메뉴 건너뛰기




Volumn 1, Issue , 2011, Pages 513-516

Notice of Retraction: Credit scoring model based on selective neural network ensemble

Author keywords

clustering; Credit scoring; selective ensemble

Indexed keywords

CLUSTERING ALGORITHMS; HIERARCHICAL CLUSTERING; LEARNING SYSTEMS; RISK ASSESSMENT; RISK MANAGEMENT;

EID: 80053400299     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICNC.2011.6022104     Document Type: TB
Times cited : (1)

References (7)
  • 2
    • 78650417769 scopus 로고    scopus 로고
    • Multiple classifier architectures and their application to credit risk assessment
    • Finlay, S., Multiple classifier architectures and their application to credit risk assessment. European Journal of Operational Research, 2011. 210(2): p. 368-378.
    • (2011) European Journal of Operational Research , vol.210 , Issue.2 , pp. 368-378
    • Finlay, S.1
  • 5
    • 45049088570 scopus 로고    scopus 로고
    • Listed companies' financial distress prediction based on weighted majority voting combination of multiple classifiers
    • Sun, J. and H. Li. Listed companies' financial distress prediction based on weighted majority voting combination of multiple classifiers. Expert Systems with Applications, 2008, (35): 818-827.
    • (2008) Expert Systems with Applications , Issue.35 , pp. 818-827
    • Sun, J.1    Li, H.2
  • 6
    • 38649113538 scopus 로고    scopus 로고
    • Using neural network ensembles for bankruptcy prediction and credit scoring
    • Tsai, C.-F. and J.-W. Wu. Using Neural Network Ensembles for Bankruptcy Prediction and Credit Scoring. Expert Systems with Applications, 2008: 859.
    • (2008) Expert Systems with Applications , pp. 859
    • Tsai, C.-F.1    Wu, J.-W.2
  • 7
    • 10444224738 scopus 로고    scopus 로고
    • Diversity mearsures for multiple classifiier system analysis and design
    • Windeatt, T. Diversity mearsures for multiple classifiier system analysis and design. Information Fusion, 2005, (6): 21-36.
    • (2005) Information Fusion , Issue.6 , pp. 21-36
    • Windeatt, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.