메뉴 건너뛰기




Volumn 14, Issue 1, 2015, Pages

An ensemble system based on hybrid EGARCH-ANN with different distributional assumptions to predict s&P 500 intraday volatility

Author keywords

EGARCH; ensemble; forecasting; neural networks; Stock market; volatility

Indexed keywords


EID: 84929168318     PISSN: 02194775     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219477515500017     Document Type: Article
Times cited : (33)

References (25)
  • 1
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation
    • R. F. Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation, Econometrica 50 (1982) 987-1008.
    • (1982) Econometrica , vol.50 , pp. 987-1008
    • Engle, R.F.1
  • 2
    • 0000375581 scopus 로고
    • Generalized heteroskedastic time series model for speculative prices and rates of return
    • T. Bollerslev, Generalized heteroskedastic time series model for speculative prices and rates of return, Rev. Econom. Statist. 69 (1986) 542-547.
    • (1986) Rev. Econom. Statist. , vol.69 , pp. 542-547
    • Bollerslev, T.1
  • 3
    • 0000183335 scopus 로고
    • Intraday volatility in the stock index and stock index futures markets
    • K. Chan, K. C. Chan and G. A. Karolyi, Intraday volatility in the stock index and stock index futures markets, Rev. Fin. Studies 4 (1991) 657-684.
    • (1991) Rev. Fin. Studies , vol.4 , pp. 657-684
    • Chan, K.1    Chan, K.C.2    Karolyi, G.A.3
  • 4
    • 77950187404 scopus 로고    scopus 로고
    • REIT volatility prediction for skew-GED distribution of the GARCH model
    • Y.-H. Lee and T.-Y. Pai, REIT volatility prediction for skew-GED distribution of the GARCH model, Expert Syst. Appl. 37 (2010) 4737-4741.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 4737-4741
    • Lee, Y.-H.1    Pai, T.-Y.2
  • 5
    • 0005880209 scopus 로고    scopus 로고
    • Answering the skeptics: Yes, standard volatility models do provide accurate forecasts
    • T. Andersen and T. Bollerslev, Answering the skeptics: Yes, standard volatility models do provide accurate forecasts, Int. Econom. Rev. 39 (1998) 885-905.
    • (1998) Int. Econom. Rev. , vol.39 , pp. 885-905
    • Andersen, T.1    Bollerslev, T.2
  • 6
    • 0041308591 scopus 로고    scopus 로고
    • Forecasting financial market volatility: Sample frequency vis-à-vis forecast horizon
    • T. Andersen, T. Bollerslev and S. Lange, Forecasting financial market volatility: Sample frequency vis-à-vis forecast horizon, J. Empirical Finan. 6 (1998) 457-477.
    • (1998) J. Empirical Finan. , vol.6 , pp. 457-477
    • Andersen, T.1    Bollerslev, T.2    Lange, S.3
  • 8
    • 81855167117 scopus 로고    scopus 로고
    • A hybrid modeling approach for forecasting the volatility of S&P 500 index return
    • E. Hajizadeh, A. Seifi, M. H. Fazel Zarandi and I. B. Turksen, A hybrid modeling approach for forecasting the volatility of S&P 500 index return, Expert Syst. Appl. 39 (2012) 431-436.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 431-436
    • Hajizadeh, E.1    Seifi, A.2    Fazel Zarandi, M.H.3    Turksen, I.B.4
  • 10
    • 33947679247 scopus 로고    scopus 로고
    • Forecasting the volatility of stock price index
    • R. Tae Hyup, Forecasting the volatility of stock price index, Expert Syst. Appl. 33 (2007) 916-922.
    • (2007) Expert Syst. Appl. , vol.33 , pp. 916-922
    • Tae Hyup, R.1
  • 11
    • 60249089841 scopus 로고    scopus 로고
    • Improving forecasts of GARCH family models with the artificial neural networks: An application to the daily returns in Istanbul stock exchange
    • M. Bildirici and O. O. Ersin, Improving forecasts of GARCH family models with the artificial neural networks: An application to the daily returns in Istanbul stock exchange, Expert Syst. Appl. 36 (2009) 7355-7362.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 7355-7362
    • Bildirici, M.1    Ersin, O.O.2
  • 12
    • 84890119956 scopus 로고    scopus 로고
    • Volatility forecast using hybrid neural network models
    • W. Kristjanpoller, A. Fadic and M. C. Minutolo, Volatility forecast using hybrid neural network models, Expert Syst. Appl. 41 (2014) 2437-2442.
    • (2014) Expert Syst. Appl. , vol.41 , pp. 2437-2442
    • Kristjanpoller, W.1    Fadic, A.2    Minutolo, M.C.3
  • 13
    • 0000641348 scopus 로고
    • Conditional heteroskedasticity in asset returns: A new approach
    • D. B. Nelson, Conditional heteroskedasticity in asset returns: A new approach, Econo-metrica 59 (1991) 347-370.
    • (1991) Econo-metrica , vol.59 , pp. 347-370
    • Nelson, D.B.1
  • 14
    • 0035276545 scopus 로고    scopus 로고
    • Evaluating the predictive accuracy of variance models
    • J. Lopez, Evaluating the predictive accuracy of variance models, J. Forecast. 20 (2001) 87-109.
    • (2001) J. Forecast. , vol.20 , pp. 87-109
    • Lopez, J.1
  • 15
    • 29144513798 scopus 로고    scopus 로고
    • Forecasting stock market volatility with regime-switching GARCH models
    • J. Marcucci, Forecasting stock market volatility with regime-switching GARCH models, Studies Nonlinear Dynam. Economet. 9 (2005) 1-53.
    • (2005) Studies Nonlinear Dynam. Economet. , vol.9 , pp. 1-53
    • Marcucci, J.1
  • 16
    • 11944251556 scopus 로고    scopus 로고
    • Predicting the volatility of the S&P-500 stock index via GARCH models: The role of asymmetries
    • B. M. A. Awartani and V. Corradi, Predicting the volatility of the S&P-500 stock index via GARCH models: The role of asymmetries, Int. J. Forecast. 21 (2005) 167-183.
    • (2005) Int. J. Forecast. , vol.21 , pp. 167-183
    • Awartani, B.M.A.1    Corradi, V.2
  • 17
    • 36148933765 scopus 로고    scopus 로고
    • Volatility forecasts: The role of asymmetric and long-memory dynamics and regional evidence
    • T. Evans and D. G. McMillan, Volatility forecasts: The role of asymmetric and long-memory dynamics and regional evidence, Appl. Finan. Econom. 17 (2007) 1421-1430.
    • (2007) Appl. Finan. Econom. , vol.17 , pp. 1421-1430
    • Evans, T.1    McMillan, D.G.2
  • 18
    • 77950188506 scopus 로고    scopus 로고
    • Forecasting S&P-100 stock index volatility: The role of volatility asymmetry and distributional assumption in GARCH models
    • H.-C. Liu and J.-C. Hung, Forecasting S&P-100 stock index volatility: The role of volatility asymmetry and distributional assumption in GARCH models, Expert Syst. Appl. 37 (2010) 4928-4934.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 4928-4934
    • Liu, H.-C.1    Hung, J.-C.2
  • 19
    • 0001578132 scopus 로고    scopus 로고
    • Performance of GARCH models in forecasting stock market volatility
    • C. W. Chong, M. I. Ahmad and M. Y. Abdullah, Performance of GARCH models in forecasting stock market volatility, J. Forecast. 18 (1999) 333-343.
    • (1999) J. Forecast. , vol.18 , pp. 333-343
    • Chong, C.W.1    Ahmad, M.I.2    Abdullah, M.Y.3
  • 20
    • 0034406045 scopus 로고    scopus 로고
    • An empirical analysis of alternative parametric ARCH models, J
    • G. F. Loudon, W. H. Watt and P. K. Yadav, An empirical analysis of alternative parametric ARCH models, J. Appl. Economet. 2 (2000) 117-136.
    • (2000) Appl. Economet. , vol.2 , pp. 117-136
    • Loudon, G.F.1    Watt, W.H.2    Yadav, P.K.3
  • 21
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learning representations by back-propagating errors, Nature 323 (1986) 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 23
    • 0001181242 scopus 로고    scopus 로고
    • Improving the pricing of options: A neural network approach
    • U. Anders, O. Korn and C. Schmitt, Improving the pricing of options: A neural network approach, J. Forecast. 17 (1998) 369-388.
    • (1998) J. Forecast. , vol.17 , pp. 369-388
    • Anders, U.1    Korn, O.2    Schmitt, C.3
  • 24
    • 0042697754 scopus 로고    scopus 로고
    • A neural network versus Black-Scholes: A comparison of pricing and hedging performances
    • H. Amilon, A neural network versus Black-Scholes: A comparison of pricing and hedging performances, J. Forecast. 22 (2003) 317-335.
    • (2003) J. Forecast. , vol.22 , pp. 317-335
    • Amilon, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.