메뉴 건너뛰기




Volumn 7, Issue 3, 2015, Pages 176-204

Classification with class imbalance problem: A review

Author keywords

Big data; Class imbalance problem; Imbalanced classification; Imbalanced data sets

Indexed keywords


EID: 84949786970     PISSN: 20748523     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (363)

References (154)
  • 3
    • 77955413170 scopus 로고    scopus 로고
    • Fault diagnosis based on imbalance modified kernel Fisher discriminant analysis
    • Zhu, Z.-B. and Z.-H. Song Fault diagnosis based on imbalance modified kernel Fisher discriminant analysis. Chemical Engineering Research and Design, 2010. 88(8): p. 936-951.
    • (2010) Chemical Engineering Research and Design , vol.88 , Issue.8 , pp. 936-951
    • Zhu, Z.-B.1    Song, Z.-H.2
  • 5
    • 40649126091 scopus 로고    scopus 로고
    • Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance
    • Mazurowski, M.A., et al. Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance. Neural networks: the official journal of the International Neural Network Society, 2008. 21(2-3): p. 427-436.
    • (2008) Neural networks: the official journal of the International Neural Network Society , vol.21 , Issue.2-3 , pp. 427-436
    • Mazurowski, M.A.1
  • 6
    • 46849100341 scopus 로고    scopus 로고
    • Imbalanced Datasets Classification by Fuzzy Rule Extraction and Genetic Algorithms
    • in Data Mining Workshops, 2006. ICDM Workshops 2006. Sixth IEEE International Conference on
    • Soler, V., et al. Imbalanced Datasets Classification by Fuzzy Rule Extraction and Genetic Algorithms. in Data Mining Workshops, 2006. ICDM Workshops 2006. Sixth IEEE International Conference on. 2006.
    • (2006)
    • Soler, V.1
  • 7
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: one-sided selection
    • Kubat, M. and S. Matwin. Addressing the curse of imbalanced training sets: one-sided selection. in ICML. 1997.
    • (1997) in ICML
    • Kubat, M.1    Matwin, S.2
  • 8
    • 27944460950 scopus 로고    scopus 로고
    • Total margin based adaptive fuzzy support vector machines for multiview face recognition. in Systems
    • Man and Cybernetics, 2005 IEEE International Conference on
    • Yi-Hung, L. and C. Yen-Ting. Total margin based adaptive fuzzy support vector machines for multiview face recognition. in Systems, Man and Cybernetics, 2005 IEEE International Conference on. 2005.
    • (2005)
    • Yi-Hung, L.1    Yen-Ting, C.2
  • 9
    • 78751549019 scopus 로고    scopus 로고
    • Data imbalance problem in text classification
    • in Information Processing (ISIP), Third International Symposium on. 2010
    • Li, Y., G. Sun, and Y. Zhu. Data imbalance problem in text classification. in Information Processing (ISIP), 2010 Third International Symposium on. 2010. IEEE.
    • (2010) IEEE
    • Li, Y.1    Sun, G.2    Zhu, Y.3
  • 10
    • 27344448597 scopus 로고    scopus 로고
    • Feature selection and the class imbalance problem in predicting protein function from sequence
    • Al-Shahib, A., R. Breitling, and D. Gilbert, Feature selection and the class imbalance problem in predicting protein function from sequence. Applied Bioinformatics, 2005. 4(3): p. 195-203.
    • (2005) Applied Bioinformatics , vol.4 , Issue.3 , pp. 195-203
    • Al-Shahib, A.1    Breitling, R.2    Gilbert, D.3
  • 11
    • 84949845881 scopus 로고    scopus 로고
    • in Proc AAAI 2000 Workshop on Learning from Imbalanced Data Sets. 2000. AAAI Tech Report WS-00-05
    • Japkowicz, N. in Proc AAAI 2000 Workshop on Learning from Imbalanced Data Sets. 2000. AAAI Tech Report WS-00-05.
    • Japkowicz, N.1
  • 12
    • 84949845882 scopus 로고    scopus 로고
    • in Proc ICML 2003 Workshop on Learning from Imbalanced Data Sets
    • Chawla, N.V., N. Japkowicz, and A. Kotcz. in Proc ICML 2003 Workshop on Learning from Imbalanced Data Sets. 2003.
    • (2003)
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 13
    • 84862515469 scopus 로고    scopus 로고
    • A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches
    • Galar, M., et al. A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 2012. 42(4): p. 463-484.
    • (2012) Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on , vol.42 , Issue.4 , pp. 463-484
    • Galar, M.1
  • 14
    • 84949790656 scopus 로고    scopus 로고
    • Class Imbalance: Are We Focusing on the Right Issue? in Notes from the ICML Workshop on Learning from Imbalanced Data Sets II
    • Japkowicz, N. Class Imbalance: Are We Focusing on the Right Issue? in Notes from the ICML Workshop on Learning from Imbalanced Data Sets II. 2003.
    • (2003)
    • Japkowicz, N.1
  • 15
    • 84893740371 scopus 로고    scopus 로고
    • Data mining for imbalanced datasets: An overview, in Data mining and knowledge discovery handbook2005
    • Springer
    • Chawla, N.V. Data mining for imbalanced datasets: An overview, in Data mining and knowledge discovery handbook2005, Springer. p. 853-867.
    • Chawla, N.V.1
  • 18
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data. Knowledge and Data Engineering
    • He, H. and E.A. Garcia, Learning from imbalanced data. Knowledge and Data Engineering, IEEE Transactions on, 2009. 21(9): p. 1263-1284.
    • IEEE Transactions on2009 , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.A.2
  • 22
    • 0005255842 scopus 로고    scopus 로고
    • The class imbalance problem: Significance and strategies. in Proceedings of the 2000 International Conference on Artificial Intelligence (ICAI'2000)
    • Japkowicz, N. The class imbalance problem: Significance and strategies. in Proceedings of the 2000 International Conference on Artificial Intelligence (ICAI'2000). 2000. Citeseer.
    • (2000)
    • Japkowicz, N.1
  • 23
    • 57649123451 scopus 로고    scopus 로고
    • On the class imbalance problem. in Natural Computation, 2008
    • ICNC'08. Fourth International Conference on. IEEE
    • Guo, X., et al. On the class imbalance problem. in Natural Computation, 2008. ICNC'08. Fourth International Conference on. 2008. IEEE.
    • (2008)
    • Guo, X.1
  • 24
    • 2242481419 scopus 로고    scopus 로고
    • Learning from imbalanced data sets: a comparison of various strategies
    • in AAAI workshop on learning from imbalanced data sets
    • Japkowicz, N. Learning from imbalanced data sets: a comparison of various strategies. in AAAI workshop on learning from imbalanced data sets. 2000.
    • (2000)
    • Japkowicz, N.1
  • 26
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash, M. and H. Liu, Feature selection for classification. Intelligent data analysis, 1997. 1(3): p. 131-156.
    • (1997) Intelligent data analysis , vol.1 , Issue.3 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 27
    • 84875404700 scopus 로고    scopus 로고
    • Feature selection for high-dimensional imbalanced data
    • Yin, L., et al. Feature selection for high-dimensional imbalanced data. Neurocomputing, 2013. 105(0): p. 3-11.
    • (2013) Neurocomputing , vol.105 , pp. 3-11
    • Yin, L.1
  • 28
    • 77951173974 scopus 로고    scopus 로고
    • Feature selection with high-dimensional imbalanced data. in Data Mining Workshops
    • 2009. ICDMW'09. IEEE International Conference on
    • Van Hulse, J., et al. Feature selection with high-dimensional imbalanced data. in Data Mining Workshops, 2009. ICDMW'09. IEEE International Conference on. 2009. IEEE.
    • (2009)
    • Van Hulse, J.1
  • 29
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y., I. Inza, and P. Larrañaga, A review of feature selection techniques in bioinformatics. Bioinformatics, 2007. 23(19): p. 2507-2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 32
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: a unifying framework
    • Weiss, G.M. Mining with rarity: a unifying framework. ACM SIGKDD Explorations Newsletter, 2004. 6(1): p. 7-19.
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.M.1
  • 34
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: special issue on learning from imbalanced data sets
    • Chawla, N.V., N. Japkowicz, and A. Kotcz, Editorial: special issue on learning from imbalanced data sets. SIGKDD Explor. Newsl., 2004. 6(1): p. 1-6.
    • (2004) SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 35
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • Weiss, G.M. and F. Provost, Learning when training data are costly: The effect of class distribution on tree induction. Journal of Artificial Intelligence Research, 2003. 19: p. 315-354.
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 36
    • 23944466178 scopus 로고    scopus 로고
    • The Effect of Imbalanced Data Class Distribution on Fuzzy Classifiers -Experimental Study
    • Fuzzy Systems 2005 FUZZ05 The 14th IEEE International Conference on
    • Visa, S., Ralescu, A. The Effect of Imbalanced Data Class Distribution on Fuzzy Classifiers - Experimental Study. Fuzzy Systems 2005 FUZZ05 The 14th IEEE International Conference on, 749-754, 2005.
    • (2005) , pp. 749-754
    • Visa, S.1    Ralescu, A.2
  • 37
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • Japkowicz, N. and S. Stephen, The class imbalance problem: A systematic study. Intelligent data analysis, 2002. 6(5): p. 429-449.
    • (2002) Intelligent data analysis , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 40
    • 33750560871 scopus 로고    scopus 로고
    • Combined Effects of Class Imbalance and Class Overlap on Instance-Based Classification
    • E. Corchado, et al., Editors. 2006, Springer Berlin Heidelberg
    • García, V., et al. Combined Effects of Class Imbalance and Class Overlap on Instance-Based Classification, in Intelligent Data Engineering and Automated Learning - IDEAL 2006, E. Corchado, et al., Editors. 2006, Springer Berlin Heidelberg. p. 371-378.
    • in Intelligent Data Engineering and Automated Learning -IDEAL 2006 , pp. 371-378
    • García, V.1
  • 41
    • 38049174973 scopus 로고    scopus 로고
    • When overlapping unexpectedly alters the class imbalance effects
    • Springer
    • García, V., et al. When overlapping unexpectedly alters the class imbalance effects, in Pattern Recognition and Image Analysis2007, Springer. p. 499-506.
    • in Pattern Recognition and Image Analysis2007 , pp. 499-506
    • García, V.1
  • 43
    • 50549093573 scopus 로고    scopus 로고
    • On the k-NN performance in a challenging scenario of imbalance and overlapping
    • García, V., R.A. Mollineda, and J.S. Sánchez, On the k-NN performance in a challenging scenario of imbalance and overlapping. Pattern Analysis and Applications, 2008. 11(3-4): p. 269-280.
    • (2008) Pattern Analysis and Applications , vol.11 , Issue.3-4 , pp. 269-280
    • García, V.1    Mollineda, R.A.2    Sánchez, J.S.3
  • 45
    • 11144262816 scopus 로고    scopus 로고
    • A. Learning Imbalanced And Overlapping Classes Using Fuzzy Sets
    • in Proceedings of the International Conference of Machine Learning, Workshop on Learning from Imbalanced data Sets (II): Learning with Imbalanced Data Sets II. 2003. Washington
    • Visa, S., Ralescu, A. Learning Imbalanced And Overlapping Classes Using Fuzzy Sets. in Proceedings of the International Conference of Machine Learning, Workshop on Learning from Imbalanced data Sets (II): Learning with Imbalanced Data Sets II. 2003. Washington.
    • Visa, S.1    Ralescu2
  • 46
    • 84885428112 scopus 로고    scopus 로고
    • Class imbalance and the curse of minority hubs
    • Tomašev, N. and D. Mladenic, Class imbalance and the curse of minority hubs. Knowledge-Based Systems, 2013. 53(0): p. 157-172.
    • (2013) Knowledge-Based Systems , vol.53 , pp. 157-172
    • Tomašev, N.1    Mladenic, D.2
  • 47
    • 84949479983 scopus 로고    scopus 로고
    • Concept-learning in the presence of between-class and within-class imbalances
    • Springer
    • Japkowicz, N. Concept-learning in the presence of between-class and within-class imbalances, in Advances in Artificial Intelligence2001, Springer. p. 67-77.
    • in Advances in Artificial Intelligence2001 , pp. 67-77
    • Japkowicz, N.1
  • 48
    • 35048878309 scopus 로고    scopus 로고
    • Learning with class skews and small disjuncts
    • in Advances in Artificial Intelligence-SBIA 20042004, Springer
    • Prati, R.C., G.E. Batista, and M.C. Monard, Learning with class skews and small disjuncts, in Advances in Artificial Intelligence-SBIA 20042004, Springer. p. 296-306.
    • Prati, R.C.1    Batista, G.E.2    Monard, M.C.3
  • 49
    • 77956198600 scopus 로고    scopus 로고
    • The impact of small disjuncts on classifier learning
    • Springer
    • Weiss, G.M. The impact of small disjuncts on classifier learning. in Data Mining. 2010. Springer.
    • (2010) in Data Mining
    • Weiss, G.M.1
  • 50
    • 27144540575 scopus 로고    scopus 로고
    • Class imbalances versus small disjuncts
    • Jo, T. and N. Japkowicz, Class imbalances versus small disjuncts. SIGKDD Explor. Newsl., 2004. 6(1): p. 40-49.
    • (2004) SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 40-49
    • Jo, T.1    Japkowicz, N.2
  • 51
    • 84881654592 scopus 로고    scopus 로고
    • A hybrid method to face class overlap and class imbalance on neural networks and multi-class scenarios
    • Alejo, R., et al. A hybrid method to face class overlap and class imbalance on neural networks and multi-class scenarios. Pattern Recognition Letters, 2013. 34(4): p. 380-388.
    • (2013) Pattern Recognition Letters , vol.34 , Issue.4 , pp. 380-388
    • Alejo, R.1
  • 52
    • 60649102026 scopus 로고    scopus 로고
    • Comparison of evaluation metrics in classification applications with imbalanced datasets
    • 2008. ICMLA'08. Seventh International Conference on. 2008. IEEE
    • Fatourechi, M., et al. Comparison of evaluation metrics in classification applications with imbalanced datasets. in Machine Learning and Applications, 2008. ICMLA'08. Seventh International Conference on. 2008. IEEE.
    • in Machine Learning and Applications
    • Fatourechi, M.1
  • 53
    • 52949093937 scopus 로고    scopus 로고
    • Selective pre-processing of imbalanced data for improving classification performance, in Data Warehousing and Knowledge Discovery2008
    • Springer
    • Stefanowski, J. and S. Wilk, Selective pre-processing of imbalanced data for improving classification performance, in Data Warehousing and Knowledge Discovery2008, Springer. p. 283-292.
    • Stefanowski, J.1    Wilk, S.2
  • 54
    • 84884719458 scopus 로고    scopus 로고
    • Class Imbalance in the Prediction of Dementia from Neuropsychological Data
    • L. Correia, L. Reis, and J. Cascalho, Editors. 2013, Springer Berlin Heidelberg
    • Nunes, C., et al. Class Imbalance in the Prediction of Dementia from Neuropsychological Data, in Progress in Artificial Intelligence, L. Correia, L. Reis, and J. Cascalho, Editors. 2013, Springer Berlin Heidelberg. p. 138-151.
    • in Progress in Artificial Intelligence , pp. 138-151
    • Nunes, C.1
  • 56
    • 84870778933 scopus 로고    scopus 로고
    • SMOTE: synthetic minority over-sampling technique
    • arXiv preprint arXiv:1106.1813
    • Chawla, N.V., et al. SMOTE: synthetic minority over-sampling technique. arXiv preprint arXiv:1106.1813, 2002.
    • (2002)
    • Chawla, N.V.1
  • 57
    • 27144479454 scopus 로고    scopus 로고
    • Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach
    • Guo, H. and H.L. Viktor, Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach. ACM SIGKDD Explorations Newsletter, 2004. 6(1): p. 30-39.
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 30-39
    • Guo, H.1    Viktor, H.L.2
  • 58
    • 51949101536 scopus 로고    scopus 로고
    • A hierarchical VQSVM for imbalanced data sets. in Neural Networks, 2007
    • IJCNN 2007. International Joint Conference on. 2007. IEEE
    • Yu, T., et al. A hierarchical VQSVM for imbalanced data sets. in Neural Networks, 2007. IJCNN 2007. International Joint Conference on. 2007. IEEE.
    • Yu, T.1
  • 59
    • 58349090428 scopus 로고    scopus 로고
    • Cluster-based under-sampling approaches for imbalanced data distributions
    • Yen, S.-J. and Y.-S. Lee, Cluster-based under-sampling approaches for imbalanced data distributions. Expert Systems with Applications, 2009. 36(3): p. 5718-5727.
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 5718-5727
    • Yen, S.-J.1    Lee, Y.-S.2
  • 60
    • 70349617264 scopus 로고    scopus 로고
    • Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy
    • García, S. and F. Herrera, Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy. Evolutionary Computation, 2009. 17(3): p. 275-306.
    • (2009) Evolutionary Computation , vol.17 , Issue.3 , pp. 275-306
    • García, S.1    Herrera, F.2
  • 62
    • 33845772427 scopus 로고    scopus 로고
    • Learning when data sets are imbalanced and when costs are unequal and unknown
    • in ICML-2003 workshop on learning from imbalanced data sets II
    • Maloof, M.A. Learning when data sets are imbalanced and when costs are unequal and unknown. in ICML-2003 workshop on learning from imbalanced data sets II. 2003.
    • (2003)
    • Maloof, M.A.1
  • 63
    • 0002551285 scopus 로고    scopus 로고
    • Feature selection for unbalanced class distribution and naive bayes
    • in ICML
    • Mladenic, D. and M. Grobelnik. Feature selection for unbalanced class distribution and naive bayes. in ICML. 1999.
    • (1999)
    • Mladenic, D.1    Grobelnik, M.2
  • 64
    • 16644402628 scopus 로고    scopus 로고
    • Feature selection for text categorization on imbalanced data
    • Zheng, Z., X. Wu, and R. Srihari, Feature selection for text categorization on imbalanced data. ACM SIGKDD Explorations Newsletter, 2004. 6(1): p. 80-89.
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 80-89
    • Zheng, Z.1    Wu, X.2    Srihari, R.3
  • 65
    • 58049141286 scopus 로고    scopus 로고
    • Fast: a roc-based feature selection metric for small samples and imbalanced data classification problems
    • in Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. 2008. ACM
    • Chen, X.-w. and M. Wasikowski. Fast: a roc-based feature selection metric for small samples and imbalanced data classification problems. in Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. 2008. ACM.
    • Chen, X.-W.1    Wasikowski, M.2
  • 66
    • 77956023732 scopus 로고    scopus 로고
    • Combating the small sample class imbalance problem using feature selection
    • Wasikowski, M. and X.-w. Chen, Combating the small sample class imbalance problem using feature selection. Knowledge and Data Engineering, IEEE Transactions on, 2010. 22(10): p. 1388-1400.
    • (2010) Knowledge and Data Engineering, IEEE Transactions on , vol.22 , Issue.10 , pp. 1388-1400
    • Wasikowski, M.1    Chen, X.-w.2
  • 67
    • 51849119676 scopus 로고    scopus 로고
    • Feature Selection for Machine Learning: Comparing a Correlation-Based Filter Approach to the Wrapper. in FLAIRS Conference
    • Hall, M.A. and L.A. Smith. Feature Selection for Machine Learning: Comparing a Correlation-Based Filter Approach to the Wrapper. in FLAIRS Conference. 1999.
    • (1999)
    • Hall, M.A.1    Smith, L.A.2
  • 69
    • 81855161434 scopus 로고    scopus 로고
    • A minority class feature selection method
    • in Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications2011, Springer
    • Cuaya, G., A. Muñoz-Meléndez, and E.F. Morales, A minority class feature selection method, in Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications2011, Springer. p. 417-424.
    • Cuaya, G.1    Muñoz-Meléndez, A.2    Morales, E.F.3
  • 70
    • 81855161434 scopus 로고    scopus 로고
    • A Minority Class Feature Selection Method
    • in Proceedings of the 16th Iberoamerican Congress Conference on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. 2011. Springer-Verlag
    • Cuaya, G., A. Muñoz-Meléndez, and E.F. Morales. A Minority Class Feature Selection Method. in Proceedings of the 16th Iberoamerican Congress Conference on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. 2011. Springer-Verlag.
    • Cuaya, G.1    Muñoz-Meléndez, A.2    Morales, E.F.3
  • 75
    • 78751556705 scopus 로고    scopus 로고
    • Attribute selection and imbalanced data: Problems in software defect prediction
    • 2010 22nd IEEE International Conference on. 2010. IEEE
    • Khoshgoftaar, T.M., K. Gao, and N. Seliya. Attribute selection and imbalanced data: Problems in software defect prediction. in Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE International Conference on. 2010. IEEE.
    • in Tools with Artificial Intelligence (ICTAI)
    • Khoshgoftaar, T.M.1    Gao, K.2    Seliya, N.3
  • 77
    • 70449387048 scopus 로고    scopus 로고
    • Feature selection with biased sample distributions
    • IRI'09. IEEE International Conference on. 2009. IEEE
    • Kamal, A.H., et al. Feature selection with biased sample distributions. in Information Reuse & Integration, 2009. IRI'09. IEEE International Conference on. 2009. IEEE.
    • (2009) in Information Reuse & Integration
    • Kamal, A.H.1
  • 78
    • 84886393706 scopus 로고    scopus 로고
    • z-SVM: An SVM for Improved Classification of Imbalanced Data
    • in AI 2006 Advances in Artificial Intelligence
    • Imam, T., K. Ting, and J. Kamruzzaman, z-SVM: An SVM for Improved Classification of Imbalanced Data, in AI 2006: Advances in Artificial Intelligence, A. Sattar and B.-h. Kang, Editors. 2006, Springer Berlin Heidelberg. p. 264-273.
    • Imam, T.1    Ting, K.2    Kamruzzaman, J.3
  • 79
    • 61549114384 scopus 로고    scopus 로고
    • SVMs modeling for highly imbalanced classification
    • Tang, Y., et al. SVMs modeling for highly imbalanced classification. Trans. Sys. Man Cyber. Part B, 2009. 39(1): p. 281-288.
    • (2009) Trans. Sys. Man Cyber. Part B , vol.39 , Issue.1 , pp. 281-288
    • Tang, Y.1
  • 80
    • 79957969472 scopus 로고    scopus 로고
    • Improving k nearest neighbor with exemplar generalization for imbalanced classification
    • Springer
    • Li, Y. and X. Zhang, Improving k nearest neighbor with exemplar generalization for imbalanced classification, in Advances in knowledge discovery and data mining2011, Springer. p. 321-332.
    • in Advances in knowledge discovery and data mining2011 , pp. 321-332
    • Li, Y.1    Zhang, X.2
  • 81
    • 84865100421 scopus 로고    scopus 로고
    • Nearest Neighbor Distributions for imbalanced classification
    • in Neural Networks (IJCNN) The 2012 International Joint Conference on
    • Kriminger, E., J.C. Principe, and C. Lakshminarayan. Nearest Neighbor Distributions for imbalanced classification. in Neural Networks (IJCNN), The 2012 International Joint Conference on. 2012.
    • (2012)
    • Kriminger, E.1    Principe, J.C.2    Lakshminarayan, C.3
  • 82
    • 60849127572 scopus 로고    scopus 로고
    • Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets
    • Fernández, A., M.J. del Jesus, and F. Herrera, Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets. International Journal of Approximate Reasoning, 2009. 50(3): p. 561-577.
    • (2009) International Journal of Approximate Reasoning , vol.50 , Issue.3 , pp. 561-577
    • Fernández, A.1    del Jesus, M.J.2    Herrera, F.3
  • 86
    • 84873604738 scopus 로고    scopus 로고
    • Using SVM with Adaptively Asymmetric Misclassification Costs for Mine-Like Objects Detection
    • 2012 11th International Conference on. 2012. IEEE
    • Wang, X., et al. Using SVM with Adaptively Asymmetric Misclassification Costs for Mine-Like Objects Detection. in Machine Learning and Applications (ICMLA), 2012 11th International Conference on. 2012. IEEE.
    • in Machine Learning and Applications (ICMLA)
    • Wang, X.1
  • 87
    • 50549087624 scopus 로고    scopus 로고
    • Cost-sensitive learning vs. sampling: Which is best for handling unbalanced classes with unequal error costs?
    • Weiss, G.M., K. McCarthy, and B. Zabar. Cost-sensitive learning vs. sampling: Which is best for handling unbalanced classes with unequal error costs? in DMIN. 2007.
    • (2007) in DMIN
    • Weiss, G.M.1    McCarthy, K.2    Zabar, B.3
  • 88
    • 84949845902 scopus 로고    scopus 로고
    • in Workshop on Machine Learning Research in Taiwan: Challenges and Directions
    • Lin, H.-T. Cost-sensitive classification: Status and beyond. in Workshop on Machine Learning Research in Taiwan: Challenges and Directions. 2010.
    • (2010) Cost-sensitive classification: Status and beyond
    • Lin, H.-T.1
  • 92
    • 84873861502 scopus 로고    scopus 로고
    • A comparison of the bagging and the boosting methods using the decision trees classifiers
    • Machová, K., et al. A comparison of the bagging and the boosting methods using the decision trees classifiers. Computer Science and Information Systems, 2006. 3(2): p. 57-72.
    • (2006) Computer Science and Information Systems , vol.3 , Issue.2 , pp. 57-72
    • Machová, K.1
  • 93
    • 0034164230 scopus 로고    scopus 로고
    • Additive Logistic Regression: A Statistical View of Boosting
    • Friedman, J., T. Hastie, and R. Tibshirani, Additive Logistic Regression: A Statistical View of Boosting. Ann. Statist, 2000(28(2)): p. 337-374.
    • (2000) Ann. Statist , vol.28 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 96
    • 9444297357 scopus 로고    scopus 로고
    • SMOTEBoost: Improving prediction of the minority class in boosting
    • in Knowledge Discovery in Databases: PKDD 20032003, Springer
    • Chawla, N.V., et al. SMOTEBoost: Improving prediction of the minority class in boosting, in Knowledge Discovery in Databases: PKDD 20032003, Springer. p. 107-119.
    • Chawla, N.V.1
  • 98
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Sun, Y., et al. Cost-sensitive boosting for classification of imbalanced data. Pattern recognition, 2007. 40(12): p. 3358-3378.
    • (2007) Pattern recognition , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1
  • 99
    • 1942484882 scopus 로고    scopus 로고
    • Linear programming boosting for uneven datasets
    • Leskovec, J. and J. Shawe-Taylor. Linear programming boosting for uneven datasets. in ICML. 2003.
    • (2003) in ICML
    • Leskovec, J.1    Shawe-Taylor, J.2
  • 100
    • 67650505046 scopus 로고    scopus 로고
    • Diversity analysis on imbalanced data sets by using ensemble models. in Computational Intelligence and Data Mining
    • Wang, S. and X. Yao. Diversity analysis on imbalanced data sets by using ensemble models. in Computational Intelligence and Data Mining, 2009. CIDM'09. IEEE Symposium on. 2009. IEEE.
    • (2009) 2009. CIDM'09. IEEE Symposium on.IEEE.
    • Wang, S.1    Yao, X.2
  • 101
    • 33746529930 scopus 로고    scopus 로고
    • A study in machine learning from imbalanced data for sentence boundary detection in speech.
    • Liu, Y., et al. A study in machine learning from imbalanced data for sentence boundary detection in speech. Computer Speech & Language, 2006. 20(4): p. 468-494.
    • (2006) Computer Speech & Language , vol.20 , Issue.4 , pp. 468-494
    • Liu, Y.1
  • 105
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: a survey and categorisation
    • Brown, G., et al., Diversity creation methods: a survey and categorisation. Information Fusion, 2005. 6(1): p. 5-20.
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1
  • 106
    • 22944452794 scopus 로고    scopus 로고
    • Applying support vector machines to imbalanced datasets
    • in Machine Learning: ECML 20042004, Springer
    • Akbani, R., S. Kwek, and N. Japkowicz, Applying support vector machines to imbalanced datasets, in Machine Learning: ECML 20042004, Springer. p. 39-50.
    • Akbani, R.1    Kwek, S.2    Japkowicz, N.3
  • 107
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Zhou, Z.-H. and X.-Y. Liu, Training cost-sensitive neural networks with methods addressing the class imbalance problem. Knowledge and Data Engineering, IEEE Transactions on, 2006. 18(1): p. 63-77.
    • (2006) Knowledge and Data Engineering, IEEE Transactions on , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.-H.1    Liu, X.-Y.2
  • 108
    • 60349112614 scopus 로고    scopus 로고
    • Features selection of SVM and ANN using particle swarm optimization for power transformers incipient fault symptom diagnosis
    • Lee, T.-F., M.-Y. Cho, and F.-M. Fang, Features selection of SVM and ANN using particle swarm optimization for power transformers incipient fault symptom diagnosis. International Journal of Computational Intelligence Research, 2007. 3(1): p. 60-65.
    • (2007) International Journal of Computational Intelligence Research , vol.3 , Issue.1 , pp. 60-65
    • Lee, T.-F.1    Cho, M.-Y.2    Fang, F.-M.3
  • 109
    • 77958600087 scopus 로고    scopus 로고
    • A hybrid algorithm applied to classify unbalanced data
    • 2010 Sixth International Conference on
    • Lee, C.Y., et al. A hybrid algorithm applied to classify unbalanced data. in Networked Computing and Advanced Information Management (NCM), 2010 Sixth International Conference on. 2010.
    • (2010) in Networked Computing and Advanced Information Management (NCM)
    • Lee, C.Y.1
  • 110
    • 84856621489 scopus 로고    scopus 로고
    • Hellinger distance decision trees are robust and skew-insensitive
    • Cieslak, D.A., et al. Hellinger distance decision trees are robust and skew-insensitive. Data Mining and Knowledge Discovery, 2012. 24(1): p. 136-158.
    • (2012) Data Mining and Knowledge Discovery , vol.24 , Issue.1 , pp. 136-158
    • Cieslak, D.A.1
  • 111
    • 84868621497 scopus 로고    scopus 로고
    • ACOSampling: An ant colony optimization-based undersampling method for classifying imbalanced DNA microarray data
    • Yu, H., J. Ni, and J. Zhao, ACOSampling: An ant colony optimization-based undersampling method for classifying imbalanced DNA microarray data. Neurocomputing, 2013. 101(0): p. 309-318.
    • (2013) Neurocomputing , vol.101 , pp. 309-318
    • Yu, H.1    Ni, J.2    Zhao, J.3
  • 112
    • 82355169734 scopus 로고    scopus 로고
    • The effect of class imbalance on case selection for case-based classifiers: An empirical study in the context of medical decision support
    • Malof, J.M., M.A. Mazurowski, and G.D. Tourassi, The effect of class imbalance on case selection for case-based classifiers: An empirical study in the context of medical decision support. Neural Networks, 2012. 25(0): p. 141-145.
    • (2012) Neural Networks , vol.25 , pp. 141-145
    • Malof, J.M.1    Mazurowski, M.A.2    Tourassi, G.D.3
  • 113
    • 84876534266 scopus 로고    scopus 로고
    • Novel Classifier Scheme for Unbalance Problems
    • Martino, M.D., et al. Novel Classifier Scheme for Unbalance Problems. Pattern Recognition Letters, 2013.
    • (2013) Pattern Recognition Letters
    • Martino, M.D.1
  • 114
    • 46849096083 scopus 로고    scopus 로고
    • A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets
    • Fernández, A., et al. A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets. Fuzzy Sets and Systems, 2008. 159(18): p. 2378-2398.
    • (2008) Fuzzy Sets and Systems , vol.159 , Issue.18 , pp. 2378-2398
    • Fernández, A.1
  • 115
    • 34248585888 scopus 로고    scopus 로고
    • Conflict-sensitivity contexture learning algorithm for mining interesting patterns using neuro-fuzzy network with decision rules
    • Hung, C.-M. and Y.-M. Huang, Conflict-sensitivity contexture learning algorithm for mining interesting patterns using neuro-fuzzy network with decision rules. Expert Systems with Applications, 2008. 34(1): p. 159-172.
    • (2008) Expert Systems with Applications , vol.34 , Issue.1 , pp. 159-172
    • Hung, C.-M.1    Huang, Y.-M.2
  • 116
    • 33947326736 scopus 로고    scopus 로고
    • Power Distribution Fault Cause Identification With Imbalanced Data Using the Data Mining-Based Fuzzy Classification E-Algorithm
    • Le, X., C. Mo-Yuen, and L.S. Taylor, Power Distribution Fault Cause Identification With Imbalanced Data Using the Data Mining-Based Fuzzy Classification E-Algorithm. Power Systems, IEEE Transactions on, 2007. 22(1): p. 164-171.
    • Power Systems IEEE Transactions on 2007 , vol.22 , Issue.1 , pp. 164-171
    • Le, X.1    Mo-Yuen, C.2    Taylor, L.S.3
  • 117
    • 0032594808 scopus 로고    scopus 로고
    • Robust algorithms for principal component analysis
    • Yang, T.-N. and S.-D. Wang, Robust algorithms for principal component analysis. Pattern Recognition Letters, 1999. 20(9): p. 927-933.
    • (1999) Pattern Recognition Letters , vol.20 , Issue.9 , pp. 927-933
    • Yang, T.-N.1    Wang, S.-D.2
  • 118
    • 84867580242 scopus 로고    scopus 로고
    • DBFS: An effective Density Based Feature Selection scheme for small sample size and high dimensional imbalanced data sets
    • Alibeigi, M., S. Hashemi, and A. Hamzeh, DBFS: An effective Density Based Feature Selection scheme for small sample size and high dimensional imbalanced data sets. Data & Knowledge Engineering, 2012. 81-82(0): p. 67-103.
    • (2012) Data & Knowledge Engineering , vol.81-82 , pp. 67-103
    • Alibeigi, M.1    Hashemi, S.2    Hamzeh, A.3
  • 119
    • 77957834820 scopus 로고    scopus 로고
    • Nonlinear fuzzy robust PCA algorithms and similarity classifier in bankruptcy analysis
    • Luukka, P. Nonlinear fuzzy robust PCA algorithms and similarity classifier in bankruptcy analysis. Expert Systems with Applications, 2010. 37(12): p. 8296-8302.
    • (2010) Expert Systems with Applications , vol.37 , Issue.12 , pp. 8296-8302
    • Luukka, P.1
  • 121
    • 84949845907 scopus 로고    scopus 로고
    • Principal component analysis2005: Wiley Online Library
    • Jolliffe, I. Principal component analysis2005: Wiley Online Library.
    • Jolliffe, I.1
  • 122
    • 84893568864 scopus 로고    scopus 로고
    • Ensemble-based wrapper methods for feature selection and class imbalance learning
    • Springer
    • Yang, P., et al. Ensemble-based wrapper methods for feature selection and class imbalance learning, in Advances in Knowledge Discovery and Data Mining2013, Springer. p. 544-555.
    • in Advances in Knowledge Discovery and Data Mining2013 , pp. 544-555
    • Yang, P.1
  • 123
    • 33749236614 scopus 로고    scopus 로고
    • Ensemble based on GA wrapper feature selection
    • Yu, E. and S. Cho, Ensemble based on GA wrapper feature selection. Computers & Industrial Engineering, 2006. 51(1): p. 111-116.
    • (2006) Computers & Industrial Engineering , vol.51 , Issue.1 , pp. 111-116
    • Yu, E.1    Cho, S.2
  • 124
    • 84889638990 scopus 로고    scopus 로고
    • An ensemble-based model for two-class imbalanced financial problem
    • Liao, J.-J., et al. An ensemble-based model for two-class imbalanced financial problem. Economic Modelling, 2014. 37(0): p. 175-183.
    • (2014) Economic Modelling , vol.37 , pp. 175-183
    • Liao, J.-J.1
  • 126
    • 78650207592 scopus 로고    scopus 로고
    • Classification of imbalanced data by combining the complementary neural network and SMOTE algorithm
    • in Proceedings of the 17th international conference on Neural information processing: models and applications -Volume Part II2010, Springer-Verlag: Sydney, Australia
    • Jeatrakul, P., K.W. Wong, and C.C. Fung, Classification of imbalanced data by combining the complementary neural network and SMOTE algorithm, in Proceedings of the 17th international conference on Neural information processing: models and applications - Volume Part II2010, Springer-Verlag: Sydney, Australia. p. 152-159.
    • Jeatrakul, P.1    Wong, K.W.2    Fung, C.C.3
  • 127
    • 33645980451 scopus 로고    scopus 로고
    • Dependency tree kernels for relation extraction
    • in Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. 2004. Association for Computational Linguistics
    • Culotta, A. and J. Sorensen. Dependency tree kernels for relation extraction. in Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. 2004. Association for Computational Linguistics.
    • Culotta, A.1    Sorensen, J.2
  • 128
    • 26944434943 scopus 로고    scopus 로고
    • Exploiting the cost (in) sensitivity of decision tree splitting criteria
    • Drummond, C. and R.C. Holte. Exploiting the cost (in) sensitivity of decision tree splitting criteria. in ICML. 2000.
    • (2000) in ICML
    • Drummond, C.1    Holte, R.C.2
  • 129
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • Nauck, D. and R. Kruse, Obtaining interpretable fuzzy classification rules from medical data. Artificial Intelligence in Medicine, 1999. 16(2): p. 149-169.
    • (1999) Artificial Intelligence in Medicine , vol.16 , Issue.2 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 130
    • 53149134642 scopus 로고    scopus 로고
    • Evolving fuzzy classifiers using different model architectures
    • Angelov, P., E. Lughofer, and X. Zhou, Evolving fuzzy classifiers using different model architectures. Fuzzy Sets Syst., 2008. 159(23): p. 3160-3182.
    • (2008) Fuzzy Sets Syst , vol.159 , Issue.23 , pp. 3160-3182
    • Angelov, P.1    Lughofer, E.2    Zhou, X.3
  • 132
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C.J. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998. 2(2): p. 121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.1
  • 133
    • 0037695279 scopus 로고    scopus 로고
    • Least squares support vector machines
    • World Scientific
    • Suykens, J.A., et al. Least squares support vector machines. Vol. 4. 2002: World Scientific.
    • (2002) , vol.4
    • Suykens, J.A.1
  • 137
    • 84874667219 scopus 로고    scopus 로고
    • Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches
    • Fernández, A., et al. Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches. Knowledge-Based Systems, 2013.
    • (2013) Knowledge-Based Systems
    • Fernández, A.1
  • 138
    • 84937578534 scopus 로고    scopus 로고
    • Multi-objective particle swarm optimisation (PSO) for feature selection
    • in Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference. 2012. ACM
    • Xue, B., M. Zhang, and W.N. Browne. Multi-objective particle swarm optimisation (PSO) for feature selection. in Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference. 2012. ACM.
    • Xue, B.1    Zhang, M.2    Browne, W.N.3
  • 139
    • 55549116330 scopus 로고    scopus 로고
    • Evolutionary rule-based systems for imbalanced data sets
    • Orriols-Puig, A. and E. Bernadó-Mansilla, Evolutionary rule-based systems for imbalanced data sets. Soft Computing, 2009. 13(3): p. 213-225.
    • (2009) Soft Computing , vol.13 , Issue.3 , pp. 213-225
    • Orriols-Puig, A.1    Bernadó-Mansilla, E.2
  • 140
    • 33750560871 scopus 로고    scopus 로고
    • Combined effects of class imbalance and class overlap on instancebased classification
    • in Intelligent Data Engineering and Automated Learning-IDEAL 20062006, Springer
    • García, V., et al. Combined effects of class imbalance and class overlap on instancebased classification, in Intelligent Data Engineering and Automated Learning-IDEAL 20062006, Springer. p. 371-378.
    • García, V.1
  • 141
    • 77955046700 scopus 로고    scopus 로고
    • On the suitability of combining feature selection and resampling to manage data complexity
    • Springer
    • Martín-Félez, R. and R.A. Mollineda, On the suitability of combining feature selection and resampling to manage data complexity, in Current Topics in Artificial Intelligence2010, Springer. p. 141-150.
    • in Current Topics in Artificial Intelligence2010 , pp. 141-150
    • Martín-Félez, R.1    Mollineda, R.A.2
  • 143
    • 84872812260 scopus 로고    scopus 로고
    • Class-imbalanced classifiers for high-dimensional data
    • Lin, W.-J. and J.J. Chen, Class-imbalanced classifiers for high-dimensional data. Briefings in bioinformatics, 2013. 14(1): p. 13-26.
    • (2013) Briefings in bioinformatics , vol.14 , Issue.1 , pp. 13-26
    • Lin, W.-J.1    Chen, J.J.2
  • 144
    • 84862764914 scopus 로고    scopus 로고
    • Feature selection for optimizing traffic classification
    • Zhang, H., et al. Feature selection for optimizing traffic classification. Computer Communications, 2012. 35(12): p. 1457-1471.
    • (2012) Computer Communications , vol.35 , Issue.12 , pp. 1457-1471
    • Zhang, H.1
  • 145
    • 77957988489 scopus 로고    scopus 로고
    • Class prediction for high-dimensional class-imbalanced data
    • Lusa, L. Class prediction for high-dimensional class-imbalanced data. BMC Bioinformatics, 2010. 11(1): p. 523.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 523
    • Lusa, L.1
  • 148
    • 84893603417 scopus 로고    scopus 로고
    • Twitter Sentiment Analysis: A Bootstrap Ensemble Framework
    • in Social Computing (SocialCom), 2013 International Conference on
    • Hassan, A., A. Abbasi, and D. Zeng. Twitter Sentiment Analysis: A Bootstrap Ensemble Framework. in Social Computing (SocialCom), 2013 International Conference on. 2013.
    • (2013)
    • Hassan, A.1    Abbasi, A.2    Zeng, D.3
  • 149
    • 84906861443 scopus 로고    scopus 로고
    • Sentiment analysis on evolving social streams: How self-report imbalances can help
    • in Proceedings of the 7th ACM international conference on Web search and data mining. 2014. ACM
    • Guerra, P.C., W. Meira Jr, and C. Cardie. Sentiment analysis on evolving social streams: How self-report imbalances can help. in Proceedings of the 7th ACM international conference on Web search and data mining. 2014. ACM.
    • Guerra, P.C.1    Meira, W.2    Cardie, C.3
  • 150
    • 84883409515 scopus 로고    scopus 로고
    • Active learning for imbalanced sentiment classification. in Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning
    • Association for Computational Linguistics
    • Li, S., et al. Active learning for imbalanced sentiment classification. in Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. 2012. Association for Computational Linguistics.
    • (2012)
    • Li, S.1
  • 151
    • 80053166947 scopus 로고    scopus 로고
    • Sentiment Analysis of Customer Reviews: Balanced versus Unbalanced Datasets
    • A. König, et al., Editors. 2011, Springer Berlin Heidelberg
    • Burns, N., et al. Sentiment Analysis of Customer Reviews: Balanced versus Unbalanced Datasets, in Knowledge-Based and Intelligent Information and Engineering Systems, A. König, et al., Editors. 2011, Springer Berlin Heidelberg. p. 161-170.
    • in Knowledge-Based and Intelligent Information and Engineering Systems , pp. 161-170
    • Burns, N.1
  • 152
    • 84916939811 scopus 로고    scopus 로고
    • Intrinsic dimension estimation of data by principal component analysis
    • arXiv preprint arXiv:1002.2050
    • Fan, M., et al. Intrinsic dimension estimation of data by principal component analysis. arXiv preprint arXiv:1002.2050, 2010.
    • (2010)
    • Fan, M.1
  • 153
    • 84907978748 scopus 로고    scopus 로고
    • Machine Learning Big Data Framework and Analytics for Big Data Problems
    • Hasan, S., S.M. Shamsuddin, and N. Lopes, Machine Learning Big Data Framework and Analytics for Big Data Problems. Int. J. Advance Soft Compu. Appl, 2014. 6(2).
    • (2014) Int. J. Advance Soft Compu. Appl , vol.6 , Issue.2
    • Hasan, S.1    Shamsuddin, S.M.2    Lopes, N.3
  • 154
    • 84949845915 scopus 로고    scopus 로고
    • Empirical Big Data Research: A Systematic Literature Mapping
    • arXiv preprint arXiv:1509.03045
    • Wienhofen, L., B.M. Mathisen, and D. Roman, Empirical Big Data Research: A Systematic Literature Mapping. arXiv preprint arXiv:1509.03045, 2015.
    • (2015)
    • Wienhofen, L.1    Mathisen, B.M.2    Roman, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.