-
1
-
-
0016489671
-
Bone marrow regeneration after local injury: a review
-
Patt H.M., Maloney M.A. Bone marrow regeneration after local injury: a review. Exp. Hematol. 1975, 3:135-148.
-
(1975)
Exp. Hematol.
, vol.3
, pp. 135-148
-
-
Patt, H.M.1
Maloney, M.A.2
-
2
-
-
84989485234
-
The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells
-
Friedenstein A.J., Chailakhjan R.K., Lalykina K.S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970, 3:393-403.
-
(1970)
Cell Tissue Kinet.
, vol.3
, pp. 393-403
-
-
Friedenstein, A.J.1
Chailakhjan, R.K.2
Lalykina, K.S.3
-
3
-
-
0017573939
-
Regulation of haemopoietic stem cell proliferation in long term bone marrow cultures
-
Dexter T.M., Wright E.G., Krizsa F., Lajtha L.G. Regulation of haemopoietic stem cell proliferation in long term bone marrow cultures. Biomedicine/[publiee pour l'A.A.I.C.I.G.] 1977, 27:344-349.
-
(1977)
Biomedicine/[publiee pour l'A.A.I.C.I.G.]
, vol.27
, pp. 344-349
-
-
Dexter, T.M.1
Wright, E.G.2
Krizsa, F.3
Lajtha, L.G.4
-
4
-
-
0018102359
-
The relationship between the spleen colony-forming cell and the haemopoietic stem cell
-
Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978, 4:7-25.
-
(1978)
Blood Cells
, vol.4
, pp. 7-25
-
-
Schofield, R.1
-
5
-
-
0016822122
-
The relative spatial distributions of CFUs and CFUc in the normal mouse femur
-
Lord B.I., Testa N.G., Hendry J.H. The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 1975, 46:65-72.
-
(1975)
Blood
, vol.46
, pp. 65-72
-
-
Lord, B.I.1
Testa, N.G.2
Hendry, J.H.3
-
6
-
-
0017834345
-
Endosteal marrow: a rich source of hematopoietic stem cells
-
Gong J.K. Endosteal marrow: a rich source of hematopoietic stem cells. Science 1978, 199:1443-1445.
-
(1978)
Science
, vol.199
, pp. 1443-1445
-
-
Gong, J.K.1
-
7
-
-
0035871882
-
Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches
-
Nilsson S.K., Johnston H.M., Coverdale J.A. Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 2001, 97:2293-2299.
-
(2001)
Blood
, vol.97
, pp. 2293-2299
-
-
Nilsson, S.K.1
Johnston, H.M.2
Coverdale, J.A.3
-
8
-
-
0242268524
-
Osteoblastic cells regulate the haematopoietic stem cell niche
-
Calvi L.M., et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003, 425:841-846.
-
(2003)
Nature
, vol.425
, pp. 841-846
-
-
Calvi, L.M.1
-
9
-
-
0242363225
-
Identification of the haematopoietic stem cell niche and control of the niche size
-
Zhang J., et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003, 425:836-841.
-
(2003)
Nature
, vol.425
, pp. 836-841
-
-
Zhang, J.1
-
10
-
-
3242669145
-
Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche
-
Arai F., et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004, 118:149-161.
-
(2004)
Cell
, vol.118
, pp. 149-161
-
-
Arai, F.1
-
11
-
-
84961292224
-
Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting Angiopoietin-1
-
Zhou B.O., Ding L., Morrison S.J. Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting Angiopoietin-1. eLife 2015, 4:e05521. 10.7554/eLife.05521.
-
(2015)
eLife
, vol.4
, pp. e05521
-
-
Zhou, B.O.1
Ding, L.2
Morrison, S.J.3
-
12
-
-
36748999351
-
Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche
-
Yoshihara H., et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 2007, 1:685-697. 10.1016/j.stem.2007.10.020.
-
(2007)
Cell Stem Cell
, vol.1
, pp. 685-697
-
-
Yoshihara, H.1
-
13
-
-
84909999815
-
Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin
-
Nakamura-Ishizu A., Takubo K., Fujioka M., Suda T. Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin. Biochem. Biophys. Res. Commun. 2014, 454:353-357. 10.1016/j.bbrc.2014.10.095.
-
(2014)
Biochem. Biophys. Res. Commun.
, vol.454
, pp. 353-357
-
-
Nakamura-Ishizu, A.1
Takubo, K.2
Fujioka, M.3
Suda, T.4
-
14
-
-
0029758113
-
Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1
-
Nagasawa T., et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996, 382:635-638.
-
(1996)
Nature
, vol.382
, pp. 635-638
-
-
Nagasawa, T.1
-
15
-
-
77955646193
-
Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
-
Mendez-Ferrer S., et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010, 466:829-834. 10.1038/nature09262.
-
(2010)
Nature
, vol.466
, pp. 829-834
-
-
Mendez-Ferrer, S.1
-
16
-
-
33845445939
-
Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches
-
Sugiyama T., Kohara H., Noda M., Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006, 25:977-988.
-
(2006)
Immunity
, vol.25
, pp. 977-988
-
-
Sugiyama, T.1
Kohara, H.2
Noda, M.3
Nagasawa, T.4
-
17
-
-
77957020167
-
The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche
-
Omatsu Y., et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 2010, 33:387-399. S1074-7613(10)00322-5 [pii]. 10.1016/j.immuni.2010.08.017.
-
(2010)
Immunity
, vol.33
, pp. 387-399
-
-
Omatsu, Y.1
-
18
-
-
84874997081
-
CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance
-
Greenbaum A., et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 2013, 495:227-230. 10.1038/nature11926.
-
(2013)
Nature
, vol.495
, pp. 227-230
-
-
Greenbaum, A.1
-
19
-
-
84875000886
-
Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
-
Ding L., Morrison S.J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 2013, 495:231-235. 10.1038/nature11885.
-
(2013)
Nature
, vol.495
, pp. 231-235
-
-
Ding, L.1
Morrison, S.J.2
-
20
-
-
84856147560
-
Endothelial and perivascular cells maintain haematopoietic stem cells
-
Ding L., Saunders T.L., Enikolopov G., Morrison S.J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 2012, 481:457-462. 10.1038/nature10783.
-
(2012)
Nature
, vol.481
, pp. 457-462
-
-
Ding, L.1
Saunders, T.L.2
Enikolopov, G.3
Morrison, S.J.4
-
21
-
-
84886947010
-
Arteriolar niches maintain haematopoietic stem cell quiescence
-
Kunisaki Y., et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 2013, 502:637-643. 10.1038/nature12612.
-
(2013)
Nature
, vol.502
, pp. 637-643
-
-
Kunisaki, Y.1
-
22
-
-
84905861462
-
Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow
-
Zhou B.O., Yue R., Murphy M.M., Peyer G., Morrison S. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 2014, 10.1016/j.stem.2014.06.008.
-
(2014)
Cell Stem Cell
-
-
Zhou, B.O.1
Yue, R.2
Murphy, M.M.3
Peyer, G.4
Morrison, S.5
-
23
-
-
35348921682
-
Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment
-
Sacchetti B., et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 2007, 131:324-336.
-
(2007)
Cell
, vol.131
, pp. 324-336
-
-
Sacchetti, B.1
-
24
-
-
84879452147
-
Perivascular support of human hematopoietic stem/progenitor cells
-
Corselli M., et al. Perivascular support of human hematopoietic stem/progenitor cells. Blood 2013, 121:2891-2901. 10.1182/blood-2012-08-451864.
-
(2013)
Blood
, vol.121
, pp. 2891-2901
-
-
Corselli, M.1
-
25
-
-
84878530991
-
Self-renewing human bone marrow mesenspheres promote hematopoietic stem cell expansion
-
Isern J., et al. Self-renewing human bone marrow mesenspheres promote hematopoietic stem cell expansion. Cell Rep. 2013, 3:1714-1724. 10.1016/j.celrep.2013.03.041.
-
(2013)
Cell Rep.
, vol.3
, pp. 1714-1724
-
-
Isern, J.1
-
26
-
-
84880652108
-
PDGFRalpha and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion
-
Pinho S., et al. PDGFRalpha and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J. Exp. Med. 2013, 210:1351-1367. 10.1084/jem.20122252.
-
(2013)
J. Exp. Med.
, vol.210
, pp. 1351-1367
-
-
Pinho, S.1
-
27
-
-
84920502326
-
Low/negative expression of PDGFR-alpha identifies the candidate primary mesenchymal stromal cells in adult human bone marrow
-
Li H., et al. Low/negative expression of PDGFR-alpha identifies the candidate primary mesenchymal stromal cells in adult human bone marrow. Stem Cell Rep. 2014, 3:965-974. 10.1016/j.stemcr.2014.09.018.
-
(2014)
Stem Cell Rep.
, vol.3
, pp. 965-974
-
-
Li, H.1
-
28
-
-
0033977382
-
Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy
-
Koc O.N., et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J. Clin. Oncol. 2000, 18:307-316.
-
(2000)
J. Clin. Oncol.
, vol.18
, pp. 307-316
-
-
Koc, O.N.1
-
29
-
-
11144356832
-
Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment
-
Bensidhoum M., et al. Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood 2004, 103:3313-3319. 10.1182/blood-2003-04-1121.
-
(2004)
Blood
, vol.103
, pp. 3313-3319
-
-
Bensidhoum, M.1
-
30
-
-
33344478513
-
Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment
-
Muguruma Y., et al. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood 2006, 107:1878-1887. 10.1182/blood-2005-06-2211.
-
(2006)
Blood
, vol.107
, pp. 1878-1887
-
-
Muguruma, Y.1
-
31
-
-
34447639255
-
Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells
-
Le Blanc K., et al. Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia 2007, 21:1733-1738. 10.1038/sj.leu.2404777.
-
(2007)
Leukemia
, vol.21
, pp. 1733-1738
-
-
Le Blanc, K.1
-
32
-
-
79959327133
-
Guanine nucleotide exchange factor Vav1 regulates perivascular homing and bone marrow retention of hematopoietic stem and progenitor cells
-
pii: 1102018108
-
Sanchez-Aguilera A., et al. Guanine nucleotide exchange factor Vav1 regulates perivascular homing and bone marrow retention of hematopoietic stem and progenitor cells. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:9607-9612. 1102018108 [pii]. 10.1073/pnas.1102018108.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 9607-9612
-
-
Sanchez-Aguilera, A.1
-
33
-
-
84949631400
-
Perivascular deletion of murine Rac reverses the ratio of marrow arterioles and sinusoid vessels and alters hematopoiesis in vivo
-
Ciuculescu M.F., et al. Perivascular deletion of murine Rac reverses the ratio of marrow arterioles and sinusoid vessels and alters hematopoiesis in vivo. Blood 2015, 125:3105-3113. 10.1182/blood-2014-10-604892.
-
(2015)
Blood
, vol.125
, pp. 3105-3113
-
-
Ciuculescu, M.F.1
-
34
-
-
65549159488
-
Haematopoietic stem cells depend on Galpha(s)-mediated signalling to engraft bone marrow
-
Adams G.B., et al. Haematopoietic stem cells depend on Galpha(s)-mediated signalling to engraft bone marrow. Nature 2009.
-
(2009)
Nature
-
-
Adams, G.B.1
-
35
-
-
84868581981
-
Activated Gs signaling in osteoblastic cells alters the hematopoietic stem cell niche in mice
-
Schepers K., Hsiao E.C., Garg T., Scott M.J., Passegue E. Activated Gs signaling in osteoblastic cells alters the hematopoietic stem cell niche in mice. Blood 2012, 120:3425-3435. 10.1182/blood-2011-11-395418.
-
(2012)
Blood
, vol.120
, pp. 3425-3435
-
-
Schepers, K.1
Hsiao, E.C.2
Garg, T.3
Scott, M.J.4
Passegue, E.5
-
36
-
-
0037737728
-
A role for Wnt signalling in self-renewal of haematopoietic stem cells
-
Reya T., et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003, 423:409-414.
-
(2003)
Nature
, vol.423
, pp. 409-414
-
-
Reya, T.1
-
37
-
-
84888021623
-
A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing
-
Florian M.C., et al. A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature 2013, 503:392-396. 10.1038/nature12631.
-
(2013)
Nature
, vol.503
, pp. 392-396
-
-
Florian, M.C.1
-
38
-
-
80052688882
-
The critical role of agrin in the hematopoietic stem cell niche
-
Mazzon C., et al. The critical role of agrin in the hematopoietic stem cell niche. Blood 2011, 118:2733-2742. 10.1182/blood-2011-01-331272.
-
(2011)
Blood
, vol.118
, pp. 2733-2742
-
-
Mazzon, C.1
-
39
-
-
33847657159
-
Human mesenchymal stromal cells regulate initial self-renewing divisions of hematopoietic progenitor cells by a beta1-integrin-dependent mechanism
-
Gottschling S., et al. Human mesenchymal stromal cells regulate initial self-renewing divisions of hematopoietic progenitor cells by a beta1-integrin-dependent mechanism. Stem Cells 2007, 25:798-806. 10.1634/stemcells 2006-0513.
-
(2007)
Stem Cells
, vol.25
, pp. 798-806
-
-
Gottschling, S.1
-
40
-
-
58149250287
-
Detection of functional haematopoietic stem cell niche using real-time imaging
-
pii: nature07639
-
Xie Y., et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 2009, 457:97-101. nature07639[pii]. 10.1038/nature07639.
-
(2009)
Nature
, vol.457
, pp. 97-101
-
-
Xie, Y.1
-
41
-
-
59249094358
-
Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance
-
Kiel M.J., Acar M., Radice G.L., Morrison S.J. Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell 2009, 4:170-179. S1934-5909(08)528-6[pii]. 10.1016/j.stem.2008.10.005.
-
(2009)
Cell Stem Cell
, vol.4
, pp. 170-179
-
-
Kiel, M.J.1
Acar, M.2
Radice, G.L.3
Morrison, S.J.4
-
42
-
-
0032925228
-
Adhesion molecules involved in the interactions between early T cells and mesenchymal bone marrow stromal cells
-
Barda-Saad M., et al. Adhesion molecules involved in the interactions between early T cells and mesenchymal bone marrow stromal cells. Exp. Hematol. 1999, 27:834-844.
-
(1999)
Exp. Hematol.
, vol.27
, pp. 834-844
-
-
Barda-Saad, M.1
-
43
-
-
0038806506
-
The mesenchymal stroma negatively regulates B cell lymphopoiesis through the expression of activin A
-
Shoham T., Parameswaran R., Shav-Tal Y., Barda-Saad M., Zipori D. The mesenchymal stroma negatively regulates B cell lymphopoiesis through the expression of activin A. Ann. N. Y. Acad. Sci. 2003, 996:245-260.
-
(2003)
Ann. N. Y. Acad. Sci.
, vol.996
, pp. 245-260
-
-
Shoham, T.1
Parameswaran, R.2
Shav-Tal, Y.3
Barda-Saad, M.4
Zipori, D.5
-
44
-
-
42249083035
-
Regulation of human B lymphopoiesis by the transforming growth factor-beta superfamily in a newly established coculture system using human mesenchymal stem cells as a supportive microenvironment
-
Ichii M., et al. Regulation of human B lymphopoiesis by the transforming growth factor-beta superfamily in a newly established coculture system using human mesenchymal stem cells as a supportive microenvironment. Exp. Hematol. 2008, 36:587-597. 10.1016/j.exphem.2007.12.013.
-
(2008)
Exp. Hematol.
, vol.36
, pp. 587-597
-
-
Ichii, M.1
-
45
-
-
34247332650
-
Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells
-
Zhu J., et al. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 2007, 109:3706-3712.
-
(2007)
Blood
, vol.109
, pp. 3706-3712
-
-
Zhu, J.1
-
46
-
-
84944555458
-
Granulocyte colony-stimulating factor reprograms bone marrow stromal cells to actively suppress B lymphopoiesis in mice
-
Day R.B., Bhattacharya D., Nagasawa T., Link D.C. Granulocyte colony-stimulating factor reprograms bone marrow stromal cells to actively suppress B lymphopoiesis in mice. Blood 2015, 125:3114-3117. 10.1182/blood-2015-02-629444.
-
(2015)
Blood
, vol.125
, pp. 3114-3117
-
-
Day, R.B.1
Bhattacharya, D.2
Nagasawa, T.3
Link, D.C.4
-
47
-
-
0028274877
-
Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor
-
Taichman R.S., Emerson S.G. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J. Exp. Med. 1994, 179:1677-1682.
-
(1994)
J. Exp. Med.
, vol.179
, pp. 1677-1682
-
-
Taichman, R.S.1
Emerson, S.G.2
-
48
-
-
0037562968
-
Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice
-
Angelopoulou M., et al. Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Exp. Hematol. 2003, 31:413-420.
-
(2003)
Exp. Hematol.
, vol.31
, pp. 413-420
-
-
Angelopoulou, M.1
-
49
-
-
55049099890
-
The myelopoietic supportive capacity of mesenchymal stromal cells is uncoupled from multipotency and is influenced by lineage determination and interference with glycosylation
-
Morad V., et al. The myelopoietic supportive capacity of mesenchymal stromal cells is uncoupled from multipotency and is influenced by lineage determination and interference with glycosylation. Stem Cells 2008, 26:2275-2286. 10.1634/stemcells.2007-0518.
-
(2008)
Stem Cells
, vol.26
, pp. 2275-2286
-
-
Morad, V.1
-
50
-
-
84897996038
-
Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells
-
Schurch C.M., Riether C., Ochsenbein A.F. Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell 2014, 14:460-472. 10.1016/j.stem.2014.01.002.
-
(2014)
Cell Stem Cell
, vol.14
, pp. 460-472
-
-
Schurch, C.M.1
Riether, C.2
Ochsenbein, A.F.3
-
51
-
-
0037306462
-
Constitutive overexpression of IL-5 induces extramedullary hematopoiesis in the spleen
-
Khaldoyanidi S., Sikora L., Broide D.H., Rothenberg M.E., Sriramarao P. Constitutive overexpression of IL-5 induces extramedullary hematopoiesis in the spleen. Blood 2003, 101:863-868. 10.1182/blood-2002-03-0735.
-
(2003)
Blood
, vol.101
, pp. 863-868
-
-
Khaldoyanidi, S.1
Sikora, L.2
Broide, D.H.3
Rothenberg, M.E.4
Sriramarao, P.5
-
52
-
-
84861524484
-
Human extramedullary bone marrow in mice: a novel in vivo model of genetically controlled hematopoietic microenvironment
-
Chen Y., et al. Human extramedullary bone marrow in mice: a novel in vivo model of genetically controlled hematopoietic microenvironment. Blood 2012, 119:4971-4980. 10.1182/blood-2011-11-389957.
-
(2012)
Blood
, vol.119
, pp. 4971-4980
-
-
Chen, Y.1
-
53
-
-
20144363192
-
Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders
-
Baxter E.J., et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005, 365:1054-1061. 10.1016/S0140-6736(05)71142-9.
-
(2005)
Lancet
, vol.365
, pp. 1054-1061
-
-
Baxter, E.J.1
-
54
-
-
17844383458
-
A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera
-
James C., et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005, 434:1144-1148. 10.1038/nature03546.
-
(2005)
Nature
, vol.434
, pp. 1144-1148
-
-
James, C.1
-
55
-
-
20244369569
-
Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis
-
Levine R.L., et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005, 7:387-397. 10.1016/j.ccr.2005.03.023.
-
(2005)
Cancer Cell
, vol.7
, pp. 387-397
-
-
Levine, R.L.1
-
56
-
-
17644424955
-
A gain-of-function mutation of JAK2 in myeloproliferative disorders
-
Kralovics R., et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 2005, 352:1779-1790. 10.1056/NEJMoa051113.
-
(2005)
N. Engl. J. Med.
, vol.352
, pp. 1779-1790
-
-
Kralovics, R.1
-
57
-
-
33750534561
-
MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients
-
Pardanani A.D., et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006, 108:3472-3476. 10.1182/blood-2006-04-018879.
-
(2006)
Blood
, vol.108
, pp. 3472-3476
-
-
Pardanani, A.D.1
-
58
-
-
84890372480
-
Somatic mutations of calreticulin in myeloproliferative neoplasms
-
Klampfl T., et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N. Engl. J. Med. 2013, 369:2379-2390. 10.1056/NEJMoa1311347.
-
(2013)
N. Engl. J. Med.
, vol.369
, pp. 2379-2390
-
-
Klampfl, T.1
-
59
-
-
84890328032
-
Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2
-
Nangalia J., et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N. Engl. J. Med. 2013, 369:2391-2405. 10.1056/NEJMoa1312542.
-
(2013)
N. Engl. J. Med.
, vol.369
, pp. 2391-2405
-
-
Nangalia, J.1
-
60
-
-
79952075257
-
Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies
-
Tefferi A., Vainchenker W. Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J. Clin. Oncol. 2011, 29:573-582. 10.1200/JCO.2010.29.8711.
-
(2011)
J. Clin. Oncol.
, vol.29
, pp. 573-582
-
-
Tefferi, A.1
Vainchenker, W.2
-
61
-
-
35548934558
-
MLL translocations, histone modifications and leukaemia stem-cell development
-
Krivtsov A.V., Armstrong S.A. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer 2007, 7:823-833. 10.1038/nrc2253.
-
(2007)
Nat. Rev. Cancer
, vol.7
, pp. 823-833
-
-
Krivtsov, A.V.1
Armstrong, S.A.2
-
62
-
-
34250363611
-
Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment
-
Walkley C.R., Shea J.M., Sims N.A., Purton L.E., Orkin S.H. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 2007, 129:1081-1095. 10.1016/j.cell.2007.03.055.
-
(2007)
Cell
, vol.129
, pp. 1081-1095
-
-
Walkley, C.R.1
Shea, J.M.2
Sims, N.A.3
Purton, L.E.4
Orkin, S.H.5
-
63
-
-
34250331610
-
A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency
-
Walkley C.R., et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 2007, 129:1097-1110. 10.1016/j.cell.2007.05.014.
-
(2007)
Cell
, vol.129
, pp. 1097-1110
-
-
Walkley, C.R.1
-
64
-
-
58149388329
-
Defective Notch activation in microenvironment leads to myeloproliferative disease
-
Kim Y.W., et al. Defective Notch activation in microenvironment leads to myeloproliferative disease. Blood 2008, 112:4628-4638. 10.1182/blood-2008-03-148999.
-
(2008)
Blood
, vol.112
, pp. 4628-4638
-
-
Kim, Y.W.1
-
65
-
-
77950862042
-
Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia
-
pii: nature08851
-
Raaijmakers M.H., et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 2010, 464:852-857. nature08851[pii]. 10.1038/nature08851.
-
(2010)
Nature
, vol.464
, pp. 852-857
-
-
Raaijmakers, M.H.1
-
66
-
-
81555196340
-
Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts
-
Blau O., et al. Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. Blood 2011, 118:5583-5592. 10.1182/blood-2011-03-343467.
-
(2011)
Blood
, vol.118
, pp. 5583-5592
-
-
Blau, O.1
-
67
-
-
84929320581
-
Activated fibronectin-secretory phenotype of mesenchymal stromal cells in pre-fibrotic myeloproliferative neoplasms
-
Schneider R.K., et al. Activated fibronectin-secretory phenotype of mesenchymal stromal cells in pre-fibrotic myeloproliferative neoplasms. J. Hematol. Oncol. 2014, 7:92. 10.1186/s13045-014-0092-2.
-
(2014)
J. Hematol. Oncol.
, vol.7
, pp. 92
-
-
Schneider, R.K.1
-
68
-
-
77952906589
-
Pathological interactions between hematopoietic stem cells and their niche revealed by mouse models of primary myelofibrosis
-
Varricchio L., Mancini A., Migliaccio A.R. Pathological interactions between hematopoietic stem cells and their niche revealed by mouse models of primary myelofibrosis. Expert Rev. Hematol. 2009, 2:315-334. 10.1586/ehm.09.17.
-
(2009)
Expert Rev. Hematol.
, vol.2
, pp. 315-334
-
-
Varricchio, L.1
Mancini, A.2
Migliaccio, A.R.3
-
69
-
-
84886998745
-
Mesenchymal stromal cells from patients with myelodyplastic syndrome display distinct functional alterations that are modulated by lenalidomide
-
Ferrer R.A., et al. Mesenchymal stromal cells from patients with myelodyplastic syndrome display distinct functional alterations that are modulated by lenalidomide. Haematologica 2013, 98:1677-1685. 10.3324/haematol.2013.083972.
-
(2013)
Haematologica
, vol.98
, pp. 1677-1685
-
-
Ferrer, R.A.1
-
70
-
-
39649091183
-
Inappropriate Notch activity and limited mesenchymal stem cell plasticity in the bone marrow of patients with myelodysplastic syndromes
-
PAOR.2007.13.4.0311
-
Varga G., et al. Inappropriate Notch activity and limited mesenchymal stem cell plasticity in the bone marrow of patients with myelodysplastic syndromes. Pathol. Oncol. Res. 2007, 13:311-319. PAOR.2007.13.4.0311.
-
(2007)
Pathol. Oncol. Res.
, vol.13
, pp. 311-319
-
-
Varga, G.1
-
71
-
-
84989807613
-
Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration
-
Huang J.C., et al. Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration. Blood Cancer J. 2015, 5:e302. 10.1038/bcj.2015.17.
-
(2015)
Blood Cancer J.
, vol.5
, pp. e302
-
-
Huang, J.C.1
-
72
-
-
84893917461
-
Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts
-
Kode A., et al. Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature 2014, 506:240-244. 10.1038/nature12883.
-
(2014)
Nature
, vol.506
, pp. 240-244
-
-
Kode, A.1
-
73
-
-
84902200836
-
Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit
-
Medyouf H., et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell 2014, 14:824-837. 10.1016/j.stem.2014.02.014.
-
(2014)
Cell Stem Cell
, vol.14
, pp. 824-837
-
-
Medyouf, H.1
-
74
-
-
84865635864
-
Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow
-
Flores-Figueroa E., Varma S., Montgomery K., Greenberg P.L., Gratzinger D. Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow. Lab. Invest. 2012, 92:1330-1341. 10.1038/labinvest.2012.93.
-
(2012)
Lab. Invest.
, vol.92
, pp. 1330-1341
-
-
Flores-Figueroa, E.1
Varma, S.2
Montgomery, K.3
Greenberg, P.L.4
Gratzinger, D.5
-
75
-
-
84864744041
-
Impaired expression of DICER, DROSHA, SBDS and some microRNAs in mesenchymal stromal cells from myelodysplastic syndrome patients
-
Santamaria C., et al. Impaired expression of DICER, DROSHA, SBDS and some microRNAs in mesenchymal stromal cells from myelodysplastic syndrome patients. Haematologica 2012, 97:1218-1224. 10.3324/haematol.2011.054437.
-
(2012)
Haematologica
, vol.97
, pp. 1218-1224
-
-
Santamaria, C.1
-
76
-
-
79957923046
-
Bone marrow stroma-secreted cytokines protect JAK2(V617F)-mutated cells from the effects of a JAK2 inhibitor
-
Manshouri T., et al. Bone marrow stroma-secreted cytokines protect JAK2(V617F)-mutated cells from the effects of a JAK2 inhibitor. Cancer Res. 2011, 71:3831-3840. 10.1158/0008-5472CAN-10-4002.
-
(2011)
Cancer Res.
, vol.71
, pp. 3831-3840
-
-
Manshouri, T.1
-
77
-
-
77954215485
-
Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis
-
Vianello F., et al. Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica 2010, 95:1081-1089. 10.3324/haematol.2009.017178.
-
(2010)
Haematologica
, vol.95
, pp. 1081-1089
-
-
Vianello, F.1
-
78
-
-
38349086394
-
CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells
-
Jin L., et al. CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol. Cancer Ther. 2008, 7:48-58. 10.1158/1535-7163 MCT-07-0042.
-
(2008)
Mol. Cancer Ther.
, vol.7
, pp. 48-58
-
-
Jin, L.1
-
79
-
-
84876543495
-
Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-beta-catenin signaling
-
Zhang B., et al. Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-beta-catenin signaling. Blood 2013, 121:1824-1838. 10.1182/blood-2012-02-412890.
-
(2013)
Blood
, vol.121
, pp. 1824-1838
-
-
Zhang, B.1
-
80
-
-
79958732559
-
Loss or inhibition of stromal-derived PlGF prolongs survival of mice with imatinib-resistant Bcr-Abl1(+) leukemia
-
Schmidt T., et al. Loss or inhibition of stromal-derived PlGF prolongs survival of mice with imatinib-resistant Bcr-Abl1(+) leukemia. Cancer Cell 2011, 19:740-753. 10.1016/j.ccr.2011.05.007.
-
(2011)
Cancer Cell
, vol.19
, pp. 740-753
-
-
Schmidt, T.1
-
81
-
-
84859832491
-
Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia
-
Zhang B., et al. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell 2012, 21:577-592. 10.1016/j.ccr.2012.02.018.
-
(2012)
Cancer Cell
, vol.21
, pp. 577-592
-
-
Zhang, B.1
-
82
-
-
84925298525
-
JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response
-
Kleppe M., et al. JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discov. 2015, 5:316-331. 10.1158/2159-8290 CD-14-0736.
-
(2015)
Cancer Discov.
, vol.5
, pp. 316-331
-
-
Kleppe, M.1
-
83
-
-
84929145889
-
Treatment of chronic myelogenous leukemia by blocking cytokine alterations found in normal stem and progenitor cells
-
Welner R.S., et al. Treatment of chronic myelogenous leukemia by blocking cytokine alterations found in normal stem and progenitor cells. Cancer Cell 2015, 27:671-681. 10.1016/j.ccell.2015.04.004.
-
(2015)
Cancer Cell
, vol.27
, pp. 671-681
-
-
Welner, R.S.1
-
84
-
-
84888095625
-
MIP-1alpha/CCL3-mediated maintenance of leukemia-initiating cells in the initiation process of chronic myeloid leukemia
-
Baba T., et al. MIP-1alpha/CCL3-mediated maintenance of leukemia-initiating cells in the initiation process of chronic myeloid leukemia. J. Exp. Med. 2013, 210:2661-2673. 10.1084/jem.20130112.
-
(2013)
J. Exp. Med.
, vol.210
, pp. 2661-2673
-
-
Baba, T.1
-
85
-
-
84855858755
-
Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia
-
Frisch B.J., et al. Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood 2012, 119:540-550. 10.1182/blood-2011-04-348151.
-
(2012)
Blood
, vol.119
, pp. 540-550
-
-
Frisch, B.J.1
-
86
-
-
84919423731
-
Estrogen signaling selectively induces apoptosis of hematopoietic progenitors and myeloid neoplasms without harming steady-state hematopoiesis
-
Sanchez-Aguilera A., et al. Estrogen signaling selectively induces apoptosis of hematopoietic progenitors and myeloid neoplasms without harming steady-state hematopoiesis. Cell Stem Cell 2014, 15:791-804. 10.1016/j.stem.2014.11.002.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 791-804
-
-
Sanchez-Aguilera, A.1
-
87
-
-
84892702777
-
Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy
-
Nakada D., et al. Oestrogen increases haematopoietic stem-cell self-renewal in females and during pregnancy. Nature 2014, 505:555-558. 10.1038/nature12932.
-
(2014)
Nature
, vol.505
, pp. 555-558
-
-
Nakada, D.1
-
88
-
-
84884164883
-
Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche
-
Schepers K., et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 2013, 13:285-299. 10.1016/j.stem.2013.06.009.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 285-299
-
-
Schepers, K.1
-
89
-
-
31044450303
-
Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow
-
Katayama Y., et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006, 124:407-421.
-
(2006)
Cell
, vol.124
, pp. 407-421
-
-
Katayama, Y.1
-
90
-
-
34548777583
-
Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling
-
pii: ni1509
-
Spiegel A., et al. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat. Immunol. 2007, 8:1123-1131. ni1509[pii]. 10.1038/ni1509.
-
(2007)
Nat. Immunol.
, vol.8
, pp. 1123-1131
-
-
Spiegel, A.1
-
91
-
-
39749164920
-
Haematopoietic stem cell release is regulated by circadian oscillations
-
Mendez-Ferrer S., Lucas D., Battista M., Frenette P.S. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 2008, 452:442-447. 10.1038/nature06685.
-
(2008)
Nature
, vol.452
, pp. 442-447
-
-
Mendez-Ferrer, S.1
Lucas, D.2
Battista, M.3
Frenette, P.S.4
-
92
-
-
84905005330
-
Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms
-
Arranz L., et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 2014, 512:78-81. 10.1038/nature13383.
-
(2014)
Nature
, vol.512
, pp. 78-81
-
-
Arranz, L.1
-
93
-
-
84905741878
-
Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche
-
Hanoun M., et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 2014, 10.1016/j.stem.2014.06.020.
-
(2014)
Cell Stem Cell
-
-
Hanoun, M.1
-
94
-
-
80052674328
-
Differential niche and Wnt requirements during acute myeloid leukemia progression
-
Lane S.W., et al. Differential niche and Wnt requirements during acute myeloid leukemia progression. Blood 2011, 118:2849-2856. 10.1182/blood-2011-03-345165.
-
(2011)
Blood
, vol.118
, pp. 2849-2856
-
-
Lane, S.W.1
-
95
-
-
35948984135
-
Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region
-
Ishikawa F., et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat. Biotechnol. 2007, 25:1315-1321. 10.1038/nbt1350.
-
(2007)
Nat. Biotechnol.
, vol.25
, pp. 1315-1321
-
-
Ishikawa, F.1
-
96
-
-
34147153377
-
Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase
-
Iwamoto S., Mihara K., Downing J.R., Pui C.H., Campana D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J. Clin. Invest. 2007, 117:1049-1057. 10.1172/JCI30235.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 1049-1057
-
-
Iwamoto, S.1
Mihara, K.2
Downing, J.R.3
Pui, C.H.4
Campana, D.5
-
97
-
-
84920969887
-
Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche
-
Tamplin O.J., et al. Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche. Cell 2015, 160:241-252. 10.1016/j.cell.2014.12.032.
-
(2015)
Cell
, vol.160
, pp. 241-252
-
-
Tamplin, O.J.1
-
98
-
-
84863229757
-
Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration
-
Park D., et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 2012, 10:259-272. 10.1016/j.stem.2012.02.003.
-
(2012)
Cell Stem Cell
, vol.10
, pp. 259-272
-
-
Park, D.1
-
99
-
-
84921000919
-
Identification and specification of the mouse skeletal stem cell
-
Chan C.K., et al. Identification and specification of the mouse skeletal stem cell. Cell 2015, 160:285-298. 10.1016/j.cell.2014.12.002.
-
(2015)
Cell
, vol.160
, pp. 285-298
-
-
Chan, C.K.1
-
100
-
-
84924038121
-
Fundamental properties of unperturbed haematopoiesis from stem cells in vivo
-
Busch K., et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 2015, 518:542-546. 10.1038/nature14242.
-
(2015)
Nature
, vol.518
, pp. 542-546
-
-
Busch, K.1
|