메뉴 건너뛰기




Volumn , Issue , 2009, Pages 23-28

Feature selection with biased sample distributions

Author keywords

Biased sample distributions; Classification; Feature selection; Imbalanced data

Indexed keywords

ACCURATE PREDICTION; BIASED SAMPLE DISTRIBUTIONS; BIOMEDICAL RESEARCH; CLASS LABELS; CLASSIFICATION; CREDIT CARD FRAUDS; DATA COLLECTION; DATA COLLECTION PROCESS; DATA SETS; EXPERIMENTAL COMPARISON; FEATURE SELECTION; FEATURE SELECTION METHODS; FILTERING TECHNIQUE; HIGHER WEIGHT; IMBALANCED DATA; NETWORK INTRUSIONS; RELIEFF; SAMPLE DISTRIBUTIONS;

EID: 70449387048     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IRI.2009.5211613     Document Type: Conference Paper
Times cited : (8)

References (17)
  • 2
    • 33745561205 scopus 로고    scopus 로고
    • Guyou I., Elisseeff A., An introduction to variable and feature selection, J. of machine Learning Research 3:1157-1182, 2003.
    • Guyou I., Elisseeff A., An introduction to variable and feature selection, J. of machine Learning Research 3:1157-1182, 2003.
  • 3
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak N., Choi C., Input feature selection for classification problems, IEEE Trans. on Neural Networks, 13(1), 2002.
    • (2002) IEEE Trans. on Neural Networks , vol.13 , Issue.1
    • Kwak, N.1    Choi, C.2
  • 4
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub T., et al., Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science, 1, 1999.
    • (1999) Science , vol.1
    • Golub, T.1
  • 6
    • 70449424511 scopus 로고    scopus 로고
    • at Johns Hopkins, Researcher Pinpoint Genes Involved in Breast Cancer Growth, August, 2003
    • The Breast Center at Johns Hopkins, Researcher Pinpoint Genes Involved in Breast Cancer Growth, August, 2003 (http://www.hopkinsbreastcenter.org/artemis/ 200308/feature6.html),
    • The Breast Center
  • 7
    • 0038179900 scopus 로고    scopus 로고
    • Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer
    • C. D. Logsdon, D. M. Simeone, C. Binkley, T. Arumugam, J-K. Greenson, T. J. Giordano, D. E. Misek, and S. Hanash. Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Research, 63:2649-2657, 2003.
    • (2003) Cancer Research , vol.63 , pp. 2649-2657
    • Logsdon, C.D.1    Simeone, D.M.2    Binkley, C.3    Arumugam, T.4    Greenson, J.-K.5    Giordano, T.J.6    Misek, D.E.7    Hanash, S.8
  • 8
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R. and John, G. H., Wrappers for feature subset selection. Artificial Intelligence, 97:1-2, 1997.
    • (1997) Artificial Intelligence , vol.97 , pp. 1-2
    • Kohavi, R.1    John, G.H.2
  • 10
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • Li T. et al., A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression, Bioinformatics, 20:2429-2437, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 2429-2437
    • Li, T.1
  • 11
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and Empirical Analysis of ReliefF and RReliefF
    • Robnik-Šikonja, M. and Kononenko, I. 2003. Theoretical and Empirical Analysis of ReliefF and RReliefF. Mach. Learn. 53, 2003.
    • (2003) Mach. Learn , vol.53
    • Robnik-Šikonja, M.1    Kononenko, I.2
  • 14
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Pedro D. & Pazzani M., On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn., 297, 1997.
    • (1997) Mach. Learn , vol.297
    • Pedro, D.1    Pazzani, M.2
  • 15
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, Leo. Random Forests. Machine Learn. 45 (1), 5-32, 2001.
    • (2001) Machine Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 16
    • 0025725905 scopus 로고
    • Instance-Based Learning Algorithms
    • Aha, D. W., Kibler, D., and Albert, M. K. Instance-Based Learning Algorithms. Machine Learning 6, 1, 37-66, 1991.
    • (1991) Machine Learning , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.