메뉴 건너뛰기




Volumn , Issue , 2010, Pages 86-90

A novel nonlinear RBF Neural Network ensemble model for financial time series forecasting

Author keywords

[No Author keywords available]

Indexed keywords

DATA SETS; ENSEMBLE MODELING; ENSEMBLE MODELS; ENSEMBLE TECHNIQUES; FINANCIAL TIME SERIES; FINANCIAL TIME SERIES FORECASTING; FINANCIAL TIME SERIES PREDICTIONS; NEURAL NETWORK ENSEMBLES; PARTIAL LEAST SQUARES; RADIAL BASIS FUNCTION NEURAL NETWORKS; RBF NEURAL NETWORK; SUPPORT VECTOR MACHINE REGRESSIONS; TRAINING SETS;

EID: 78149427263     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IWACI.2010.5585218     Document Type: Conference Paper
Times cited : (11)

References (30)
  • 1
    • 0036825901 scopus 로고    scopus 로고
    • Modified support vector machine in finaancial time series forecasting
    • E. H. Francis and L. J. Chao, " Modified support vector machine in finaancial time series forecasting," Neurocomputing, vol. 48, pp. 847-861, 2002.
    • (2002) Neurocomputing , vol.48 , pp. 847-861
    • Francis, E.H.1    Chao, L.J.2
  • 2
    • 0742268991 scopus 로고    scopus 로고
    • Support vector machine with adaptive parameters in financial time series forecasting
    • L. J. Cao and E. H. Francis, "Support vector machine with adaptive parameters in financial time series forecasting," IEEE Transactions on Neural Networks, vol. 14, no. 6, pp. 15063-1518, 2003.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.6 , pp. 15063-1518
    • Cao, L.J.1    Francis, E.H.2
  • 3
    • 0034123868 scopus 로고    scopus 로고
    • Neural networks in business: Techniques and applications for the operations researcher
    • K. A. Smith and N. D. Gupat Jatinder, "Neural Networks in business: techniques and applications for the operations researcher," Computers & Operations Research, vol. 27, pp. 1023-1044, 2000.
    • (2000) Computers & Operations Research , vol.27 , pp. 1023-1044
    • Smith, K.A.1    Gupat Jatinder, N.D.2
  • 4
    • 0035364957 scopus 로고    scopus 로고
    • Time series forecasting with neural network ensembles: An application for exchange rate prediction
    • G. P. Zhang and V. L. Berardi, " Time series forecasting with neural network ensembles: an application for exchange rate prediction," Journal of the Operational Research Society, vol. 52, pp. 652-664, 2001.
    • (2001) Journal of the Operational Research Society , vol.52 , pp. 652-664
    • Zhang, G.P.1    Berardi, V.L.2
  • 6
    • 13544270843 scopus 로고    scopus 로고
    • A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates
    • DOI 10.1016/j.cor.2004.06.024, PII S030505480400156X, Application of Neural Networks
    • L. Yu, S. Y. Wang and K. K. Lai, "A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates," Computers & Operations Research, vol. 32, pp. 2523-2541, 2005. (Pubitemid 40219759)
    • (2005) Computers and Operations Research , vol.32 , Issue.10 , pp. 2523-2541
    • Yu, L.1    Wang, S.2    Lai, K.K.3
  • 7
    • 33846813334 scopus 로고    scopus 로고
    • Hybird neural network models for hydrologic time series foreasting
    • A. Jain and A. M. Kumar, "Hybird neural network models for hydrologic time series foreasting," Applied Soft Computing, vol. 7, pp. 585-592, 2007.
    • (2007) Applied Soft Computing , vol.7 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 8
    • 69849087028 scopus 로고    scopus 로고
    • A novel nonparametric regression ensemble for rainfall forecasting using particle swarm optimization technique coupled with artificial neural network
    • Springer-Verlag Berlin Heidelberg
    • Jiansheng Wu, "A novel nonparametric regression ensemble for rainfall forecasting using particle swarm optimization technique coupled with artificial neural network," Lecture Note in Computer Science, vol. 5553, no. 3, pp. 49-58, Springer-Verlag Berlin Heidelberg, 2009.
    • (2009) Lecture Note in Computer Science , vol.5553 , Issue.3 , pp. 49-58
    • Wu, J.1
  • 9
    • 85127438349 scopus 로고    scopus 로고
    • Learning with ensembles: How over-fitting can be useful
    • Touretzky D, Mozer M, Hasselmo,M.(eds), Cambridge, MA: MIT Press
    • P, Sollich and A. Krogh, "Learning with Ensembles: How Over-fitting can be useful," In: Touretzky D, Mozer M, Hasselmo,M.(eds). Advances in Neural Information Processing Systems 8, Cambridge, MA: MIT Press, pp. 190-196, 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 190-196
  • 10
    • 0031636151 scopus 로고    scopus 로고
    • A case study on bagging boosting and basic ensembles of neural networks for OCR
    • Anchorage, AK
    • J. Mao, "A case study on bagging boosting and basic ensembles of neural networks for OCR," In Processing of International Joint Conference on Neural Networks-98, Anchorage, AK, vol. 3, pp. 1828-1833, 1998.
    • (1998) Processing of International Joint Conference on Neural Networks-98 , vol.3 , pp. 1828-1833
    • Mao, J.1
  • 11
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z. Zhou, J. Wu and W. Tang, "Ensembling neural networks: Many could be better than all," Artificial Intelligence, vol.137, no.1-2, pp. 239-263, 2002.
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.1    Wu, J.2    Tang, W.3
  • 13
    • 0030367578 scopus 로고    scopus 로고
    • Ensemble learning using decorrelated neural networks
    • B. E. Rosen, "Ensemble learning using decorrelated neural networks," Connection Science, vol. 8, pp. 373-384, 1996.
    • (1996) Connection Science , vol.8 , pp. 373-384
    • Rosen, B.E.1
  • 14
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • D. S. Broomhead and D. Lowe, "Multivariable functional interpolation and adaptive networks," Complex Systems, vol. 2, pp. 321-355, 1988.
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 15
    • 0035095026 scopus 로고    scopus 로고
    • Application of minimal radial basis function neural network to distance protection
    • DOI 10.1109/61.905593, PII S0885897700102237
    • P. K. Dash, A. K. Pradhan and G. Panda, "Application of minimal radial basis function neural network to distance protection," IEEE Transactions on Power Delivery, vol. 16, no. 1, pp. 68-74, 2001. (Pubitemid 32248463)
    • (2001) IEEE Transactions on Power Delivery , vol.16 , Issue.1 , pp. 68-74
    • Dash, P.K.1    Pradhan, A.K.2    Panda, G.3
  • 16
    • 0037400485 scopus 로고    scopus 로고
    • Application of radial basis function neural network for differential relaying of a power transformer
    • Z. Moravej, D. N. Vishwakarma and S. P. Singh, "Application of radial basis function neural network for differential relaying of a power transformer," Computers and Electrical Engineering, vol. 29, pp. 421-434, 2003.
    • (2003) Computers and Electrical Engineering , vol.29 , pp. 421-434
    • Moravej, Z.1    Vishwakarma, D.N.2    Singh, S.P.3
  • 17
    • 33748625457 scopus 로고    scopus 로고
    • GOLS-Genetic orthogonal least squares algorithm for training RBF networks
    • A.M.S. Barreto, H. J. C. Barbosa and N. F. F. Ebecken, "GOLS-Genetic orthogonal least squares algorithm for training RBF networks," Neurocomputing, vol. 69, pp. 2041-2064, 2006.
    • (2006) Neurocomputing , vol.69 , pp. 2041-2064
    • Barreto, A.M.S.1    Barbosa, H.J.C.2    Ebecken, N.F.F.3
  • 20
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Machine Learning, vol. 24, pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 21
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • G. Tesauro, D. Touretzky and T. Leen (Eds.) MIT Press, Cambridge, MA
    • A. Krogh and J. Vedelsby, "Neural network ensembles, cross validation, and active learning," G. Tesauro, D. Touretzky and T. Leen (Eds.), Advances in Neural Information Processing Systems, vol. 7, pp. 231-238, MIT Press, Cambridge, MA, 1995.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 22
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. E. Schapire, "The strength of weak learnability," Machine Learning, vol. 5, pp. 197-227,1990.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 23
    • 77956166915 scopus 로고    scopus 로고
    • Technical report, The Paul Merage School of Business University of California, Irvine
    • D. M. Pirouz. "An overview of partial least square," Technical report, The Paul Merage School of Business, University of California, Irvine, 2006
    • (2006) An Overview of Partial Least Square
    • Pirouz, D.M.1
  • 24
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik, "Support vector networks," Machine Learning, vol.20, pp.273-295, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-295
    • Cortes, C.1    Vapnik, V.2
  • 25
    • 0031272926 scopus 로고    scopus 로고
    • Comparing support vector machine with Gaussian kernel to radial basis function classifiers
    • B. Holkopf, K. Sung and C. J. C. Burges, " Comparing support vector machine with Gaussian kernel to radial basis function classifiers," IEEE Translated Signal Processing, vol.45, pp.2758-2765, 2001.
    • (2001) IEEE Translated Signal Processing , vol.45 , pp. 2758-2765
    • Holkopf, B.1    Sung, K.2    Burges, C.J.C.3
  • 26
    • 0002094343 scopus 로고    scopus 로고
    • Generalization performance on support vector machines and pattern classifiers
    • B. Sholkopf, C. Burges, and A. Smola Eds, Cambridge, MA MIT Press
    • P. L. Bartlett and J. S. Taylor, "Generalization performance on support vector machines and pattern classifiers," B. Sholkopf, C. Burges, and A. Smola Eds., Advances in Kernel Methods-Support Vector Learning, Cambridge, MA: MIT Press, 1999.
    • (1999) Advances in Kernel Methods-Support Vector Learning
    • Bartlett, P.L.1    Taylor, J.S.2
  • 27
    • 0002094343 scopus 로고    scopus 로고
    • Generalization performance on support vector machines and pattern classifiers
    • B. Sholkopf, C. Burges, and A. Smola Eds.,Cambridge, MA: MIT Press
    • B. Schökopf and A. J. Smola, "Generalization performance on support vector machines and pattern classifiers," B. Sholkopf, C. Burges, and A. Smola Eds., Advances in Kernel Methods-Support Vector Learning, Cambridge, MA: MIT Press, 1999.
    • (1999) Advances in Kernel Methods-Support Vector Learning
    • Schökopf, B.1    Smola, A.J.2
  • 29
    • 0038895405 scopus 로고    scopus 로고
    • Training v-support vector regression: Theory and algorithms
    • P. L. Bartlett and J. S. Lin, "Training v-support vector regression: theory and algorithms," Neural Computation, vol.14, 1959-1977, 2002.
    • (2002) Neural Computation , vol.14 , pp. 1959-1959
    • Bartlett, P.L.1    Lin, J.S.2
  • 30
    • 0242351905 scopus 로고    scopus 로고
    • Financial time series forecasting using support vector machines
    • K. J. Kim, "Financial time series forecasting using support vector machines," Neurocomputing, vol. 55, pp. 307-319, 2003.
    • (2003) Neurocomputing , vol.55 , pp. 307-319
    • Kim, K.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.