-
1
-
-
81855218216
-
An evolutionary algorithm based optimization of neural ensemble classifiers
-
ICONIP Shanghai, China
-
C. Y. Chiu and B. Verma, An evolutionary algorithm based optimization of neural ensemble classifers, Int. Conf. Neural Information Processing (ICONIP, 2011), Shanghai, China, pp. 292-298.
-
(2011)
Int. Conf. Neural Information Processing
, pp. 292-298
-
-
Chiu, C.Y.1
Verma, B.2
-
2
-
-
33744983327
-
Adaptive fusion and co-operative training for classifier ensembles
-
DOI 10.1016/j.patcog.2006.02.003, PII S0031320306000483
-
N. M. Wanas, R. A. Dara and M. S. Kamel, Adaptive fusion and co-operative training for classifer ensembles, Pattern Recognit. 39 (2006) 1781-1794. (Pubitemid 43867570)
-
(2006)
Pattern Recognition
, vol.39
, Issue.9
, pp. 1781-1794
-
-
Wanas, N.M.1
Dara, R.A.2
Kamel, M.S.3
-
3
-
-
79955824962
-
Novel layered clustering based approach for generating ensemble of classifers
-
A. Rahman and B. Verma, Novel layered clustering based approach for generating ensemble of classifers, IEEE Trans. Neural Netw. 22(5) (2011) 781-792.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.5
, pp. 781-792
-
-
Rahman, A.1
Verma, B.2
-
4
-
-
33750127404
-
Accuracy/diversity and ensemble MLP classifier design
-
DOI 10.1109/TNN.2006.875979
-
T. Windeatt, Accuracy/diversity and ensemble MLP classifer design, IEEE Trans. Neural Netw. 17(5) (2006) 1194-1211. (Pubitemid 46445178)
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.5
, pp. 1194-1211
-
-
Windeatt, T.1
-
5
-
-
84857719327
-
Cluster-oriented ensemble classifer: Impact of multicluster characterization on ensemble classifer learning
-
B. Verma and A. Rahman, Cluster-oriented ensemble classifer: Impact of multicluster characterization on ensemble classifer learning, IEEE Trans. Knowl. Data Eng. 24 (2012) 605-618.
-
(2012)
IEEE Trans. Knowl. Data Eng.
, vol.24
, pp. 605-618
-
-
Verma, B.1
Rahman, A.2
-
6
-
-
70349087319
-
The diversity of regression ensembles combining bagging and random subspace method
-
ICONIP Auckland, New Zealand
-
A. Scherbart and T. W. Nattkemper, The diversity of regression ensembles combining bagging and random subspace method, Int. Conf. Neural Information Processing (ICONIP, 2008), Auckland, New Zealand, pp. 911-918.
-
(2008)
Int. Conf. Neural Information Processing
, pp. 911-918
-
-
Scherbart, A.1
Nattkemper, T.W.2
-
7
-
-
0037403516
-
Measures of diversity in classifer ensembles and their relationship with the ensemble accuracy
-
L. I. Kuncheva and G. J. Whitaker, Measures of diversity in classifer ensembles and their relationship with the ensemble accuracy, Mach. Learn. 51(2) (2003) 181-207.
-
(2003)
Mach. Learn.
, vol.51
, Issue.2
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, G.J.2
-
9
-
-
78650180662
-
Non-uniform layered clustering for ensemble classifer generation and optimality
-
ICONIP Sydney, Australia
-
A. Rahman, B. Verma and X. Yao, Non-uniform layered clustering for ensemble classifer generation and optimality, Int. Conf. Neural Information Processing (ICONIP, 2010), Sydney, Australia, pp. 551-558.
-
(2010)
Int. Conf. Neural Information Processing
, pp. 551-558
-
-
Rahman, A.1
Verma, B.2
Yao, X.3
-
10
-
-
0030211964
-
Bagging predictors
-
L. Breiman, Bagging predictors, Mach. Learn. 24(2) (1996) 123-1401.
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-1401
-
-
Breiman, L.1
-
11
-
-
58249090787
-
A generalized adaptive ensemble generation and aggregation approach for multiple classifers systems
-
L. Chen and M. S. Kamel, A generalized adaptive ensemble generation and aggregation approach for multiple classifers systems, Pattern Recognit. 42 (2009) 629-644.
-
(2009)
Pattern Recognit.
, vol.42
, pp. 629-644
-
-
Chen, L.1
Kamel, M.S.2
-
12
-
-
29144474640
-
FuzzyBagging: A novel ensemble of classifiers
-
DOI 10.1016/j.patcog.2005.10.002, PII S0031320305003523
-
L. Nanni and A. Lumini, Fuzzy bagging: A novel ensemble of classifers, Pattern Recognit. 39 (2006) 488-490. (Pubitemid 41808629)
-
(2006)
Pattern Recognition
, vol.39
, Issue.3
, pp. 488-490
-
-
Nanni, L.1
Lumini, A.2
-
13
-
-
0025448521
-
The strength of weak learnability
-
R. E. Schapire, The strength of weak learnability, Mach. Learn. 5(2) (1990) 197-227.
-
(1990)
Mach. Learn.
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
14
-
-
60849105643
-
Constructing ensembles of classifers by means of weighted instance selection
-
N. G. Pedrajas, Constructing ensembles of classifers by means of weighted instance selection, IEEE Trans. Neural Netw. 20 (2009) 258-277.
-
(2009)
IEEE Trans. Neural Netw.
, vol.20
, pp. 258-277
-
-
Pedrajas, N.G.1
-
15
-
-
71149083876
-
Abc-boost: Adaptive base class boost for multi-class classifcation, in ICML '09
-
Montreal, Canada
-
L. Ping, Abc-boost: Adaptive base class boost for multi-class classifcation, in ICML '09, Proceedings of the 26th Annual International Conference on Machine Learning (Montreal, Canada, 2009), pp. 625-632.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning
, pp. 625-632
-
-
Ping, L.1
-
17
-
-
0031211090
-
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
-
Y. Rreund and R. E. Schapire, Decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55(1) (1997) 119-139. (Pubitemid 127433398)
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
18
-
-
34247205823
-
Multi-class learning by smoothed boosting
-
DOI 10.1007/s10994-007-5005-y
-
M. Jin and J. Zhang, Multi-class learning by smoothed boosting, Mach. Learn. 67 (2007) 207-227. (Pubitemid 46616362)
-
(2007)
Machine Learning
, vol.67
, Issue.3
, pp. 207-227
-
-
Jin, R.1
Zhang, J.2
-
19
-
-
42049117782
-
Boosting recombined weak classifers
-
J. Rodriguez and J. Maudes, Boosting recombined weak classifers, Pattern Recognit. Lett. 29 (2009) 1049-1059.
-
(2009)
Pattern Recognit. Lett.
, vol.29
, pp. 1049-1059
-
-
Rodriguez, J.1
Maudes, J.2
-
20
-
-
58649083899
-
Learn.NC: Combining ensemble of classifers with dynamically weighted consult-and-vote for e±cient incremental learning of new classes
-
M. D. Muhlbaier, A. Topalis and R. Polikar, Learn.NC: Combining ensemble of classifers with dynamically weighted consult-and-vote for e±cient incremental learning of new classes, IEEE Trans. Neural Networks 20(1) (2009) 152-168.
-
(2009)
IEEE Trans. Neural Networks
, vol.20
, Issue.1
, pp. 152-168
-
-
Muhlbaier, M.D.1
Topalis, A.2
Polikar, R.3
-
21
-
-
76649135491
-
Ensembling heterogeneous learning models with boosting
-
ICONIP Bangkok, Thailand
-
D. S. C. Nascimento and A. L. V. Coelho, Ensembling heterogeneous learning models with boosting, Int. Conf. Neural Information Processing (ICONIP, 2009), Bangkok, Thailand, pp. 512-519.
-
(2009)
Int. Conf. Neural Information Processing
, pp. 512-519
-
-
Nascimento, D.S.C.1
Coelho, A.L.V.2
-
22
-
-
7444228672
-
Space decomposition in data mining: A clustering approach
-
Foundations of Intelligent Systems- 14th International Symposium, ISMIS 2003 Maebashi City, Japan, October 28-31, 2003 Proceedings
-
L. Rokach, O. Maimon and I. Lavi, Space decomposition in data mining: A clustering approach, Int. Symp. Methodologies for Intelligent Systems (2003), Maebashi City, Japan, pp. 24-31. (Pubitemid 37331851)
-
(2003)
Lecture Notes In Computer Science
, Issue.2871
, pp. 24-31
-
-
Rokach, L.1
Maimon, O.2
Lavi, I.3
-
23
-
-
0036532571
-
Switching between selection and fusion in combining classifiers: An experiment
-
DOI 10.1109/3477.990871, PII S1083441902006970
-
L. I. Kuncheva, Switching between selection and fusion in combining classifers: An experiment, IEEE Trans. Syst. Man Cybern. 32(2) (2002) 146-156. (Pubitemid 34249373)
-
(2002)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.32
, Issue.2
, pp. 146-156
-
-
Kuncheva, L.I.1
-
24
-
-
74849135484
-
Clustering based multi-label classif-cation for image annotation and retrieval
-
San Antonio, TX, USA
-
G. Nasierding, G. Tsoumakas and A. Z. Kouzani, Clustering based multi-label classif-cation for image annotation and retrieval, IEEE Int. Conf. Syst. Man Cybern. (San Antonio, TX, USA, 2009) 4514-4519.
-
(2009)
IEEE Int. Conf. Syst. Man Cybern.
, pp. 4514-4519
-
-
Nasierding, G.1
Tsoumakas, G.2
Kouzani, A.Z.3
-
25
-
-
76249085189
-
Random subspace ensembles for FMRI classifcation
-
L. I. Kuncheva, J. J. Rodriguez, C. O. Plumpton, D. E. Linden and S. J. Johnston, Random subspace ensembles for FMRI classifcation, IEEE Trans. Med. Imaging 29(2) (2010) 531-542.
-
(2010)
IEEE Trans. Med. Imaging
, vol.29
, Issue.2
, pp. 531-542
-
-
Kuncheva, L.I.1
Rodriguez, J.J.2
Plumpton, C.O.3
Linden, D.E.4
Johnston, S.J.5
-
26
-
-
33744983327
-
Adaptive fusion and co-operative training for classifier ensembles
-
DOI 10.1016/j.patcog.2006.02.003, PII S0031320306000483
-
N. M. Wanas, R. A. Dara and M. S. Kamel, Adaptive fusion and co-operative training for classifer ensembles, Pattern Recognit. 39 (2006) 1781-1794. (Pubitemid 43867570)
-
(2006)
Pattern Recognition
, vol.39
, Issue.9
, pp. 1781-1794
-
-
Wanas, N.M.1
Dara, R.A.2
Kamel, M.S.3
-
27
-
-
84859002798
-
Evolving ensembles in multi-objective genetic programming for classifcation with unbalance data
-
GECCO Dublin, Ireland
-
U. Bhowan, M. Johnston and M. Zhang, Evolving ensembles in multi-objective genetic programming for classifcation with unbalance data, in Proc. 13th Annual Conf. Genetic and Evolutionary Computation (GECCO, 2011), Dublin, Ireland, pp. 1331-1338.
-
(2011)
Proc. 13th Annual Conf. Genetic and Evolutionary Computation
, pp. 1331-1338
-
-
Bhowan, U.1
Johnston, M.2
Zhang, M.3
-
28
-
-
0030356238
-
Actively Searching for an Effective Neural Network Ensemble
-
Combining Artificial Neural Nets: Ensemble Approaches
-
D. W. Opitz and J. W. Shavlik, Actively searching for an efective neural network ensemble, Connect. Sci. 8 (1996) 337-354. (Pubitemid 127011452)
-
(1996)
Connection Science
, vol.8
, Issue.3-4
, pp. 337-354
-
-
Opitz, D.W.1
Shavlik, J.W.2
-
29
-
-
34147126272
-
Pairwise fusion matrix for combining classifers
-
A. H. R. R. Ko, A. Sabourin, D. E. S. Britto and L. Oliverira, Pairwise fusion matrix for combining classifers, Pattern Reconginit. 40 (2007) 2198-2210.
-
(2007)
Pattern Reconginit.
, vol.40
, pp. 2198-2210
-
-
Ko, A.H.R.R.1
Sabourin, A.2
Britto, D.E.S.3
Oliverira, L.4
-
30
-
-
0035788947
-
A streaming ensemble algorithm for large scale classif-cation, Proceedings of the Seventh
-
San Francisco, CA, USA
-
W. N. Street and K. YongSeog, A streaming ensemble algorithm for large scale classif-cation, Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (San Francisco, CA, USA, 2001), pp. 377-382.
-
(2001)
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 377-382
-
-
Street, W.N.1
Yongseog, K.2
-
31
-
-
78649934709
-
-
Irvine A University of California School of Information and Computer Science
-
A. Frank and A. Asuncion, UCI Machine Learning Repository (Irvine, A: University of California, School of Information and Computer Science, 2010), http://archive.ics.uci.-edu/ml.
-
(2010)
UCI Machine Learning Repository
-
-
Frank, A.1
Asuncion, A.2
-
32
-
-
0002872346
-
Bias plus variance decomposition for zero-one loss functions
-
Bari, Italy
-
R. Kohavi and D. H. Wolpert, Bias plus variance decomposition for zero-one loss functions, in Proc. Int. Conf. Machine Learning (Bari, Italy, 1996), pp. 275-283.
-
(1996)
Proc. Int. Conf. Machine Learning
, pp. 275-283
-
-
Kohavi, R.1
Wolpert, D.H.2
-
33
-
-
0000646059
-
Learning internal representations by error propagation
-
eds. D. Rumelhart and J. McClelland MIT Press, Cambridge, MA
-
D. Rumelhart, G. Hinton and R. Williams, Learning internal representations by error propagation, in Parallel Distributed Processing: Explorations in the Microstructure of Confnition, eds. D. Rumelhart and J. McClelland, Vol. 1 (MIT Press, Cambridge, MA, 1986), pp. 318-363.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructure of Confnition
, vol.1
, pp. 318-363
-
-
Rumelhart, D.1
Hinton, G.2
Williams, R.3
|