-
2
-
-
33745561205
-
-
Guyou I., Elisseeff A., An introduction to variable and feature selection, J. of machine Learning Research 3:1157-1182, 2003.
-
Guyou I., Elisseeff A., An introduction to variable and feature selection, J. of machine Learning Research 3:1157-1182, 2003.
-
-
-
-
3
-
-
0036127473
-
Input feature selection for classification problems
-
Kwak N., Choi C., Input feature selection for classification problems, IEEE Trans. on Neural Networks, 13(1), 2002.
-
(2002)
IEEE Trans. on Neural Networks
, vol.13
, Issue.1
-
-
Kwak, N.1
Choi, C.2
-
4
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
Golub T., et al., Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science, 1, 1999.
-
(1999)
Science
, vol.1
-
-
Golub, T.1
-
5
-
-
32544442082
-
-
Springer
-
Deonier, Richard C., Tavare Simon, Waterman, Michael S., Computational Genome Analysis, An Introduction, Springer 2007.
-
(2007)
Computational Genome Analysis, An Introduction
-
-
Deonier, R.C.1
Simon, T.2
Waterman, M.S.3
-
6
-
-
70449424511
-
-
at Johns Hopkins, Researcher Pinpoint Genes Involved in Breast Cancer Growth, August, 2003
-
The Breast Center at Johns Hopkins, Researcher Pinpoint Genes Involved in Breast Cancer Growth, August, 2003 (http://www.hopkinsbreastcenter.org/artemis/ 200308/feature6.html),
-
The Breast Center
-
-
-
7
-
-
0038179900
-
Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer
-
C. D. Logsdon, D. M. Simeone, C. Binkley, T. Arumugam, J-K. Greenson, T. J. Giordano, D. E. Misek, and S. Hanash. Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Research, 63:2649-2657, 2003.
-
(2003)
Cancer Research
, vol.63
, pp. 2649-2657
-
-
Logsdon, C.D.1
Simeone, D.M.2
Binkley, C.3
Arumugam, T.4
Greenson, J.-K.5
Giordano, T.J.6
Misek, D.E.7
Hanash, S.8
-
8
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi, R. and John, G. H., Wrappers for feature subset selection. Artificial Intelligence, 97:1-2, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 1-2
-
-
Kohavi, R.1
John, G.H.2
-
10
-
-
7244248755
-
A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
-
Li T. et al., A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression, Bioinformatics, 20:2429-2437, 2004.
-
(2004)
Bioinformatics
, vol.20
, pp. 2429-2437
-
-
Li, T.1
-
11
-
-
0141990695
-
Theoretical and Empirical Analysis of ReliefF and RReliefF
-
Robnik-Šikonja, M. and Kononenko, I. 2003. Theoretical and Empirical Analysis of ReliefF and RReliefF. Mach. Learn. 53, 2003.
-
(2003)
Mach. Learn
, vol.53
-
-
Robnik-Šikonja, M.1
Kononenko, I.2
-
14
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
Pedro D. & Pazzani M., On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn., 297, 1997.
-
(1997)
Mach. Learn
, vol.297
-
-
Pedro, D.1
Pazzani, M.2
-
15
-
-
0035478854
-
Random Forests
-
Breiman, Leo. Random Forests. Machine Learn. 45 (1), 5-32, 2001.
-
(2001)
Machine Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
16
-
-
0025725905
-
Instance-Based Learning Algorithms
-
Aha, D. W., Kibler, D., and Albert, M. K. Instance-Based Learning Algorithms. Machine Learning 6, 1, 37-66, 1991.
-
(1991)
Machine Learning
, vol.6
, Issue.1
, pp. 37-66
-
-
Aha, D.W.1
Kibler, D.2
Albert, M.K.3
|