributional assumptions to predict S&P500 Intraday Volatility, Fluctuation Noise Lett. 14(1) (2015) 1550001.
    • (2015) Fluctuation Noise Lett. , vol.14 , Issue.1 , pp. 1550001
    • Lahmiri, S.1    Boukadoum, M.2
  • 19
    • 84858335273 scopus 로고    scopus 로고
    • On the impact of disproportional samples in credit scoring models: An application to a Brazilian bank data
    • F. Louzada, P. H. Ferreira-Silva, C. A. R. Diniz, On the impact of disproportional samples in credit scoring models: An application to a Brazilian bank data, Expert Syst. Appl. 39 (2012) 8071-8078.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 8071-8078
    • Louzada, F.1    Ferreira-Silva, P.H.2    Diniz, C.A.R.3
  • 21
    • 84951729517 scopus 로고    scopus 로고
    • Forecasting crude oil price with ensemble neural networks based on di erent feature subsets method
    • A. Moosavi, S. H. Khasteh, M. A. Bagheri, Forecasting crude oil price with ensemble neural networks based on di erent feature subsets method, Int. J. Energy Stat. 3(2) (2015) 1550008.
    • (2015) Int. J. Energy Stat. , vol.3 , Issue.2 , pp. 1550008
    • Moosavi, A.1    Khasteh, S.H.2    Bagheri, M.A.3
  • 22
    • 84878899844 scopus 로고    scopus 로고
    • The application of brute force logistic regression to corporate credit scoring models: Evidence from Serbian nancial statements
    • N. Nikolic, N. Zarkic-Joksimovic, D. Stojanovski, I. Joksimovic, The application of brute force logistic regression to corporate credit scoring models: Evidence from Serbian nancial statements, Expert Syst. Appl. 40 (2013) 5932-5944.
    • (2013) Expert Syst. Appl. , vol.40 , pp. 5932-5944
    • Nikolic, N.1    Zarkic-Joksimovic, N.2    Stojanovski, D.3    Joksimovic, I.4
  • 26
    • 84951765068 scopus 로고    scopus 로고
    • Prototype selection for the nearest neighbor rule through proximity graphs
    • J. S-anchez, F. Fla, F. Ferri, Prototype selection for the nearest neighbor rule through proximity graphs, Pattern Recogn. Lett. 24(7) (2007) 1015-1022.
    • (2007) Pattern Recogn. Lett. , vol.24 , Issue.7 , pp. 1015-1022
    • Sanchez, J.1    Fla, F.2    Ferri, F.3
  • 27
    • 40549122717 scopus 로고    scopus 로고
    • Recursive neural network rule extraction for data with mixed attributes
    • R. Setiono, B. Baesens, C. Mues, Recursive neural network rule extraction for data with mixed attributes, IEEE Trans. Neural Networks 19(2) (2008) 299-307.
    • (2008) IEEE Trans. Neural Networks , vol.19 , Issue.2 , pp. 299-307
    • Setiono, R.1    Baesens, B.2    Mues, C.3
  • 28
    • 50849098868 scopus 로고    scopus 로고
    • A note on knowledge discovery using neural networks, its application to credit screening
    • R. Setiono, B. Baesens, C. Mues, A note on knowledge discovery using neural networks, its application to credit screening, Eur. J. Oper. Res. 192(1) (2009) 1009-1018.
    • (2009) Eur. J. Oper. Res. , vol.192 , Issue.1 , pp. 1009-1018
    • Setiono, R.1    Baesens, B.2    Mues, C.3
  • 29
    • 79961085476 scopus 로고    scopus 로고
    • Rule extraction from minimal neural networks for credit card screening
    • R. Setiono, B. Baesens, C. Mues, Rule extraction from minimal neural networks for credit card screening, Int. J. Neural Syst. 21(4) (2011) 265-276.
    • (2011) Int. J. Neural Syst. , vol.21 , Issue.4 , pp. 265-276
    • Setiono, R.1    Baesens, B.2    Mues, C.3
  • 30
    • 80054718586 scopus 로고    scopus 로고
    • Improving classication accuracy by identifying, removing instances that should be misclassied
    • M. R. Smith, T. Martinez, Improving classication accuracy by identifying, removing instances that should be misclassied, in Proc. 2011 Int. Joint Conf. Neural Networks, 2011, pp. 2690-2697.
    • (2011) Proc. 2011 Int. Joint Conf. Neural Networks , pp. 2690-2697
    • Smith, M.R.1    Martinez, T.2
  • 31
    • 0036508197 scopus 로고    scopus 로고
    • Survival analysis methods for personal loan data
    • M. Stepanova, L. Thomas, Survival analysis methods for personal loan data, Oper. Res. 50(2) (2002) 277-289.
    • (2002) Oper. Res. , vol.50 , Issue.2 , pp. 277-289
    • Stepanova, M.1    Thomas, L.2
  • 32
    • 80051782582 scopus 로고    scopus 로고
    • Predicting repayment of the credit card debt
    • H. H. Sung, R. Krishnan, Predicting repayment of the credit card debt, Comput. Oper. Res. 39 (2012) 765-773.
    • (2012) Comput. Oper. Res. , vol.39 , pp. 765-773
    • Sung, H.H.1    Krishnan, R.2
  • 33
    • 38649113538 scopus 로고    scopus 로고
    • Using neural network ensembles for bankruptcy prediction, credit scoring
    • C.-F. Tsai, J.-W. Wu, Using neural network ensembles for bankruptcy prediction, credit scoring, Expert Syst. Appl. 34 (2008) 2639-2649.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 2639-2649
    • Tsai, C.-F.1    Wu, J.-W.2
  • 34
    • 78149427263 scopus 로고    scopus 로고
    • A novel nonlinear RBF neural network ensemble model for nancial time series forecasting
    • D. Wang, Y. Li, A novel nonlinear RBF neural network ensemble model for nancial time series forecasting, in Proc. 3rd Int. Workshop on Advanced Computational Intelligence, 2010, pp. 86-90.
    • (2010) Proc. 3rd Int. Workshop on Advanced Computational Intelligence , pp. 86-90
    • Wang, D.1    Li, Y.2
  • 35
    • 79959942257 scopus 로고    scopus 로고
    • Study of corporate credit risk prediction based on integrating boosting random subspace
    • G. Wang, J. Ma, Study of corporate credit risk prediction based on integrating boosting, random subspace, Expert Syst. Appl. 38 (2011) 13871-13878.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 13871-13878
    • Wang, G.1    Ma, J.2
  • 36
    • 84155181098 scopus 로고    scopus 로고
    • Two credit scoring models based on dual strategy ensemble
    • G. Wang, J. Ma, L. Huang, K. Xu, Two credit scoring models based on dual strategy ensemble, Knowl. Based Syst. 26 (2012) 61-68.
    • (2012) Knowl. Based Syst. , vol.26 , pp. 61-68
    • Wang, G.1    Ma, J.2    Huang, L.3    Xu, K.4
  • 37
    • 0034118581 scopus 로고    scopus 로고
    • Neural network credit scoring models
    • D. West, Neural network credit scoring models, Comput. Oper. Res. 27 (2000) 1131-1152.
    • (2000) Comput. Oper. Res. , vol.27 , pp. 1131-1152
    • West, D.1
  • 38
    • 13544268431 scopus 로고    scopus 로고
    • Neural network ensemble strategies for nancial decision applications
    • D. West, S. Dellana, J. Qian, Neural network ensemble strategies for nancial decision applications, Comput. Oper. Res. 32 (2005) 2543-2559.
    • (2005) Comput. Oper. Res. , vol.32 , pp. 2543-2559
    • West, D.1    Dellana, S.2    Qian, J.3
  • 39
    • 84866478887 scopus 로고    scopus 로고
    • Credit risk assessment, decision making by a fusion approach
    • T.-C. Wu, M.-F. Hsu, Credit risk assessment, decision making by a fusion approach, Knowl. Based Syst. 35 (2012) 102-110.
    • (2012) Knowl. Based Syst. , vol.35 , pp. 102-110
    • Wu, T.-C.1    Hsu, M.-F.2
  • 40
    • 80053400299 scopus 로고    scopus 로고
    • Credit scoring model based on selective neural network ensemble
    • H. Xiang, S. G. Yang, Credit scoring model based on selective neural network ensemble, in Proc. 7th Int. Conf. Natural Computation, 2011, pp. 513-516.
    • (2011) Proc. 7th Int. Conf. Natural Computation , pp. 513-516
    • Xiang, H.1    Yang, S.G.2
  • 42
    • 48049095703 scopus 로고    scopus 로고
    • Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm
    • L. Yu, S. Wang, K. K. Lai, Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm, Energy Econ. 31(5) (2008) 2623-2635.
    • (2008) Energy Econ. , vol.31 , Issue.5 , pp. 2623-2635
    • Yu, L.1    Wang, S.2    Lai, K.K.3
  • 43
    • 56349095375 scopus 로고    scopus 로고
    • An intelligent-agent-based fuzzy group decision making model for nancial multicriteria decision support: The case of credit scoring
    • L. Yu, S. Wang, K. K. Lai, An intelligent-agent-based fuzzy group decision making model for nancial multicriteria decision support: The case of credit scoring, Eur. J. Oper. Res. 195 (2009) 942-959.
    • (2009) Eur. J. Oper. Res. , vol.195 , pp. 942-959
    • Yu, L.1    Wang, S.2    Lai, K.K.3
  • 44
    • 77957832237 scopus 로고    scopus 로고
    • Vertical bagging decision trees model fors credit scoring
    • D. Zhang, X. Zhou, S. C. H. Leung, J. Zheng, Vertical bagging decision trees model fors credit scoring, Expert Syst. Appl. 37 (2010) 7838-7843.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 7838-7843
    • Zhang, D.1    Zhou, X.2    Leung, S.C.H.3    Zheng, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.