메뉴 건너뛰기




Volumn 6635 LNAI, Issue PART 2, 2011, Pages 321-332

Improving k nearest neighbor with exemplar generalization for imbalanced classification

Author keywords

Cost sensitive learning; imbalanced learning; kNN; re sampling

Indexed keywords

DATA MINING; MOTION COMPENSATION; TEXT PROCESSING;

EID: 79957969472     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-20847-8_27     Document Type: Conference Paper
Times cited : (52)

References (22)
  • 1
    • 0004267735 scopus 로고    scopus 로고
    • Kluwer Academic Publishers, Dordrecht
    • Aha, D.W. (ed.): Lazy learning. Kluwer Academic Publishers, Dordrecht (1997)
    • (1997) Lazy Learning
    • Aha, D.W.1
  • 2
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha, D.W., et al.: Instance-based learning algorithms. Machine Learning 6 (1991)
    • (1991) Machine Learning , vol.6
    • Aha, D.W.1
  • 3
    • 10944266712 scopus 로고    scopus 로고
    • When small disjuncts abound, try lazy learning: A case study
    • Bosch, A., et al.: When small disjuncts abound, try lazy learning: A case study. In: BDCML (1997)
    • (1997) BDCML
    • Bosch, A.1
  • 4
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30 (1997)
    • (1997) Pattern Recognition , vol.30
    • Bradley, A.P.1
  • 7
    • 0344324689 scopus 로고    scopus 로고
    • Metacost: A general method for making classifiers cost-sensitive
    • Domingos, P.: Metacost: A general method for making classifiers cost-sensitive. In: KDD 1999 (1999)
    • (1999) KDD 1999
    • Domingos, P.1
  • 8
    • 84867577175 scopus 로고    scopus 로고
    • The foundations of cost-sensitive learning
    • Elkan, C.: The foundations of cost-sensitive learning. In: IJCAI (2001)
    • (2001) IJCAI
    • Elkan, C.1
  • 10
    • 0002448383 scopus 로고
    • Concept learning and the problem of small disjuncts
    • Holte, R.C., et al.: Concept learning and the problem of small disjuncts. In: IJCAI 1989 (1989)
    • (1989) IJCAI 1989
    • Holte, R.C.1
  • 11
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat, M., et al.: Machine learning for the detection of oil spills in satellite radar images. Machine Learning 30(2-3) (1998)
    • (1998) Machine Learning , vol.30 , Issue.2-3
    • Kubat, M.1
  • 12
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: One-sided selection
    • Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: One-sided selection. In: ICML 1997 (1997)
    • (1997) ICML 1997
    • Kubat, M.1    Matwin, S.2
  • 13
    • 85161651554 scopus 로고    scopus 로고
    • Data mining for direct marketing: Problems and solutions
    • Ling, C., et al.: Data mining for direct marketing: Problems and solutions. In: KDD 1998 (1998)
    • (1998) KDD 1998
    • Ling, C.1
  • 14
    • 33845782503 scopus 로고    scopus 로고
    • Data mining static code attributes to learn defect predictors
    • Menzies, T., et al.: Data mining static code attributes to learn defect predictors. IEEE Transactions on Software Engineering 33 (2007)
    • (2007) IEEE Transactions on Software Engineering , vol.33
    • Menzies, T.1
  • 15
    • 0002900357 scopus 로고    scopus 로고
    • The case against accuracy estimation for comparing induction algorithms
    • Provost, F., et al.: The case against accuracy estimation for comparing induction algorithms. In: ICML 1998 (1998)
    • (1998) ICML 1998
    • Provost, F.1
  • 16
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost, F.J., Fawcett, T.: Robust classification for imprecise environments. Machine Learning 42(3) (2001)
    • (2001) Machine Learning , vol.42 , Issue.3
    • Provost, F.J.1    Fawcett, T.2
  • 18
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • Swets, J.: Measuring the accuracy of diagnostic systems. Science 240(4857) (1988)
    • (1988) Science , vol.240 , pp. 4857
    • Swets, J.1
  • 20
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: A unifying framework
    • Weiss, G.M.: Mining with rarity: a unifying framework. SIGKDD Explorations 6(1) (2004)
    • (2004) SIGKDD Explorations , vol.6 , Issue.1
    • Weiss, G.M.1
  • 21
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning algorithms. Machine Learning (2000)
    • (2000) Machine Learning
    • Wilson, D.R.1    Martinez, T.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.