메뉴 건너뛰기




Volumn 37, Issue 12, 2010, Pages 7838-7843

Vertical bagging decision trees model for credit scoring

Author keywords

Bagging; Classification; Credit scoring; Decision trees

Indexed keywords

CLASSIFICATION (OF INFORMATION); DECISION MAKING; FORESTRY; LEARNING SYSTEMS;

EID: 77957832237     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2010.04.054     Document Type: Article
Times cited : (130)

References (40)
  • 1
    • 67349195042 scopus 로고    scopus 로고
    • Genetic programming for credit scoring: The case of Egyptian public sector banks
    • Abdou, H. A. (2009). Genetic programming for credit scoring: The case of Egyptian public sector banks. Expert Systems With Applications, 36(9), 11402-11417.
    • (2009) Expert Systems With Applications , vol.36 , Issue.9 , pp. 11402-11417
    • Abdou, H.A.1
  • 2
    • 36948999941 scopus 로고    scopus 로고
    • Irvine, CA: School of Information and Computer Science, University of California
    • Asuncion, A., & Newman, D. J. (2007). UCI Machine Learning Repository. Irvine, CA: School of Information and Computer Science, University of California. http://www.ics.uci.edu/̃mlearn/MLRepository.html.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 5
    • 56349109114 scopus 로고    scopus 로고
    • Constructing a reassigning credit scoring model, Part 1
    • Chuang, C. L., & Lin, R. H. (2009). Constructing a reassigning credit scoring model, Part 1. Expert Systems with Applications, 36(2), 1685-1694.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 1685-1694
    • Chuang, C.L.1    Lin, R.H.2
  • 8
    • 21244433075 scopus 로고    scopus 로고
    • Credit-scoring models in the credit-union environment using neural networks and genetic algorithms
    • Desai, V. S., Conway, D. G., Crook, J. N., & Overstreet, G. A. J. R. (1997). Credit-scoring models in the credit-union environment using neural networks and genetic algorithms. IMA Journal of Management Mathematics, 8(4), 323-346.
    • (1997) IMA Journal of Management Mathematics , vol.8 , Issue.4 , pp. 323-346
    • Desai, V.S.1    Conway, D.G.2    Crook, J.N.3    Overstreet, G.A.J.R.4
  • 9
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40, 139-157.
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 10
    • 84944837333 scopus 로고
    • Introducing recursive partitioning for financial classification: The case of financial distress
    • Frydman, H ., Altman, E. I., & Kao, D. L. (1985). Introducing recursive partitioning for financial classification: The case of financial distress. The Journal of Finance, 40(1), 269-291.
    • (1985) The Journal of Finance , vol.40 , Issue.1 , pp. 269-291
    • Frydman H, .1    Altman, E.I.2    Kao, D.L.3
  • 13
    • 1542603058 scopus 로고    scopus 로고
    • A k-nearest-neighbor classifier for assessing consumer credit risk
    • Henley, W. E., & Hand, D. J. (1996). A k-nearest-neighbor classifier for assessing consumer credit risk. The Statistician, 45(1), 77-95.
    • (1996) The Statistician , vol.45 , Issue.1 , pp. 77-95
    • Henley, W.E.1    Hand, D.J.2
  • 15
    • 17844388095 scopus 로고    scopus 로고
    • Hybrid mining approach in the design of credit scoring models
    • Hsieh, N. C. (2005). Hybrid mining approach in the design of credit scoring models. Expert Systems with Applications, 28(4), 655-665.
    • (2005) Expert Systems with Applications , vol.28 , Issue.4 , pp. 655-665
    • Hsieh, N.C.1
  • 16
    • 34047126555 scopus 로고    scopus 로고
    • Credit scoring with a data mining approach based on support vector machines
    • Huang, C. L., Chen, M. C., & Wang, C. J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications, 33(4), 847-856.
    • (2007) Expert Systems with Applications , vol.33 , Issue.4 , pp. 847-856
    • Huang, C.L.1    Chen, M.C.2    Wang, C.J.3
  • 17
    • 33644600030 scopus 로고    scopus 로고
    • Two-stage genetic programming (2SGP) for the credit scoring model
    • Huang, J. J., Tzeng, G. H., & Ong, C. S. (2006). Two-stage genetic programming (2SGP) for the credit scoring model. Applied Mathematics and Computation, 174(2), 1039-1053.
    • (2006) Applied Mathematics and Computation , vol.174 , Issue.2 , pp. 1039-1053
    • Huang, J.J.1    Tzeng, G.H.2    Ong, C.S.3
  • 18
    • 0003081097 scopus 로고
    • Using neural networks for credit scoring
    • Jensen, H. L. (1992). Using neural networks for credit scoring. Managerial Finance, 18(6), 15-26.
    • (1992) Managerial Finance , vol.18 , Issue.6 , pp. 15-26
    • Jensen, H.L.1
  • 19
    • 0031199479 scopus 로고    scopus 로고
    • Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis
    • Jo, H., Han, I., & Lee, H. (1997). Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis. Expert Systems with Applications, 13(2), 97-108.
    • (1997) Expert Systems with Applications , vol.13 , Issue.2 , pp. 97-108
    • Jo, H.1    Han, I.2    Lee, H.3
  • 20
    • 17844382437 scopus 로고    scopus 로고
    • A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines
    • Lee, T. S., & Chen, I. F. (2005). A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. Expert Systems with Applications, 28(4), 743-752.
    • (2005) Expert Systems with Applications , vol.28 , Issue.4 , pp. 743-752
    • Lee, T.S.1    Chen, I.F.2
  • 22
    • 78149313084 scopus 로고    scopus 로고
    • CMAR: Accurate and efficient classification based on multiple class-association rules
    • CA: San Jose
    • Li, W., Han, J., & Pei, J. (2001). CMAR: Accurate and efficient classification based on multiple class-association rules. In ICDM'01 (pp. 369-376). CA: San Jose.
    • (2001) ICDM'01 , pp. 369-376
    • Li, W.1    Han, J.2    Pei, J.3
  • 23
    • 60249089206 scopus 로고    scopus 로고
    • A new two-stage hybrid approach of credit risk in banking industry
    • Lin, S. L. (2009). A new two-stage hybrid approach of credit risk in banking industry. Expert Systems with Applications, 36(4), 8333-8341.
    • (2009) Expert Systems with Applications , vol.36 , Issue.4 , pp. 8333-8341
    • Lin, S.L.1
  • 24
    • 0002776254 scopus 로고    scopus 로고
    • Integrating classification and association rule mining
    • New York, NY
    • Liu, B., Hsu, W., & Ma, Y. (1998). Integrating classification and association rule mining. In KDD'98 (pp. 80-86). New York, NY.
    • (1998) KDD'98 , pp. 80-86
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 25
    • 16244405300 scopus 로고    scopus 로고
    • Building credit scoring models using genetic programming
    • Ong, C. S., Huang, J. J., & Tzeng, G. H. (2005). Building credit scoring models using genetic programming. Expert Systems with Applications, 29(1), 41-47.
    • (2005) Expert Systems with Applications , vol.29 , Issue.1 , pp. 41-47
    • Ong, C.S.1    Huang, J.J.2    Tzeng, G.H.3
  • 26
    • 0036776641 scopus 로고    scopus 로고
    • A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction
    • Park, C. S., & Han, I. (2002). A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction. Expert Systems with Applications, 23(3), 255-264.
    • (2002) Expert Systems with Applications , vol.23 , Issue.3 , pp. 255-264
    • Park, C.S.1    Han, I.2
  • 28
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 30
    • 15944379834 scopus 로고
    • An examination of the conceptual issues involved in developing credit-scoring models
    • Reichert, A. K., Cho, C. C., & Wagner, G. M. (1983). An examination of the conceptual issues involved in developing credit-scoring models. Journal of Business and Economic Statistics, 1(2), 101-114.
    • (1983) Journal of Business and Economic Statistics , vol.1 , Issue.2 , pp. 101-114
    • Reichert, A.K.1    Cho, C.C.2    Wagner, G.M.3
  • 32
    • 40549122717 scopus 로고    scopus 로고
    • Recursive neural network rule extraction for data with mixed attributes, neural networks
    • Setiono, R., Baesens, B., & Mues, C. (2008). Recursive neural network rule extraction for data with mixed attributes, neural networks. IEEE Transactions(19), 299-307.
    • (2008) IEEE Transactions , Issue.19 , pp. 299-307
    • Setiono, R.1    Baesens, B.2    Mues, C.3
  • 34
    • 0034118581 scopus 로고    scopus 로고
    • Neural network credit scoring models
    • West, D. (2000). Neural network credit scoring models. Computers and Operations Research, 27(11-12), 1131-1152.
    • (2000) Computers and Operations Research , vol.27 , Issue.11-12 , pp. 1131-1152
    • West, D.1
  • 35
    • 13544268431 scopus 로고    scopus 로고
    • Neural network ensemble strategies for financial decision applications
    • West, D., Dellana, S., & Qian, J. X. (2005). Neural network ensemble strategies for financial decision applications. Computers and Operations Research, 32(10), 2543-2559.
    • (2005) Computers and Operations Research , vol.32 , Issue.10 , pp. 2543-2559
    • West, D.1    Dellana, S.2    Qian, J.X.3
  • 36
    • 56349130066 scopus 로고    scopus 로고
    • Credit scoring algorithm based on link analysis ranking with support vector machine, Part 2
    • Xu, X., Zhou, C., & Wang, Z. (2009). Credit scoring algorithm based on link analysis ranking with support vector machine, Part 2. Expert Systems with Applications, 36(2), 2625-2632.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 2625-2632
    • Xu, X.1    Zhou, C.2    Wang, Z.3
  • 37
    • 11344262990 scopus 로고    scopus 로고
    • CPAR: Classification based on predictive association rule
    • San Francisco, CA
    • Yin, X., & Han, J. (2003). CPAR: Classification based on predictive association rule. In SDM. San Francisco, CA.
    • (2003) SDM
    • Yin, X.1    Han, J.2
  • 40
    • 44649137359 scopus 로고    scopus 로고
    • A new credit scoring method based on rough sets and decision tree
    • Zhou, X. Y., Zhang, D. F., & Jiang, Y. (2008). A new credit scoring method based on rough sets and decision tree. Lecture Notes in Artificial Intelligence, 5012, 1081-1089.
    • (2008) Lecture Notes in Artificial Intelligence , vol.5012 , pp. 1081-1089
    • Zhou, X.Y.1    Zhang, D.F.2    Jiang, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.