-
1
-
-
0029484103
-
A survey and critique of techniques for extracting rules from trained neural networks
-
R. Andrews, J. Diederich, and A. B. Tickle, "A survey and critique of techniques for extracting rules from trained neural networks," Knowl.- Based Syst., vol. 8, no. 6, pp. 373-389, 1995.
-
(1995)
Knowl.- Based Syst
, vol.8
, Issue.6
, pp. 373-389
-
-
Andrews, R.1
Diederich, J.2
Tickle, A.B.3
-
2
-
-
0037534150
-
Using neural network rule extraction and decision tables for credit-risk evaluation
-
B. Baesens, R. Setiono, C. Mues, and J. Vanthienen, "Using neural network rule extraction and decision tables for credit-risk evaluation," Manage. Sci., vol. 49, no. 3, pp. 312-329, 2003.
-
(2003)
Manage. Sci
, vol.49
, Issue.3
, pp. 312-329
-
-
Baesens, B.1
Setiono, R.2
Mues, C.3
Vanthienen, J.4
-
3
-
-
0031233348
-
Are neural network black boxes?
-
Sep
-
J. M. Benitez, J. L. Castro, and I. Requena, "Are neural network black boxes?," IEEE Trans. Neural Netw., vol. 8, no. 5, pp. 1156-1164, Sep. 1997.
-
(1997)
IEEE Trans. Neural Netw
, vol.8
, Issue.5
, pp. 1156-1164
-
-
Benitez, J.M.1
Castro, J.L.2
Requena, I.3
-
4
-
-
0036129249
-
Interpretation of artificial neural networks by means of fuzzy rules
-
Jan
-
J. L. Castro, C. J. Mantas, and J. M. Benitez, "Interpretation of artificial neural networks by means of fuzzy rules," IEEE Trans. Neural Netw., vol. 13, no. 1, pp. 101-116, Jan. 1997.
-
(1997)
IEEE Trans. Neural Netw
, vol.13
, Issue.1
, pp. 101-116
-
-
Castro, J.L.1
Mantas, C.J.2
Benitez, J.M.3
-
5
-
-
85156234012
-
Extracting tree-structured representations of trained networks
-
Cambridge, MA: MIT Press
-
M. Craven and J. Shavlik, "Extracting tree-structured representations of trained networks," in Advances in Neural Information Processing Systems(NIPS). Cambridge, MA: MIT Press, 1996, vol. 8, pp. 24-30.
-
(1996)
Advances in Neural Information Processing Systems(NIPS)
, vol.8
, pp. 24-30
-
-
Craven, M.1
Shavlik, J.2
-
6
-
-
33644921465
-
Orthogonal search-based rule extraction (OSRE) for trained neural-networks: A practical and efficient approach
-
Mar
-
T. A. Etchells and J. P. G. Lisboa, "Orthogonal search-based rule extraction (OSRE) for trained neural-networks: A practical and efficient approach," IEEE Trans. Neural Netw., vol. 17, no. 2, pp. 374-384, Mar. 2006.
-
(2006)
IEEE Trans. Neural Netw
, vol.17
, Issue.2
, pp. 374-384
-
-
Etchells, T.A.1
Lisboa, J.P.G.2
-
7
-
-
0032164160
-
A neural-network model for learning domain rules based on its activation function characteristics
-
Sep
-
L. Fu, "A neural-network model for learning domain rules based on its activation function characteristics," IEEE Trans. Neural Netw., vol. 9, no. 5, pp. 787-795, Sep. 1998.
-
(1998)
IEEE Trans. Neural Netw
, vol.9
, Issue.5
, pp. 787-795
-
-
Fu, L.1
-
8
-
-
0033325425
-
Generalized analytic rule extraction for feedforward neural networks
-
Nov./Dec
-
A. Gupta, S. Park, and S. M. Lam, "Generalized analytic rule extraction for feedforward neural networks," IEEE Trans. Knowl. Data Eng., vol. 11, no. 6, pp. 985-991, Nov./Dec. 1999.
-
(1999)
IEEE Trans. Knowl. Data Eng
, vol.11
, Issue.6
, pp. 985-991
-
-
Gupta, A.1
Park, S.2
Lam, S.M.3
-
9
-
-
84863050617
-
Construction of a k-nearest neighbor credit-scoring system
-
W. E. Henley and D. J. Hand, "Construction of a k-nearest neighbor credit-scoring system," IMA J. Math. Appl. Bus. Ind., vol. 8, pp. 305-321, 1997.
-
(1997)
IMA J. Math. Appl. Bus. Ind
, vol.8
, pp. 305-321
-
-
Henley, W.E.1
Hand, D.J.2
-
10
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Netw., vol. 2, pp. 359-366, 1989.
-
(1989)
Neural Netw
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
11
-
-
0034551785
-
Rule extraction by successive regularization
-
M. Ishikawa, "Rule extraction by successive regularization," Neural Netw., vol. 13, pp. 1171-1183, 2000.
-
(2000)
Neural Netw
, vol.13
, pp. 1171-1183
-
-
Ishikawa, M.1
-
12
-
-
34248681042
-
Knowledge extraction from neural networks using the all-permutations fuzzy rule base: The LED display recognition problem
-
May
-
E. Kolman and M. Margaliot, "Knowledge extraction from neural networks using the all-permutations fuzzy rule base: The LED display recognition problem," IEEE Trans. Neural Netw., vol. 18, no. 3, pp. 925-931, May 2007.
-
(2007)
IEEE Trans. Neural Netw
, vol.18
, Issue.3
, pp. 925-931
-
-
Kolman, E.1
Margaliot, M.2
-
13
-
-
23044508082
-
Are artificial neural networks white boxes?
-
Jul
-
E. Kolman and M. Margaliot, "Are artificial neural networks white boxes?," IEEE Trans. Neural Netw., vol. 16, no. 4, pp. 844-852, Jul. 2005.
-
(2005)
IEEE Trans. Neural Netw
, vol.16
, Issue.4
, pp. 844-852
-
-
Kolman, E.1
Margaliot, M.2
-
14
-
-
0029529559
-
X2R: A fast rule generator
-
New York
-
H. Liu and S. T. Tan, "X2R: A fast rule generator," in Proc. IEEE Int. Conf. Syst., Man, Cybern., New York, 1995, pp. 1631-1635.
-
(1995)
Proc. IEEE Int. Conf. Syst., Man, Cybern
, pp. 1631-1635
-
-
Liu, H.1
Tan, S.T.2
-
15
-
-
0034187785
-
Neuro-fuzzy rule generation: Survey in soft computing framework
-
May
-
S. Mitra and Y. Hayashi, "Neuro-fuzzy rule generation: Survey in soft computing framework," IEEE Trans. Neural Netw., vol. 11, no. 3, pp. 748-768, May 2000.
-
(2000)
IEEE Trans. Neural Netw
, vol.11
, Issue.3
, pp. 748-768
-
-
Mitra, S.1
Hayashi, Y.2
-
17
-
-
0004114283
-
-
Fakultät für Informatik, Universität Karlsruhe, Karlsruhe, Germany, Tech. Rep. 21/94
-
L. Prechelt, "PROBEN1 - A set of benchmarks and benchmarking rules for neural network training algorithms," Fakultät für Informatik, Universität Karlsruhe, Karlsruhe, Germany, Tech. Rep. 21/94.
-
PROBEN1 - A set of benchmarks and benchmarking rules for neural network training algorithms
-
-
Prechelt, L.1
-
19
-
-
2942627098
-
A new approach to the extraction of ANN rules and to their generalization capacity through GP
-
J. R. Rabuñal, J. Dorado, A. Pazos, J. Periera, and D. Rivero, "A new approach to the extraction of ANN rules and to their generalization capacity through GP," Neural Comput., vol. 16, no. 7, pp. 1483-1523, 2004.
-
(2004)
Neural Comput
, vol.16
, Issue.7
, pp. 1483-1523
-
-
Rabuñal, J.R.1
Dorado, J.2
Pazos, A.3
Periera, J.4
Rivero, D.5
-
20
-
-
0030631792
-
Extracting rules from neural networks by pruning and hidden-unit splitting
-
R. Setiono, "Extracting rules from neural networks by pruning and hidden-unit splitting," Neural Comput., vol. 9, no. 1, pp. 205-225, 1997.
-
(1997)
Neural Comput
, vol.9
, Issue.1
, pp. 205-225
-
-
Setiono, R.1
-
21
-
-
0030633575
-
A penalty-function approach for pruning feedforward neural networks
-
R. Setiono, "A penalty-function approach for pruning feedforward neural networks," Neural Comput., vol. 9, no. 1, pp. 185-204, 1997.
-
(1997)
Neural Comput
, vol.9
, Issue.1
, pp. 185-204
-
-
Setiono, R.1
-
22
-
-
0030109008
-
Symbolic representation of neural networks
-
Mar
-
R. Setiono and H. Liu, "Symbolic representation of neural networks," IEEE Computer, vol. 29, no. 3, pp. 71-77, Mar. 1996.
-
(1996)
IEEE Computer
, vol.29
, Issue.3
, pp. 71-77
-
-
Setiono, R.1
Liu, H.2
-
23
-
-
0033751611
-
Extracting M-of-N rules from trained neural networks
-
Mar
-
R. Setiono, "Extracting M-of-N rules from trained neural networks," IEEE Trans. Neural Netw., vol. 11, no. 2, pp. 512-519, Mar. 2000.
-
(2000)
IEEE Trans. Neural Netw
, vol.11
, Issue.2
, pp. 512-519
-
-
Setiono, R.1
-
24
-
-
0342378106
-
Neurolinear: From neural networks to oblique decision rules
-
R. Setiono and H. Liu, "Neurolinear: From neural networks to oblique decision rules," Neurocomputing, vol. 17, no. 1, pp. 1-24, 1997.
-
(1997)
Neurocomputing
, vol.17
, Issue.1
, pp. 1-24
-
-
Setiono, R.1
Liu, H.2
-
25
-
-
0032627597
-
A connectionist approach to generating oblique decision trees
-
Jun
-
R. Setiono and H. Liu, "A connectionist approach to generating oblique decision trees," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 29, no. 3, pp. 440-444, Jun. 1999.
-
(1999)
IEEE Trans. Syst., Man, Cybern. B, Cybern
, vol.29
, Issue.3
, pp. 440-444
-
-
Setiono, R.1
Liu, H.2
-
26
-
-
25144464662
-
Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem
-
R. S. Sexton, S. McMurtrey, and D. J. Cleavenger, "Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem," Eur. J. Operat. Res., vol. 168, pp. 1009-1018, 2006.
-
(2006)
Eur. J. Operat. Res
, vol.168
, pp. 1009-1018
-
-
Sexton, R.S.1
McMurtrey, S.2
Cleavenger, D.J.3
-
28
-
-
0032685184
-
Symbolic interpretation of artificial neural networks
-
May/Jun
-
I. A. Taha and J. Ghosh, "Symbolic interpretation of artificial neural networks," IEEE Trans. Knowl. Data Eng., vol. 11, no. 3, pp. 448-463, May/Jun. 1999.
-
(1999)
IEEE Trans. Knowl. Data Eng
, vol.11
, Issue.3
, pp. 448-463
-
-
Taha, I.A.1
Ghosh, J.2
-
29
-
-
0003539213
-
-
Carnegie Mellon Univ, Pittsburgh, PA, CMU-CS-91-197, to be published
-
S. B. Thrun et al., "The MONK's problems - A performance comparison of different learning algorithm," Carnegie Mellon Univ., Pittsburgh, PA, 1991, CMU-CS-91-197, to be published.
-
(1991)
The MONK's problems - A performance comparison of different learning algorithm
-
-
Thrun, S.B.1
-
30
-
-
0027678679
-
Extraction of refined rules from knowledge-based neural networks
-
G. G. Towell and J. W. Shavlik, "Extraction of refined rules from knowledge-based neural networks," Mach. Learn., vol. 13, no. 1, pp. 71-101, 1993.
-
(1993)
Mach. Learn
, vol.13
, Issue.1
, pp. 71-101
-
-
Towell, G.G.1
Shavlik, J.W.2
-
31
-
-
0033742671
-
Extracting rules from trained neural networks
-
Mar
-
H. Tsukimoto, "Extracting rules from trained neural networks," IEEE Trans. Neural Netw., vol. 11, no. 2, pp. 377-389, Mar. 2000.
-
(2000)
IEEE Trans. Neural Netw
, vol.11
, Issue.2
, pp. 377-389
-
-
Tsukimoto, H.1
|