메뉴 건너뛰기




Volumn 19, Issue 2, 2008, Pages 299-307

Recursive neural network rule extraction for data with mixed attributes

Author keywords

Continuous attributes; Credit scoring; Discrete attributes; Rule extraction

Indexed keywords

ALGORITHMS; KNOWLEDGE BASED SYSTEMS;

EID: 40549122717     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2007.908641     Document Type: Article
Times cited : (122)

References (31)
  • 1
    • 0029484103 scopus 로고
    • A survey and critique of techniques for extracting rules from trained neural networks
    • R. Andrews, J. Diederich, and A. B. Tickle, "A survey and critique of techniques for extracting rules from trained neural networks," Knowl.- Based Syst., vol. 8, no. 6, pp. 373-389, 1995.
    • (1995) Knowl.- Based Syst , vol.8 , Issue.6 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 2
    • 0037534150 scopus 로고    scopus 로고
    • Using neural network rule extraction and decision tables for credit-risk evaluation
    • B. Baesens, R. Setiono, C. Mues, and J. Vanthienen, "Using neural network rule extraction and decision tables for credit-risk evaluation," Manage. Sci., vol. 49, no. 3, pp. 312-329, 2003.
    • (2003) Manage. Sci , vol.49 , Issue.3 , pp. 312-329
    • Baesens, B.1    Setiono, R.2    Mues, C.3    Vanthienen, J.4
  • 3
  • 4
    • 0036129249 scopus 로고    scopus 로고
    • Interpretation of artificial neural networks by means of fuzzy rules
    • Jan
    • J. L. Castro, C. J. Mantas, and J. M. Benitez, "Interpretation of artificial neural networks by means of fuzzy rules," IEEE Trans. Neural Netw., vol. 13, no. 1, pp. 101-116, Jan. 1997.
    • (1997) IEEE Trans. Neural Netw , vol.13 , Issue.1 , pp. 101-116
    • Castro, J.L.1    Mantas, C.J.2    Benitez, J.M.3
  • 5
    • 85156234012 scopus 로고    scopus 로고
    • Extracting tree-structured representations of trained networks
    • Cambridge, MA: MIT Press
    • M. Craven and J. Shavlik, "Extracting tree-structured representations of trained networks," in Advances in Neural Information Processing Systems(NIPS). Cambridge, MA: MIT Press, 1996, vol. 8, pp. 24-30.
    • (1996) Advances in Neural Information Processing Systems(NIPS) , vol.8 , pp. 24-30
    • Craven, M.1    Shavlik, J.2
  • 6
    • 33644921465 scopus 로고    scopus 로고
    • Orthogonal search-based rule extraction (OSRE) for trained neural-networks: A practical and efficient approach
    • Mar
    • T. A. Etchells and J. P. G. Lisboa, "Orthogonal search-based rule extraction (OSRE) for trained neural-networks: A practical and efficient approach," IEEE Trans. Neural Netw., vol. 17, no. 2, pp. 374-384, Mar. 2006.
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.2 , pp. 374-384
    • Etchells, T.A.1    Lisboa, J.P.G.2
  • 7
    • 0032164160 scopus 로고    scopus 로고
    • A neural-network model for learning domain rules based on its activation function characteristics
    • Sep
    • L. Fu, "A neural-network model for learning domain rules based on its activation function characteristics," IEEE Trans. Neural Netw., vol. 9, no. 5, pp. 787-795, Sep. 1998.
    • (1998) IEEE Trans. Neural Netw , vol.9 , Issue.5 , pp. 787-795
    • Fu, L.1
  • 8
    • 0033325425 scopus 로고    scopus 로고
    • Generalized analytic rule extraction for feedforward neural networks
    • Nov./Dec
    • A. Gupta, S. Park, and S. M. Lam, "Generalized analytic rule extraction for feedforward neural networks," IEEE Trans. Knowl. Data Eng., vol. 11, no. 6, pp. 985-991, Nov./Dec. 1999.
    • (1999) IEEE Trans. Knowl. Data Eng , vol.11 , Issue.6 , pp. 985-991
    • Gupta, A.1    Park, S.2    Lam, S.M.3
  • 9
    • 84863050617 scopus 로고    scopus 로고
    • Construction of a k-nearest neighbor credit-scoring system
    • W. E. Henley and D. J. Hand, "Construction of a k-nearest neighbor credit-scoring system," IMA J. Math. Appl. Bus. Ind., vol. 8, pp. 305-321, 1997.
    • (1997) IMA J. Math. Appl. Bus. Ind , vol.8 , pp. 305-321
    • Henley, W.E.1    Hand, D.J.2
  • 10
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Netw., vol. 2, pp. 359-366, 1989.
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 11
    • 0034551785 scopus 로고    scopus 로고
    • Rule extraction by successive regularization
    • M. Ishikawa, "Rule extraction by successive regularization," Neural Netw., vol. 13, pp. 1171-1183, 2000.
    • (2000) Neural Netw , vol.13 , pp. 1171-1183
    • Ishikawa, M.1
  • 12
    • 34248681042 scopus 로고    scopus 로고
    • Knowledge extraction from neural networks using the all-permutations fuzzy rule base: The LED display recognition problem
    • May
    • E. Kolman and M. Margaliot, "Knowledge extraction from neural networks using the all-permutations fuzzy rule base: The LED display recognition problem," IEEE Trans. Neural Netw., vol. 18, no. 3, pp. 925-931, May 2007.
    • (2007) IEEE Trans. Neural Netw , vol.18 , Issue.3 , pp. 925-931
    • Kolman, E.1    Margaliot, M.2
  • 13
    • 23044508082 scopus 로고    scopus 로고
    • Are artificial neural networks white boxes?
    • Jul
    • E. Kolman and M. Margaliot, "Are artificial neural networks white boxes?," IEEE Trans. Neural Netw., vol. 16, no. 4, pp. 844-852, Jul. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.4 , pp. 844-852
    • Kolman, E.1    Margaliot, M.2
  • 15
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: Survey in soft computing framework
    • May
    • S. Mitra and Y. Hayashi, "Neuro-fuzzy rule generation: Survey in soft computing framework," IEEE Trans. Neural Netw., vol. 11, no. 3, pp. 748-768, May 2000.
    • (2000) IEEE Trans. Neural Netw , vol.11 , Issue.3 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 19
    • 2942627098 scopus 로고    scopus 로고
    • A new approach to the extraction of ANN rules and to their generalization capacity through GP
    • J. R. Rabuñal, J. Dorado, A. Pazos, J. Periera, and D. Rivero, "A new approach to the extraction of ANN rules and to their generalization capacity through GP," Neural Comput., vol. 16, no. 7, pp. 1483-1523, 2004.
    • (2004) Neural Comput , vol.16 , Issue.7 , pp. 1483-1523
    • Rabuñal, J.R.1    Dorado, J.2    Pazos, A.3    Periera, J.4    Rivero, D.5
  • 20
    • 0030631792 scopus 로고    scopus 로고
    • Extracting rules from neural networks by pruning and hidden-unit splitting
    • R. Setiono, "Extracting rules from neural networks by pruning and hidden-unit splitting," Neural Comput., vol. 9, no. 1, pp. 205-225, 1997.
    • (1997) Neural Comput , vol.9 , Issue.1 , pp. 205-225
    • Setiono, R.1
  • 21
    • 0030633575 scopus 로고    scopus 로고
    • A penalty-function approach for pruning feedforward neural networks
    • R. Setiono, "A penalty-function approach for pruning feedforward neural networks," Neural Comput., vol. 9, no. 1, pp. 185-204, 1997.
    • (1997) Neural Comput , vol.9 , Issue.1 , pp. 185-204
    • Setiono, R.1
  • 22
    • 0030109008 scopus 로고    scopus 로고
    • Symbolic representation of neural networks
    • Mar
    • R. Setiono and H. Liu, "Symbolic representation of neural networks," IEEE Computer, vol. 29, no. 3, pp. 71-77, Mar. 1996.
    • (1996) IEEE Computer , vol.29 , Issue.3 , pp. 71-77
    • Setiono, R.1    Liu, H.2
  • 23
    • 0033751611 scopus 로고    scopus 로고
    • Extracting M-of-N rules from trained neural networks
    • Mar
    • R. Setiono, "Extracting M-of-N rules from trained neural networks," IEEE Trans. Neural Netw., vol. 11, no. 2, pp. 512-519, Mar. 2000.
    • (2000) IEEE Trans. Neural Netw , vol.11 , Issue.2 , pp. 512-519
    • Setiono, R.1
  • 24
    • 0342378106 scopus 로고    scopus 로고
    • Neurolinear: From neural networks to oblique decision rules
    • R. Setiono and H. Liu, "Neurolinear: From neural networks to oblique decision rules," Neurocomputing, vol. 17, no. 1, pp. 1-24, 1997.
    • (1997) Neurocomputing , vol.17 , Issue.1 , pp. 1-24
    • Setiono, R.1    Liu, H.2
  • 25
    • 0032627597 scopus 로고    scopus 로고
    • A connectionist approach to generating oblique decision trees
    • Jun
    • R. Setiono and H. Liu, "A connectionist approach to generating oblique decision trees," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 29, no. 3, pp. 440-444, Jun. 1999.
    • (1999) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.29 , Issue.3 , pp. 440-444
    • Setiono, R.1    Liu, H.2
  • 26
    • 25144464662 scopus 로고    scopus 로고
    • Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem
    • R. S. Sexton, S. McMurtrey, and D. J. Cleavenger, "Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem," Eur. J. Operat. Res., vol. 168, pp. 1009-1018, 2006.
    • (2006) Eur. J. Operat. Res , vol.168 , pp. 1009-1018
    • Sexton, R.S.1    McMurtrey, S.2    Cleavenger, D.J.3
  • 28
    • 0032685184 scopus 로고    scopus 로고
    • Symbolic interpretation of artificial neural networks
    • May/Jun
    • I. A. Taha and J. Ghosh, "Symbolic interpretation of artificial neural networks," IEEE Trans. Knowl. Data Eng., vol. 11, no. 3, pp. 448-463, May/Jun. 1999.
    • (1999) IEEE Trans. Knowl. Data Eng , vol.11 , Issue.3 , pp. 448-463
    • Taha, I.A.1    Ghosh, J.2
  • 30
    • 0027678679 scopus 로고
    • Extraction of refined rules from knowledge-based neural networks
    • G. G. Towell and J. W. Shavlik, "Extraction of refined rules from knowledge-based neural networks," Mach. Learn., vol. 13, no. 1, pp. 71-101, 1993.
    • (1993) Mach. Learn , vol.13 , Issue.1 , pp. 71-101
    • Towell, G.G.1    Shavlik, J.W.2
  • 31
    • 0033742671 scopus 로고    scopus 로고
    • Extracting rules from trained neural networks
    • Mar
    • H. Tsukimoto, "Extracting rules from trained neural networks," IEEE Trans. Neural Netw., vol. 11, no. 2, pp. 377-389, Mar. 2000.
    • (2000) IEEE Trans. Neural Netw , vol.11 , Issue.2 , pp. 377-389
    • Tsukimoto, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.