메뉴 건너뛰기




Volumn 12, Issue 4, 2013, Pages

Relationship between data size, accuracy, diversity and clusters in neural network ensembles

Author keywords

data clustering; Ensemble of classifiers; neural networks

Indexed keywords

AS NUMBERS; BENCHMARK DATASETS; CLUSTERING DATA; DATA CLUSTERING; ENSEMBLE OF CLASSIFIERS; NEURAL NETWORK ENSEMBLES; NUMBER OF CLASS; TRAINING AND TESTING;

EID: 84890407171     PISSN: 14690268     EISSN: None     Source Type: Journal    
DOI: 10.1142/S1469026813400051     Document Type: Conference Paper
Times cited : (7)

References (33)
  • 1
    • 81855218216 scopus 로고    scopus 로고
    • An evolutionary algorithm based optimization of neural ensemble classifiers
    • ICONIP Shanghai, China
    • C. Y. Chiu and B. Verma, An evolutionary algorithm based optimization of neural ensemble classifers, Int. Conf. Neural Information Processing (ICONIP, 2011), Shanghai, China, pp. 292-298.
    • (2011) Int. Conf. Neural Information Processing , pp. 292-298
    • Chiu, C.Y.1    Verma, B.2
  • 2
    • 33744983327 scopus 로고    scopus 로고
    • Adaptive fusion and co-operative training for classifier ensembles
    • DOI 10.1016/j.patcog.2006.02.003, PII S0031320306000483
    • N. M. Wanas, R. A. Dara and M. S. Kamel, Adaptive fusion and co-operative training for classifer ensembles, Pattern Recognit. 39 (2006) 1781-1794. (Pubitemid 43867570)
    • (2006) Pattern Recognition , vol.39 , Issue.9 , pp. 1781-1794
    • Wanas, N.M.1    Dara, R.A.2    Kamel, M.S.3
  • 3
    • 79955824962 scopus 로고    scopus 로고
    • Novel layered clustering based approach for generating ensemble of classifers
    • A. Rahman and B. Verma, Novel layered clustering based approach for generating ensemble of classifers, IEEE Trans. Neural Netw. 22(5) (2011) 781-792.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.5 , pp. 781-792
    • Rahman, A.1    Verma, B.2
  • 4
    • 33750127404 scopus 로고    scopus 로고
    • Accuracy/diversity and ensemble MLP classifier design
    • DOI 10.1109/TNN.2006.875979
    • T. Windeatt, Accuracy/diversity and ensemble MLP classifer design, IEEE Trans. Neural Netw. 17(5) (2006) 1194-1211. (Pubitemid 46445178)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.5 , pp. 1194-1211
    • Windeatt, T.1
  • 5
    • 84857719327 scopus 로고    scopus 로고
    • Cluster-oriented ensemble classifer: Impact of multicluster characterization on ensemble classifer learning
    • B. Verma and A. Rahman, Cluster-oriented ensemble classifer: Impact of multicluster characterization on ensemble classifer learning, IEEE Trans. Knowl. Data Eng. 24 (2012) 605-618.
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , pp. 605-618
    • Verma, B.1    Rahman, A.2
  • 6
    • 70349087319 scopus 로고    scopus 로고
    • The diversity of regression ensembles combining bagging and random subspace method
    • ICONIP Auckland, New Zealand
    • A. Scherbart and T. W. Nattkemper, The diversity of regression ensembles combining bagging and random subspace method, Int. Conf. Neural Information Processing (ICONIP, 2008), Auckland, New Zealand, pp. 911-918.
    • (2008) Int. Conf. Neural Information Processing , pp. 911-918
    • Scherbart, A.1    Nattkemper, T.W.2
  • 7
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifer ensembles and their relationship with the ensemble accuracy
    • L. I. Kuncheva and G. J. Whitaker, Measures of diversity in classifer ensembles and their relationship with the ensemble accuracy, Mach. Learn. 51(2) (2003) 181-207.
    • (2003) Mach. Learn. , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, G.J.2
  • 8
    • 33749018252 scopus 로고    scopus 로고
    • An analysis of diversity measure
    • E. K. Tang, P. N. Suganthan and X. Yao, An analysis of diversity measure, Mach. Learn. 65 (2006) 247-271.
    • (2006) Mach. Learn. , vol.65 , pp. 247-271
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 9
    • 78650180662 scopus 로고    scopus 로고
    • Non-uniform layered clustering for ensemble classifer generation and optimality
    • ICONIP Sydney, Australia
    • A. Rahman, B. Verma and X. Yao, Non-uniform layered clustering for ensemble classifer generation and optimality, Int. Conf. Neural Information Processing (ICONIP, 2010), Sydney, Australia, pp. 551-558.
    • (2010) Int. Conf. Neural Information Processing , pp. 551-558
    • Rahman, A.1    Verma, B.2    Yao, X.3
  • 10
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Mach. Learn. 24(2) (1996) 123-1401.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-1401
    • Breiman, L.1
  • 11
    • 58249090787 scopus 로고    scopus 로고
    • A generalized adaptive ensemble generation and aggregation approach for multiple classifers systems
    • L. Chen and M. S. Kamel, A generalized adaptive ensemble generation and aggregation approach for multiple classifers systems, Pattern Recognit. 42 (2009) 629-644.
    • (2009) Pattern Recognit. , vol.42 , pp. 629-644
    • Chen, L.1    Kamel, M.S.2
  • 12
    • 29144474640 scopus 로고    scopus 로고
    • FuzzyBagging: A novel ensemble of classifiers
    • DOI 10.1016/j.patcog.2005.10.002, PII S0031320305003523
    • L. Nanni and A. Lumini, Fuzzy bagging: A novel ensemble of classifers, Pattern Recognit. 39 (2006) 488-490. (Pubitemid 41808629)
    • (2006) Pattern Recognition , vol.39 , Issue.3 , pp. 488-490
    • Nanni, L.1    Lumini, A.2
  • 13
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. E. Schapire, The strength of weak learnability, Mach. Learn. 5(2) (1990) 197-227.
    • (1990) Mach. Learn. , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 14
    • 60849105643 scopus 로고    scopus 로고
    • Constructing ensembles of classifers by means of weighted instance selection
    • N. G. Pedrajas, Constructing ensembles of classifers by means of weighted instance selection, IEEE Trans. Neural Netw. 20 (2009) 258-277.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , pp. 258-277
    • Pedrajas, N.G.1
  • 15
  • 17
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Y. Rreund and R. E. Schapire, Decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55(1) (1997) 119-139. (Pubitemid 127433398)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 18
    • 34247205823 scopus 로고    scopus 로고
    • Multi-class learning by smoothed boosting
    • DOI 10.1007/s10994-007-5005-y
    • M. Jin and J. Zhang, Multi-class learning by smoothed boosting, Mach. Learn. 67 (2007) 207-227. (Pubitemid 46616362)
    • (2007) Machine Learning , vol.67 , Issue.3 , pp. 207-227
    • Jin, R.1    Zhang, J.2
  • 19
    • 42049117782 scopus 로고    scopus 로고
    • Boosting recombined weak classifers
    • J. Rodriguez and J. Maudes, Boosting recombined weak classifers, Pattern Recognit. Lett. 29 (2009) 1049-1059.
    • (2009) Pattern Recognit. Lett. , vol.29 , pp. 1049-1059
    • Rodriguez, J.1    Maudes, J.2
  • 20
    • 58649083899 scopus 로고    scopus 로고
    • Learn.NC: Combining ensemble of classifers with dynamically weighted consult-and-vote for e±cient incremental learning of new classes
    • M. D. Muhlbaier, A. Topalis and R. Polikar, Learn.NC: Combining ensemble of classifers with dynamically weighted consult-and-vote for e±cient incremental learning of new classes, IEEE Trans. Neural Networks 20(1) (2009) 152-168.
    • (2009) IEEE Trans. Neural Networks , vol.20 , Issue.1 , pp. 152-168
    • Muhlbaier, M.D.1    Topalis, A.2    Polikar, R.3
  • 21
    • 76649135491 scopus 로고    scopus 로고
    • Ensembling heterogeneous learning models with boosting
    • ICONIP Bangkok, Thailand
    • D. S. C. Nascimento and A. L. V. Coelho, Ensembling heterogeneous learning models with boosting, Int. Conf. Neural Information Processing (ICONIP, 2009), Bangkok, Thailand, pp. 512-519.
    • (2009) Int. Conf. Neural Information Processing , pp. 512-519
    • Nascimento, D.S.C.1    Coelho, A.L.V.2
  • 22
    • 7444228672 scopus 로고    scopus 로고
    • Space decomposition in data mining: A clustering approach
    • Foundations of Intelligent Systems- 14th International Symposium, ISMIS 2003 Maebashi City, Japan, October 28-31, 2003 Proceedings
    • L. Rokach, O. Maimon and I. Lavi, Space decomposition in data mining: A clustering approach, Int. Symp. Methodologies for Intelligent Systems (2003), Maebashi City, Japan, pp. 24-31. (Pubitemid 37331851)
    • (2003) Lecture Notes In Computer Science , Issue.2871 , pp. 24-31
    • Rokach, L.1    Maimon, O.2    Lavi, I.3
  • 23
    • 0036532571 scopus 로고    scopus 로고
    • Switching between selection and fusion in combining classifiers: An experiment
    • DOI 10.1109/3477.990871, PII S1083441902006970
    • L. I. Kuncheva, Switching between selection and fusion in combining classifers: An experiment, IEEE Trans. Syst. Man Cybern. 32(2) (2002) 146-156. (Pubitemid 34249373)
    • (2002) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.32 , Issue.2 , pp. 146-156
    • Kuncheva, L.I.1
  • 24
    • 74849135484 scopus 로고    scopus 로고
    • Clustering based multi-label classif-cation for image annotation and retrieval
    • San Antonio, TX, USA
    • G. Nasierding, G. Tsoumakas and A. Z. Kouzani, Clustering based multi-label classif-cation for image annotation and retrieval, IEEE Int. Conf. Syst. Man Cybern. (San Antonio, TX, USA, 2009) 4514-4519.
    • (2009) IEEE Int. Conf. Syst. Man Cybern. , pp. 4514-4519
    • Nasierding, G.1    Tsoumakas, G.2    Kouzani, A.Z.3
  • 26
    • 33744983327 scopus 로고    scopus 로고
    • Adaptive fusion and co-operative training for classifier ensembles
    • DOI 10.1016/j.patcog.2006.02.003, PII S0031320306000483
    • N. M. Wanas, R. A. Dara and M. S. Kamel, Adaptive fusion and co-operative training for classifer ensembles, Pattern Recognit. 39 (2006) 1781-1794. (Pubitemid 43867570)
    • (2006) Pattern Recognition , vol.39 , Issue.9 , pp. 1781-1794
    • Wanas, N.M.1    Dara, R.A.2    Kamel, M.S.3
  • 27
    • 84859002798 scopus 로고    scopus 로고
    • Evolving ensembles in multi-objective genetic programming for classifcation with unbalance data
    • GECCO Dublin, Ireland
    • U. Bhowan, M. Johnston and M. Zhang, Evolving ensembles in multi-objective genetic programming for classifcation with unbalance data, in Proc. 13th Annual Conf. Genetic and Evolutionary Computation (GECCO, 2011), Dublin, Ireland, pp. 1331-1338.
    • (2011) Proc. 13th Annual Conf. Genetic and Evolutionary Computation , pp. 1331-1338
    • Bhowan, U.1    Johnston, M.2    Zhang, M.3
  • 28
    • 0030356238 scopus 로고    scopus 로고
    • Actively Searching for an Effective Neural Network Ensemble
    • Combining Artificial Neural Nets: Ensemble Approaches
    • D. W. Opitz and J. W. Shavlik, Actively searching for an efective neural network ensemble, Connect. Sci. 8 (1996) 337-354. (Pubitemid 127011452)
    • (1996) Connection Science , vol.8 , Issue.3-4 , pp. 337-354
    • Opitz, D.W.1    Shavlik, J.W.2
  • 31
    • 78649934709 scopus 로고    scopus 로고
    • Irvine A University of California School of Information and Computer Science
    • A. Frank and A. Asuncion, UCI Machine Learning Repository (Irvine, A: University of California, School of Information and Computer Science, 2010), http://archive.ics.uci.-edu/ml.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 32
    • 0002872346 scopus 로고    scopus 로고
    • Bias plus variance decomposition for zero-one loss functions
    • Bari, Italy
    • R. Kohavi and D. H. Wolpert, Bias plus variance decomposition for zero-one loss functions, in Proc. Int. Conf. Machine Learning (Bari, Italy, 1996), pp. 275-283.
    • (1996) Proc. Int. Conf. Machine Learning , pp. 275-283
    • Kohavi, R.1    Wolpert, D.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.