-
1
-
-
0036825901
-
Modified support vector machine in finaancial time series forecasting
-
E. H. Francis and L. J. Chao, " Modified support vector machine in finaancial time series forecasting," Neurocomputing, vol. 48, pp. 847-861, 2002.
-
(2002)
Neurocomputing
, vol.48
, pp. 847-861
-
-
Francis, E.H.1
Chao, L.J.2
-
2
-
-
0742268991
-
Support vector machine with adaptive parameters in financial time series forecasting
-
L. J. Cao and E. H. Francis, "Support vector machine with adaptive parameters in financial time series forecasting," IEEE Transactions on Neural Networks, vol. 14, no. 6, pp. 15063-1518, 2003.
-
(2003)
IEEE Transactions on Neural Networks
, vol.14
, Issue.6
, pp. 15063-1518
-
-
Cao, L.J.1
Francis, E.H.2
-
3
-
-
0034123868
-
Neural networks in business: Techniques and applications for the operations researcher
-
K. A. Smith and N. D. Gupat Jatinder, "Neural Networks in business: techniques and applications for the operations researcher," Computers & Operations Research, vol. 27, pp. 1023-1044, 2000.
-
(2000)
Computers & Operations Research
, vol.27
, pp. 1023-1044
-
-
Smith, K.A.1
Gupat Jatinder, N.D.2
-
4
-
-
0035364957
-
Time series forecasting with neural network ensembles: An application for exchange rate prediction
-
G. P. Zhang and V. L. Berardi, " Time series forecasting with neural network ensembles: an application for exchange rate prediction," Journal of the Operational Research Society, vol. 52, pp. 652-664, 2001.
-
(2001)
Journal of the Operational Research Society
, vol.52
, pp. 652-664
-
-
Zhang, G.P.1
Berardi, V.L.2
-
5
-
-
33749539179
-
A novel support vector machine metamodel for business risk identification
-
PRICAI 2006: Trends in Artificial Intelligence - 9th Pacific Rim International Conference on Artificial Intelligence, Proceedings
-
K. K. Lai, L. Yu, W. Huang and S. Y. Wang, "A novel support vector machine metamodel for business risk identification," In: Q. Yang and G. Webb, (eds.) PRICAI 2006. Lecture Note in Computer Science, vol. 4099, pp. 980-984, Springer, Heidelberg, 2006. (Pubitemid 44531895)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.4099
, pp. 980-984
-
-
Lai, K.K.1
Yu, L.2
Huang, W.3
Wang, S.4
-
6
-
-
13544270843
-
A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates
-
DOI 10.1016/j.cor.2004.06.024, PII S030505480400156X, Application of Neural Networks
-
L. Yu, S. Y. Wang and K. K. Lai, "A novel nonlinear ensemble forecasting model incorporating GLAR and ANN for foreign exchange rates," Computers & Operations Research, vol. 32, pp. 2523-2541, 2005. (Pubitemid 40219759)
-
(2005)
Computers and Operations Research
, vol.32
, Issue.10
, pp. 2523-2541
-
-
Yu, L.1
Wang, S.2
Lai, K.K.3
-
7
-
-
33846813334
-
Hybird neural network models for hydrologic time series foreasting
-
A. Jain and A. M. Kumar, "Hybird neural network models for hydrologic time series foreasting," Applied Soft Computing, vol. 7, pp. 585-592, 2007.
-
(2007)
Applied Soft Computing
, vol.7
, pp. 585-592
-
-
Jain, A.1
Kumar, A.M.2
-
8
-
-
69849087028
-
A novel nonparametric regression ensemble for rainfall forecasting using particle swarm optimization technique coupled with artificial neural network
-
Springer-Verlag Berlin Heidelberg
-
Jiansheng Wu, "A novel nonparametric regression ensemble for rainfall forecasting using particle swarm optimization technique coupled with artificial neural network," Lecture Note in Computer Science, vol. 5553, no. 3, pp. 49-58, Springer-Verlag Berlin Heidelberg, 2009.
-
(2009)
Lecture Note in Computer Science
, vol.5553
, Issue.3
, pp. 49-58
-
-
Wu, J.1
-
9
-
-
85127438349
-
Learning with ensembles: How over-fitting can be useful
-
Touretzky D, Mozer M, Hasselmo,M.(eds), Cambridge, MA: MIT Press
-
P, Sollich and A. Krogh, "Learning with Ensembles: How Over-fitting can be useful," In: Touretzky D, Mozer M, Hasselmo,M.(eds). Advances in Neural Information Processing Systems 8, Cambridge, MA: MIT Press, pp. 190-196, 1996.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 190-196
-
-
-
10
-
-
0031636151
-
A case study on bagging boosting and basic ensembles of neural networks for OCR
-
Anchorage, AK
-
J. Mao, "A case study on bagging boosting and basic ensembles of neural networks for OCR," In Processing of International Joint Conference on Neural Networks-98, Anchorage, AK, vol. 3, pp. 1828-1833, 1998.
-
(1998)
Processing of International Joint Conference on Neural Networks-98
, vol.3
, pp. 1828-1833
-
-
Mao, J.1
-
11
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
Z. Zhou, J. Wu and W. Tang, "Ensembling neural networks: Many could be better than all," Artificial Intelligence, vol.137, no.1-2, pp. 239-263, 2002.
-
(2002)
Artificial Intelligence
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.1
Wu, J.2
Tang, W.3
-
13
-
-
0030367578
-
Ensemble learning using decorrelated neural networks
-
B. E. Rosen, "Ensemble learning using decorrelated neural networks," Connection Science, vol. 8, pp. 373-384, 1996.
-
(1996)
Connection Science
, vol.8
, pp. 373-384
-
-
Rosen, B.E.1
-
14
-
-
0000621802
-
Multivariable functional interpolation and adaptive networks
-
D. S. Broomhead and D. Lowe, "Multivariable functional interpolation and adaptive networks," Complex Systems, vol. 2, pp. 321-355, 1988.
-
(1988)
Complex Systems
, vol.2
, pp. 321-355
-
-
Broomhead, D.S.1
Lowe, D.2
-
15
-
-
0035095026
-
Application of minimal radial basis function neural network to distance protection
-
DOI 10.1109/61.905593, PII S0885897700102237
-
P. K. Dash, A. K. Pradhan and G. Panda, "Application of minimal radial basis function neural network to distance protection," IEEE Transactions on Power Delivery, vol. 16, no. 1, pp. 68-74, 2001. (Pubitemid 32248463)
-
(2001)
IEEE Transactions on Power Delivery
, vol.16
, Issue.1
, pp. 68-74
-
-
Dash, P.K.1
Pradhan, A.K.2
Panda, G.3
-
16
-
-
0037400485
-
Application of radial basis function neural network for differential relaying of a power transformer
-
Z. Moravej, D. N. Vishwakarma and S. P. Singh, "Application of radial basis function neural network for differential relaying of a power transformer," Computers and Electrical Engineering, vol. 29, pp. 421-434, 2003.
-
(2003)
Computers and Electrical Engineering
, vol.29
, pp. 421-434
-
-
Moravej, Z.1
Vishwakarma, D.N.2
Singh, S.P.3
-
17
-
-
33748625457
-
GOLS-Genetic orthogonal least squares algorithm for training RBF networks
-
A.M.S. Barreto, H. J. C. Barbosa and N. F. F. Ebecken, "GOLS-Genetic orthogonal least squares algorithm for training RBF networks," Neurocomputing, vol. 69, pp. 2041-2064, 2006.
-
(2006)
Neurocomputing
, vol.69
, pp. 2041-2064
-
-
Barreto, A.M.S.1
Barbosa, H.J.C.2
Ebecken, N.F.F.3
-
18
-
-
0001963137
-
Combining predictors
-
the Springer Press, Berlin
-
L. Breiman, "Combining Predictors," Proceedings of Combining Artificial Neural Nets-Ensemble and Modular Multi-net Systems, the Springer Press, Berlin, vol. 1, pp. 31-50, 1999.
-
(1999)
Proceedings of Combining Artificial Neural Nets-Ensemble and Modular Multi-net Systems
, vol.1
, pp. 31-50
-
-
Breiman, L.1
-
19
-
-
0030790587
-
Parallel consensual neural neural networks
-
J. A. Benediktsson, J. R. Sveinsson, O. K. Ersoy and P. H. Swain, "Parallel Consensual Neural Neural Networks," IEEE Transactions on Neural Networks, vol. 8, pp. 54-64, 1997.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, pp. 54-64
-
-
Benediktsson, J.A.1
Sveinsson, J.R.2
Ersoy, O.K.3
Swain, P.H.4
-
20
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors," Machine Learning, vol. 24, pp. 123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
21
-
-
85054435084
-
Neural network ensembles, cross validation, and active learning
-
G. Tesauro, D. Touretzky and T. Leen (Eds.) MIT Press, Cambridge, MA
-
A. Krogh and J. Vedelsby, "Neural network ensembles, cross validation, and active learning," G. Tesauro, D. Touretzky and T. Leen (Eds.), Advances in Neural Information Processing Systems, vol. 7, pp. 231-238, MIT Press, Cambridge, MA, 1995.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
22
-
-
0025448521
-
The strength of weak learnability
-
R. E. Schapire, "The strength of weak learnability," Machine Learning, vol. 5, pp. 197-227,1990.
-
(1990)
Machine Learning
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
23
-
-
77956166915
-
-
Technical report, The Paul Merage School of Business University of California, Irvine
-
D. M. Pirouz. "An overview of partial least square," Technical report, The Paul Merage School of Business, University of California, Irvine, 2006
-
(2006)
An Overview of Partial Least Square
-
-
Pirouz, D.M.1
-
24
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik, "Support vector networks," Machine Learning, vol.20, pp.273-295, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 273-295
-
-
Cortes, C.1
Vapnik, V.2
-
25
-
-
0031272926
-
Comparing support vector machine with Gaussian kernel to radial basis function classifiers
-
B. Holkopf, K. Sung and C. J. C. Burges, " Comparing support vector machine with Gaussian kernel to radial basis function classifiers," IEEE Translated Signal Processing, vol.45, pp.2758-2765, 2001.
-
(2001)
IEEE Translated Signal Processing
, vol.45
, pp. 2758-2765
-
-
Holkopf, B.1
Sung, K.2
Burges, C.J.C.3
-
26
-
-
0002094343
-
Generalization performance on support vector machines and pattern classifiers
-
B. Sholkopf, C. Burges, and A. Smola Eds, Cambridge, MA MIT Press
-
P. L. Bartlett and J. S. Taylor, "Generalization performance on support vector machines and pattern classifiers," B. Sholkopf, C. Burges, and A. Smola Eds., Advances in Kernel Methods-Support Vector Learning, Cambridge, MA: MIT Press, 1999.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
-
-
Bartlett, P.L.1
Taylor, J.S.2
-
27
-
-
0002094343
-
Generalization performance on support vector machines and pattern classifiers
-
B. Sholkopf, C. Burges, and A. Smola Eds.,Cambridge, MA: MIT Press
-
B. Schökopf and A. J. Smola, "Generalization performance on support vector machines and pattern classifiers," B. Sholkopf, C. Burges, and A. Smola Eds., Advances in Kernel Methods-Support Vector Learning, Cambridge, MA: MIT Press, 1999.
-
(1999)
Advances in Kernel Methods-Support Vector Learning
-
-
Schökopf, B.1
Smola, A.J.2
-
29
-
-
0038895405
-
Training v-support vector regression: Theory and algorithms
-
P. L. Bartlett and J. S. Lin, "Training v-support vector regression: theory and algorithms," Neural Computation, vol.14, 1959-1977, 2002.
-
(2002)
Neural Computation
, vol.14
, pp. 1959-1959
-
-
Bartlett, P.L.1
Lin, J.S.2
-
30
-
-
0242351905
-
Financial time series forecasting using support vector machines
-
K. J. Kim, "Financial time series forecasting using support vector machines," Neurocomputing, vol. 55, pp. 307-319, 2003.
-
(2003)
Neurocomputing
, vol.55
, pp. 307-319
-
-
Kim, K.J.1
|