메뉴 건너뛰기




Volumn 79, Issue 4, 2015, Pages 419-435

The Emergence of 2-Oxoglutarate as a Master Regulator Metabolite

Author keywords

[No Author keywords available]

Indexed keywords

2 OXOGLUTARIC ACID; ACETYL COENZYME A CARBOXYLASE; BACTERIAL PROTEIN; CARBOHYDRATE; CYCLIC AMP; NITROGEN REGULATORY PROTEIN; NITROGENASE; PHOSPHOTRANSFERASE; PROTEIN NIFA; PROTEIN NRPR; PROTEIN NTCA; REGULATOR PROTEIN; UNCLASSIFIED DRUG; ALPHA-KETOGLUTARIC ACID; CARBON; NITROGEN; PHOSPHOENOLPYRUVATE SUGAR PHOSPHOTRANSFERASE; TRANSCRIPTION FACTOR;

EID: 84948395539     PISSN: 10922172     EISSN: 10985557     Source Type: Journal    
DOI: 10.1128/MMBR.00038-15     Document Type: Review
Times cited : (204)

References (168)
  • 1
    • 33645878600 scopus 로고    scopus 로고
    • Regulatory links between carbon and nitrogen metabolism
    • Commichau FM, Forchhammer K, Stulke J. 2006. Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol 9:167-172. http://dx.doi.org/10.1016/j.mib.2006.01.001.
    • (2006) Curr Opin Microbiol , vol.9 , pp. 167-172
    • Commichau, F.M.1    Forchhammer, K.2    Stulke, J.3
  • 2
    • 22644436537 scopus 로고    scopus 로고
    • Mycobacteriumtuberculosisappearstolackalpha-ketoglutaratedehydrogenase and encodes pyruvate dehydrogenase in widely separated genes
    • Tian J, Bryk R, Shi S, Erdjument-Bromage H, Tempst P, Nathan C. 2005. Mycobacteriumtuberculosisappearstolackalpha-ketoglutaratedehydrogenase and encodes pyruvate dehydrogenase in widely separated genes. Mol Microbiol 57:859-868. http://dx.doi.org/10.1111/j.1365-2958.2005.04741.x.
    • (2005) Mol Microbiol , vol.57 , pp. 859-868
    • Tian, J.1    Bryk, R.2    Shi, S.3    Erdjument-Bromage, H.4    Tempst, P.5    Nathan, C.6
  • 3
    • 83755181765 scopus 로고    scopus 로고
    • The tricarboxylic acid cycle in cyanobacteria
    • Zhang S, Bryant DA. 2011. The tricarboxylic acid cycle in cyanobacteria. Science 334:1551-1553. http://dx.doi.org/10.1126/science.1210858.
    • (2011) Science , vol.334 , pp. 1551-1553
    • Zhang, S.1    Bryant, D.A.2
  • 4
    • 84918792766 scopus 로고    scopus 로고
    • The gamma-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp. PCC6803
    • Xiong W, Brune D, Vermaas WF. 2014. The gamma-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Mol Microbiol 93:786-796. http://dx.doi.org/10.1111/mmi .12699.
    • (2014) Mol Microbiol , vol.93 , pp. 786-796
    • Xiong, W.1    Brune, D.2    Vermaas, W.F.3
  • 5
    • 0242276682 scopus 로고    scopus 로고
    • Nitrogen assimilation and global regulation in Escherichia coli
    • Reitzer L. 2003. Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol 57:155-176. http://dx.doi.org/10.1146/annurev.micro.57.030502.090820.
    • (2003) Annu Rev Microbiol , vol.57 , pp. 155-176
    • Reitzer, L.1
  • 6
    • 0020400997 scopus 로고
    • Genetic control in nitrogen assimilation in bacteria
    • Magasanik B. 1982. Genetic control in nitrogen assimilation in bacteria. Annu Rev Genet 16:135-168. http://dx.doi.org/10.1146/annurev.ge.16 .120182.001031.
    • (1982) Annu Rev Genet , vol.16 , pp. 135-168
    • Magasanik, B.1
  • 7
    • 41049099764 scopus 로고    scopus 로고
    • Apparent negative co-operativity and substrate inhibition in overexpressed glutamate dehydrogenase from Escherichia coli
    • Sharkey MA, Engel PC. 2008. Apparent negative co-operativity and substrate inhibition in overexpressed glutamate dehydrogenase from Escherichia coli. FEMS Microbiol Lett 281:132-139. http://dx.doi.org/10 .1111/j.1574-6968.2008.01086.x.
    • (2008) FEMS Microbiol Lett , vol.281 , pp. 132-139
    • Sharkey, M.A.1    Engel, P.C.2
  • 8
    • 0027953668 scopus 로고
    • Kinetic and mutagenic studies of the role of the active site residues Asp-50 and Glu-327 of Escherichia coli glutamine synthetase
    • Alibhai M, Villafranca JJ. 1994. Kinetic and mutagenic studies of the role of the active site residues Asp-50 and Glu-327 of Escherichia coli glutamine synthetase. Biochemistry 33:682-686. http://dx.doi.org/10 .1021/bi00169a008.
    • (1994) Biochemistry , vol.33 , pp. 682-686
    • Alibhai, M.1    Villafranca, J.J.2
  • 10
    • 0017115904 scopus 로고
    • Glutamate synthase. Properties of the glutamine-dependent activity
    • Mantsala P, Zalkin H. 1976. Glutamate synthase. Properties of the glutamine-dependent activity. J Biol Chem 251:3294-3299.
    • (1976) J Biol Chem , vol.251 , pp. 3294-3299
    • Mantsala, P.1    Zalkin, H.2
  • 11
    • 0016658509 scopus 로고
    • Glutamate dehydrogenase from Escherichia coli: Induction, purification and properties of the enzyme
    • Veronese FM, Boccu E, Conventi L. 1975. Glutamate dehydrogenase from Escherichia coli: induction, purification and properties of the enzyme. Biochim Biophys Acta 377:217-228. http://dx.doi.org/10.1016/0005-2744(75)90304-6.
    • (1975) Biochim Biophys Acta , vol.377 , pp. 217-228
    • Veronese, F.M.1    Boccu, E.2    Conventi, L.3
  • 12
    • 50349092811 scopus 로고    scopus 로고
    • Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach
    • Bennett BD, Yuan J, Kimball EH, Rabinowitz JD. 2008. Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. Nat Protoc 3:1299-1311. http://dx.doi.org/10.1038/nprot.2008.107.
    • (2008) Nat Protoc , vol.3 , pp. 1299-1311
    • Bennett, B.D.1    Yuan, J.2    Kimball, E.H.3    Rabinowitz, J.D.4
  • 13
    • 82955178545 scopus 로고    scopus 로고
    • Overcoming fluctuation and leakage problems in the quantification of intracellular 2-oxoglutarate levels in Escherichia coli
    • Yan D, Lenz P, Hwa T. 2011. Overcoming fluctuation and leakage problems in the quantification of intracellular 2-oxoglutarate levels in Escherichia coli. Appl Environ Microbiol 77:6763-6771. http://dx.doi .org/10.1128/AEM.05257-11.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 6763-6771
    • Yan, D.1    Lenz, P.2    Hwa, T.3
  • 14
    • 34548023950 scopus 로고    scopus 로고
    • Acidic acetonitrile for cellular metabolome extraction from Escherichia coli
    • Rabinowitz JD, Kimball E. 2007. Acidic acetonitrile for cellular metabolome extraction from Escherichia coli. Anal Chem 79:6167-6173. http://dx.doi.org/10.1021/ac070470c.
    • (2007) Anal Chem , vol.79 , pp. 6167-6173
    • Rabinowitz, J.D.1    Kimball, E.2
  • 15
    • 0026409841 scopus 로고
    • Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo
    • Cayley S, Lewis BA, Guttman HJ, Record MT, Jr. 1991. Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo. J Mol Biol 222:281-300.
    • (1991) J Mol Biol , vol.222 , pp. 281-300
    • Cayley, S.1    Lewis, B.A.2    Guttman, H.J.3    Record, M.T.4
  • 16
    • 0016744341 scopus 로고
    • Regulation of nitrogen metabolism in Escherichia coli and Klebsiella aerogenes: Studies with the continuous culture technique
    • Senior PJ. 1975. Regulation of nitrogen metabolism in Escherichia coli and Klebsiella aerogenes: studies with the continuous culture technique. J Bacteriol 123:407.
    • (1975) J Bacteriol , vol.123 , pp. 407
    • Senior, P.J.1
  • 17
    • 0035025555 scopus 로고    scopus 로고
    • Role of Escherichia coli nitrogen regulatory genes in the nitrogen response of the Azotobacter vinelandii NifL-NifA complex
    • Reyes-Ramirez F, Little R, Dixon R. 2001. Role of Escherichia coli nitrogen regulatory genes in the nitrogen response of the Azotobacter vinelandii NifL-NifA complex. J Bacteriol 183:3076-3082. http://dx.doi .org/10.1128/JB.183.10.3076-3082.2001.
    • (2001) J Bacteriol , vol.183 , pp. 3076-3082
    • Reyes-Ramirez, F.1    Little, R.2    Dixon, R.3
  • 18
    • 77957281357 scopus 로고    scopus 로고
    • Control of AmtB-GlnK complex formation by intracellular levels of ATP, ADP, and 2-oxoglutarate
    • Radchenko MV, Thornton J, Merrick M. 2010. Control of AmtB-GlnK complex formation by intracellular levels of ATP, ADP, and 2-oxoglutarate. J Biol Chem 285:31037-31045. http://dx.doi.org/10.1074/jbc.M110 .153908.
    • (2010) J Biol Chem , vol.285 , pp. 31037-31045
    • Radchenko, M.V.1    Thornton, J.2    Merrick, M.3
  • 21
    • 84896510511 scopus 로고    scopus 로고
    • Quantification and mass isotopomer profiling of alpha-keto acids in central carbon metabolism
    • Zimmermann M, Sauer U, Zamboni N. 2014. Quantification and mass isotopomer profiling of alpha-keto acids in central carbon metabolism. Anal Chem 86:3232-3237. http://dx.doi.org/10.1021/ac500472c.
    • (2014) Anal Chem , vol.86 , pp. 3232-3237
    • Zimmermann, M.1    Sauer, U.2    Zamboni, N.3
  • 22
    • 84883555849 scopus 로고    scopus 로고
    • Quantitative monitoring of 2-oxoglutarate in Escherichia coli cells by a fluorescence resonance energy transferbased biosensor
    • Zhang C, Wei ZH, Ye BC. 2013. Quantitative monitoring of 2-oxoglutarate in Escherichia coli cells by a fluorescence resonance energy transferbased biosensor. Appl Microbiol Biotechnol 97:8307-8316. http://dx .doi.org/10.1007/s00253-013-5121-5.
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 8307-8316
    • Zhang, C.1    Wei, Z.H.2    Ye, B.C.3
  • 23
    • 84945213360 scopus 로고    scopus 로고
    • Fluorescence resonance energy transfer based on interaction of PII and PipX proteins provides a robust and specific biosensor for 2-oxoglutarate, a central metabolite and a signaling molecule
    • Chen HL, Bernard CS, Hubert P, My L, Zhang CC. 2013. Fluorescence resonance energy transfer based on interaction of PII and PipX proteins provides a robust and specific biosensor for 2-oxoglutarate, a central metabolite and a signaling molecule. FEBS J http://dx.doi.org/10.1111/j .1742-4658.2013.12702.x.24428626.
    • (2013) FEBS J
    • Chen, H.L.1    Bernard, C.S.2    Hubert, P.3    My, L.4    Zhang, C.C.5
  • 24
    • 84892561436 scopus 로고    scopus 로고
    • From PII signaling to metabolite sensing: A novel 2-oxoglutarate sensor that details PII-NAGK complex formation
    • Luddecke J, Forchhammer K. 2013. From PII signaling to metabolite sensing: A novel 2-oxoglutarate sensor that details PII-NAGK complex formation. PLoS One 8:e83181. http://dx.doi.org/10.1371/journal.pone .0083181.
    • (2013) PLoS One , vol.8 , pp. e83181
    • Luddecke, J.1    Forchhammer, K.2
  • 25
    • 20344368009 scopus 로고    scopus 로고
    • 2-Oxoglutarate and the PII homologues NifI1 and NifI2 regulate nitrogenase activity in cell extracts of Methanococcus maripaludis
    • Dodsworth JA, Cady NC, Leigh JA. 2005. 2-Oxoglutarate and the PII homologues NifI1 and NifI2 regulate nitrogenase activity in cell extracts of Methanococcus maripaludis. Mol Microbiol 56:1527-1538. http://dx .doi.org/10.1111/j.1365-2958.2005.04621.x.
    • (2005) Mol Microbiol , vol.56 , pp. 1527-1538
    • Dodsworth, J.A.1    Cady, N.C.2    Leigh, J.A.3
  • 26
    • 0035851149 scopus 로고    scopus 로고
    • Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels
    • Muro-Pastor MI, Reyes JC, Florencio FJ. 2001. Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. J Biol Chem 276:38320-38328.
    • (2001) J Biol Chem , vol.276 , pp. 38320-38328
    • Muro-Pastor, M.I.1    Reyes, J.C.2    Florencio, F.J.3
  • 27
    • 22244491018 scopus 로고    scopus 로고
    • Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC7120
    • Laurent S, Chen H, Bedu S, Ziarelli F, Peng L, Zhang CC. 2005. Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 102:9907-9912.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 9907-9912
    • Laurent, S.1    Chen, H.2    Bedu, S.3    Ziarelli, F.4    Peng, L.5    Zhang, C.C.6
  • 28
    • 17644375240 scopus 로고    scopus 로고
    • The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria
    • Sauer U, Eikmanns BJ. 2005. The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29:765-794. http://dx.doi.org/10.1016/j.femsre.2004.11.002.
    • (2005) FEMS Microbiol Rev , vol.29 , pp. 765-794
    • Sauer, U.1    Eikmanns, B.J.2
  • 29
    • 30744432855 scopus 로고    scopus 로고
    • Control of isocitrate dehydrogenase catalytic activity by protein phosphorylation in Escherichia coli
    • Cozzone AJ, El-Mansi M. 2005. Control of isocitrate dehydrogenase catalytic activity by protein phosphorylation in Escherichia coli. J Mol Microbiol Biotechnol 9:132-146. http://dx.doi.org/10.1159/000089642.
    • (2005) J Mol Microbiol Biotechnol , vol.9 , pp. 132-146
    • Cozzone, A.J.1    El-Mansi, M.2
  • 30
    • 0025875245 scopus 로고
    • Escherichia coli kgtP encodes an alphaketoglutarate transporter
    • Seol W, Shatkin AJ. 1991. Escherichia coli kgtP encodes an alphaketoglutarate transporter. Proc Natl Acad Sci U S A 88:3802-3806. http://dx.doi.org/10.1073/pnas.88.9.3802.
    • (1991) Proc Natl Acad Sci U S A , vol.88 , pp. 3802-3806
    • Seol, W.1    Shatkin, A.J.2
  • 31
    • 84887529883 scopus 로고    scopus 로고
    • A single fluorescent protein-based sensor for in vivo 2-oxogluatarate detection in cell
    • Zhang C, Ye BC. 2014. A single fluorescent protein-based sensor for in vivo 2-oxogluatarate detection in cell. Biosens Bioelectron 54:15-19. http://dx.doi.org/10.1016/j.bios.2013.10.038.
    • (2014) Biosens Bioelectron , vol.54 , pp. 15-19
    • Zhang, C.1    Ye, B.C.2
  • 32
    • 84866172975 scopus 로고    scopus 로고
    • Ketoglutarate transport protein KgtP is secreted through the type III secretion system and contributes to virulence in Xanthomonas oryzae pv. Oryzae
    • Guo W, Cai LL, Zou HS, Ma WX, Liu XL, Zou LF, Li YR, Chen XB, Chen GY. 2012. Ketoglutarate transport protein KgtP is secreted through the type III secretion system and contributes to virulence in Xanthomonas oryzae pv. oryzae. Appl Environ Microbiol 78:5672-5681. http://dx.doi.org/10.1128/AEM.07997-11.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 5672-5681
    • Guo, W.1    Cai, L.L.2    Zou, H.S.3    Ma, W.X.4    Liu, X.L.5    Zou, L.F.6    Li, Y.R.7    Chen, X.B.8    Chen, G.Y.9
  • 33
    • 84898613992 scopus 로고    scopus 로고
    • Environmental dependence of stationary-phase metabolism in Bacillus subtilis and Escherichia coli
    • Chubukov V, Sauer U. 2014. Environmental dependence of stationary-phase metabolism in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol 80:2901-2909. http://dx.doi.org/10.1128/AEM.00061-14.
    • (2014) Appl Environ Microbiol , vol.80 , pp. 2901-2909
    • Chubukov, V.1    Sauer, U.2
  • 34
    • 0016718064 scopus 로고
    • Cascade control of Escherichia coli glutamine synthetase. Properties of the PII regulatory protein and the uridylyltransferase-uridylyl-removing enzyme
    • Adler SP, Purich D, Stadtman ER. 1975. Cascade control of Escherichia coli glutamine synthetase. Properties of the PII regulatory protein and the uridylyltransferase-uridylyl-removing enzyme. J Biol Chem 250:6264-6272.
    • (1975) J Biol Chem , vol.250 , pp. 6264-6272
    • Adler, S.P.1    Purich, D.2    Stadtman, E.R.3
  • 35
    • 64949176032 scopus 로고    scopus 로고
    • The PII superfamily revised: A novel group and evolutionary insights
    • Sant'Anna F, Trentini D, Weber SD, Cecagno R, da Silva SC, Schrank I. 2009. The PII superfamily revised: A novel group and evolutionary insights. J Mol Evol 68:322-336. http://dx.doi.org/10.1007/s00239-009-9209-6.
    • (2009) J Mol Evol , vol.68 , pp. 322-336
    • Sant'Anna, F.1    Trentini, D.2    Weber, S.D.3    Cecagno, R.4    Da Silva, S.C.5    Schrank, I.6
  • 36
    • 84855233812 scopus 로고    scopus 로고
    • PII signal transduction proteins: Pivotal players in post-translational control of nitrogenase activity
    • Huergo LF, Pedrosa FO, Muller-Santos M, Chubatsu LS, Monteiro RA, Merrick M, Souza EM. 2012. PII signal transduction proteins: pivotal players in post-translational control of nitrogenase activity. Microbiology 158:176-190. http://dx.doi.org/10.1099/mic.0.049783-0.
    • (2012) Microbiology , vol.158 , pp. 176-190
    • Huergo, L.F.1    Pedrosa, F.O.2    Muller-Santos, M.3    Chubatsu, L.S.4    Monteiro, R.A.5    Merrick, M.6    Souza, E.M.7
  • 37
    • 84873303080 scopus 로고    scopus 로고
    • P(II) signal transduction proteins: Nitrogen regulation and beyond
    • Huergo LF, Chandra G, Merrick M. 2013. P(II) signal transduction proteins: nitrogen regulation and beyond. FEMS Microbiol Rev 37:251-283. http://dx.doi.org/10.1111/j.1574-6976.2012.00351.x.
    • (2013) FEMS Microbiol Rev , vol.37 , pp. 251-283
    • Huergo, L.F.1    Chandra, G.2    Merrick, M.3
  • 38
    • 77955495613 scopus 로고    scopus 로고
    • The network of P(II) signalling protein interactions in unicellular cyanobacteria
    • Forchhammer K. 2010. The network of P(II) signalling protein interactions in unicellular cyanobacteria. Adv Exp Med Biol 675:71-90. http://dx.doi.org/10.1007/978-1-4419-1528-3-5.
    • (2010) Adv Exp Med Biol , vol.675 , pp. 71-90
    • Forchhammer, K.1
  • 39
    • 73149108222 scopus 로고    scopus 로고
    • Sensation and signaling of alpha-ketoglutarate and adenylylate energy charge by the Escherichia coli PII signal transduction protein require cooperation of the three ligand-binding sites within the PII trimer
    • Jiang P, Ninfa AJ. 2009. Sensation and signaling of alpha-ketoglutarate and adenylylate energy charge by the Escherichia coli PII signal transduction protein require cooperation of the three ligand-binding sites within the PII trimer. Biochemistry 48:11522-11531. http://dx.doi.org/10.1021/bi9011594.
    • (2009) Biochemistry , vol.48 , pp. 11522-11531
    • Jiang, P.1    Ninfa, A.J.2
  • 40
    • 77954387101 scopus 로고    scopus 로고
    • A new P(II) protein structure identifies the 2-oxoglutarate binding site
    • Truan D, Huergo LF, Chubatsu LS, Merrick M, Li XD, Winkler FK. 2010. A new P(II) protein structure identifies the 2-oxoglutarate binding site. J Mol Biol 400:531-539. http://dx.doi.org/10.1016/j.jmb.2010.05.036.
    • (2010) J Mol Biol , vol.400 , pp. 531-539
    • Truan, D.1    Huergo, L.F.2    Chubatsu, L.S.3    Merrick, M.4    Li, X.D.5    Winkler, F.K.6
  • 41
    • 84904266526 scopus 로고    scopus 로고
    • Structure and thermodynamics of effector molecule binding to the nitrogen signal transduction PII protein GlnZ from Azospirillum brasilense
    • Truan D, Bjelic S, Li XD, Winkler FK. 2014. Structure and thermodynamics of effector molecule binding to the nitrogen signal transduction PII protein GlnZ from Azospirillum brasilense. J Mol Biol 426:2783-2799. http://dx.doi.org/10.1016/j.jmb.2014.05.008.
    • (2014) J Mol Biol , vol.426 , pp. 2783-2799
    • Truan, D.1    Bjelic, S.2    Li, X.D.3    Winkler, F.K.4
  • 42
    • 0032530304 scopus 로고    scopus 로고
    • Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its interaction with the PII protein
    • Jiang P, Peliska JA, Ninfa AJ. 1998. Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its interaction with the PII protein. Biochemistry 37:12782-12794. http://dx.doi.org/10.1021/bi980667m.
    • (1998) Biochemistry , vol.37 , pp. 12782-12794
    • Jiang, P.1    Peliska, J.A.2    Ninfa, A.J.3
  • 43
    • 36048991815 scopus 로고    scopus 로고
    • Escherichia coli PII signal transduction protein controlling nitrogen assimilation acts as a sensor of adenylate energy charge in vitro
    • Jiang P, Ninfa AJ. 2007. Escherichia coli PII signal transduction protein controlling nitrogen assimilation acts as a sensor of adenylate energy charge in vitro. Biochemistry 46:12979-12996. http://dx.doi.org/10.1021/bi701062t.
    • (2007) Biochemistry , vol.46 , pp. 12979-12996
    • Jiang, P.1    Ninfa, A.J.2
  • 44
    • 78650535041 scopus 로고    scopus 로고
    • Mechanism of 2-oxoglutarate signaling by the Synechococcus elongatus PII signal transduction protein
    • Fokina O, Chellamuthu VR, Forchhammer K, Zeth K. 2010. Mechanism of 2-oxoglutarate signaling by the Synechococcus elongatus PII signal transduction protein. Proc Natl Acad Sci U S A 107:19760-19765. http://dx.doi.org/10.1073/pnas.1007653107.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 19760-19765
    • Fokina, O.1    Chellamuthu, V.R.2    Forchhammer, K.3    Zeth, K.4
  • 45
    • 0037013219 scopus 로고    scopus 로고
    • Direct interaction of the NifL regulatory protein with the GlnK signal transducer enables the Azotobacter vinelandii NifL-NifA regulatory system to respond to conditions replete for nitrogen
    • Little R, Colombo V, Leech A, Dixon R. 2002. Direct interaction of the NifL regulatory protein with the GlnK signal transducer enables the Azotobacter vinelandii NifL-NifA regulatory system to respond to conditions replete for nitrogen. J Biol Chem 277:15472-15481. http://dx.doi.org/10 .1074/jbc.M112262200.
    • (2002) J Biol Chem , vol.277 , pp. 15472-15481
    • Little, R.1    Colombo, V.2    Leech, A.3    Dixon, R.4
  • 46
    • 84876218985 scopus 로고    scopus 로고
    • Mathematical model of the binding of allosteric effectors to the Escherichia coli PII signal transduction protein GlnB
    • da Rocha RA, Weschenfelder TA, de Castilhos F, de Souza EM, Huergo LF, Mitchell DA. 2013. Mathematical model of the binding of allosteric effectors to the Escherichia coli PII signal transduction protein GlnB. Biochemistry 52:2683-2693. http://dx.doi.org/10.1021/bi301659r.
    • (2013) Biochemistry , vol.52 , pp. 2683-2693
    • Da Rocha, R.A.1    Weschenfelder, T.A.2    De Castilhos, F.3    De Souza, E.M.4    Huergo, L.F.5    Mitchell, D.A.6
  • 48
    • 84881419702 scopus 로고    scopus 로고
    • PII signal transduction proteins are ATPases whose activity is regulated by 2-oxoglutarate
    • Radchenko MV, Thornton J, Merrick M. 2013. PII signal transduction proteins are ATPases whose activity is regulated by 2-oxoglutarate. Proc Natl Acad Sci U S A 110:12948-12953. http://dx.doi.org/10.1073/pnas .1304386110.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 12948-12953
    • Radchenko, M.V.1    Thornton, J.2    Merrick, M.3
  • 49
    • 84920659939 scopus 로고    scopus 로고
    • Post-translational modification of P II signal transduction proteins
    • Merrick M. 2014. Post-translational modification of P II signal transduction proteins. Front Microbiol 5:763. http://dx.doi.org/10.3389/fmicb.2014.00763.
    • (2014) Front Microbiol , vol.5 , pp. 763
    • Merrick, M.1
  • 50
    • 0032530281 scopus 로고    scopus 로고
    • The regulation of Escherichia coli glutamine synthetase revisited: Role of 2-ketoglutarate in the regulation of glutamine synthetase adenylylation state
    • Jiang P, Peliska JA, Ninfa AJ. 1998. The regulation of Escherichia coli glutamine synthetase revisited: role of 2-ketoglutarate in the regulation of glutamine synthetase adenylylation state. Biochemistry 37:12802-12810. http://dx.doi.org/10.1021/bi980666u.
    • (1998) Biochemistry , vol.37 , pp. 12802-12810
    • Jiang, P.1    Peliska, J.A.2    Ninfa, A.J.3
  • 51
    • 51149095176 scopus 로고    scopus 로고
    • Interaction of the signal transduction protein GlnJ with the cellular targets AmtB1, GlnE and GlnD in Rhodospirillum rubrum: Dependence on manganese, 2-oxoglutarate and the ADP/ATP ratio
    • Teixeira PF, Jonsson A, Frank M, Wang H, Nordlund S. 2008. Interaction of the signal transduction protein GlnJ with the cellular targets AmtB1, GlnE and GlnD in Rhodospirillum rubrum: dependence on manganese, 2-oxoglutarate and the ADP/ATP ratio. Microbiology 154: 2336-2347. http://dx.doi.org/10.1099/mic.0.2008/017533-0.
    • (2008) Microbiology , vol.154 , pp. 2336-2347
    • Teixeira, P.F.1    Jonsson, A.2    Frank, M.3    Wang, H.4    Nordlund, S.5
  • 52
    • 84866000515 scopus 로고    scopus 로고
    • Uridylylation of Herbaspirillum seropedicae GlnB and GlnK proteins is differentially affected by ATP, ADP and 2-oxoglutarate in vitro
    • Bonatto AC, Souza EM, Oliveira MA, Monteiro RA, Chubatsu LS, Huergo LF, Pedrosa FO. 2012. Uridylylation of Herbaspirillum seropedicae GlnB and GlnK proteins is differentially affected by ATP, ADP and 2-oxoglutarate in vitro. Arch Microbiol 194:643-652. http://dx.doi.org/10.1007/s00203-012-0799-9.
    • (2012) Arch Microbiol , vol.194 , pp. 643-652
    • Bonatto, A.C.1    Souza, E.M.2    Oliveira, M.A.3    Monteiro, R.A.4    Chubatsu, L.S.5    Huergo, L.F.6    Pedrosa, F.O.7
  • 53
    • 35448984675 scopus 로고    scopus 로고
    • Nitrogen regulation in bacteria and archaea
    • Leigh JA, Dodsworth JA. 2007. Nitrogen regulation in bacteria and archaea. Annu Rev Microbiol 61:349-377. http://dx.doi.org/10.1146/annurev.micro.61.080706.093409.
    • (2007) Annu Rev Microbiol , vol.61 , pp. 349-377
    • Leigh, J.A.1    Dodsworth, J.A.2
  • 54
    • 0037083882 scopus 로고    scopus 로고
    • Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB
    • Coutts G, Thomas G, Blakey D, Merrick M. 2002. Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB. EMBO J 21:536-545. http://dx.doi.org/10.1093/emboj/21 .4.536.
    • (2002) EMBO J , vol.21 , pp. 536-545
    • Coutts, G.1    Thomas, G.2    Blakey, D.3    Merrick, M.4
  • 55
    • 0032994344 scopus 로고    scopus 로고
    • Regulation of autophosphorylation of Escherichia coli nitrogen regulator II by the PII signal transduction protein
    • Jiang P, Ninfa AJ. 1999. Regulation of autophosphorylation of Escherichia coli nitrogen regulator II by the PII signal transduction protein. J Bacteriol 181:1906-1911.
    • (1999) J Bacteriol , vol.181 , pp. 1906-1911
    • Jiang, P.1    Ninfa, A.J.2
  • 56
    • 84924351946 scopus 로고    scopus 로고
    • The bacterial signal transduction protein GlnB regulates the committed step in fatty acid biosynthesis by acting as a dissociable regulatory subunit of acetyl-CoA carboxylase
    • Gerhardt EC, Rodrigues TE, Muller-Santos M, Pedrosa FO, Souza EM, Forchhammer K, Huergo LF. 2015. The bacterial signal transduction protein GlnB regulates the committed step in fatty acid biosynthesis by acting as a dissociable regulatory subunit of acetyl-CoA carboxylase. Mol Microbiol 95:1025-1035. http://dx.doi.org/10.1111/mmi.12912.
    • (2015) Mol Microbiol , vol.95 , pp. 1025-1035
    • Gerhardt, E.C.1    Rodrigues, T.E.2    Muller-Santos, M.3    Pedrosa, F.O.4    Souza, E.M.5    Forchhammer, K.6    Huergo, L.F.7
  • 57
    • 0036018143 scopus 로고    scopus 로고
    • Multi-subunit acetyl-CoA carboxylases
    • Cronan JE, Jr, Waldrop GL. 2002. Multi-subunit acetyl-CoA carboxylases. Prog Lipid Res 41:407-435. http://dx.doi.org/10.1016/S0163-7827 (02)00007-3.
    • (2002) Prog Lipid Res , vol.41 , pp. 407-435
    • Cronan, J.E.1    Waldrop, G.L.2
  • 58
    • 84873724816 scopus 로고    scopus 로고
    • Structure and function of biotin-dependent carboxylases
    • Tong L. 2013. Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci 70:863-891. http://dx.doi.org/10.1007/s00018-012-1096-0.
    • (2013) Cell Mol Life Sci , vol.70 , pp. 863-891
    • Tong, L.1
  • 59
    • 76249096491 scopus 로고    scopus 로고
    • Chloroplast acetyl-CoA carboxylase activity is 2-oxoglutarate-regulated by interaction of PII with the biotin carboxyl carrier subunit
    • Feria Bourrellier AB, Valot B, Guillot A, Ambard-Bretteville F, Vidal J, Hodges M. 2010. Chloroplast acetyl-CoA carboxylase activity is 2-oxoglutarate-regulated by interaction of PII with the biotin carboxyl carrier subunit. Proc Natl Acad Sci U S A 107:502-507. http://dx.doi.org/10.1073/pnas.0910097107.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 502-507
    • Feria Bourrellier, A.B.1    Valot, B.2    Guillot, A.3    Ambard-Bretteville, F.4    Vidal, J.5    Hodges, M.6
  • 60
    • 84893801140 scopus 로고    scopus 로고
    • Search for novel targets of the PII signal transduction protein in bacteria identifies the BCCP component of acetyl-CoA carboxylase as a PII binding partner
    • Rodrigues TE, Gerhardt EC, Oliveira MA, Chubatsu LS, Pedrosa FO, Souza EM, Souza GA, Muller-Santos M, Huergo LF. 2014. Search for novel targets of the PII signal transduction protein in bacteria identifies the BCCP component of acetyl-CoA carboxylase as a PII binding partner. Mol Microbiol 91:751-761. http://dx.doi.org/10.1111/mmi.12493.
    • (2014) Mol Microbiol , vol.91 , pp. 751-761
    • Rodrigues, T.E.1    Gerhardt, E.C.2    Oliveira, M.A.3    Chubatsu, L.S.4    Pedrosa, F.O.5    Souza, E.M.6    Souza, G.A.7    Muller-Santos, M.8    Huergo, L.F.9
  • 62
    • 4344704870 scopus 로고    scopus 로고
    • Genetic regulation of biological nitrogen fixation
    • Dixon R, Kahn D. 2004. Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621-631. http://dx.doi.org/10.1038/nrmicro954.
    • (2004) Nat Rev Microbiol , vol.2 , pp. 621-631
    • Dixon, R.1    Kahn, D.2
  • 63
    • 1642500165 scopus 로고    scopus 로고
    • The NifL-NifA system: A multidomain transcriptional regulatory complex that integrates environmental signals
    • Martinez-Argudo I, Little R, Shearer N, Johnson P, Dixon R. 2004. The NifL-NifA system: A multidomain transcriptional regulatory complex that integrates environmental signals. J Bacteriol 186:601-610. http://dx .doi.org/10.1128/JB.186.3.601-610.2004.
    • (2004) J Bacteriol , vol.186 , pp. 601-610
    • Martinez-Argudo, I.1    Little, R.2    Shearer, N.3    Johnson, P.4    Dixon, R.5
  • 64
    • 72949089271 scopus 로고    scopus 로고
    • Quaternary structure changes in a second Per-Arnt-Sim domain mediate intramolecular redox signal relay in the NifL regulatory protein
    • Slavny P, Little R, Salinas P, Clarke TA, Dixon R. 2010. Quaternary structure changes in a second Per-Arnt-Sim domain mediate intramolecular redox signal relay in the NifL regulatory protein. Mol Microbiol 75:61-75. http://dx.doi.org/10.1111/j.1365-2958.2009.06956.x.
    • (2010) Mol Microbiol , vol.75 , pp. 61-75
    • Slavny, P.1    Little, R.2    Salinas, P.3    Clarke, T.A.4    Dixon, R.5
  • 65
    • 80053229279 scopus 로고    scopus 로고
    • Substitutions in the redox-sensing PAS domain of the NifL regulatory protein define an inter-subunit pathway for redox signal transmission
    • Little R, Salinas P, Slavny P, Clarke TA, Dixon R. 2011. Substitutions in the redox-sensing PAS domain of the NifL regulatory protein define an inter-subunit pathway for redox signal transmission. Mol Microbiol 82:222-235. http://dx.doi.org/10.1111/j.1365-2958.2011.07812.x.
    • (2011) Mol Microbiol , vol.82 , pp. 222-235
    • Little, R.1    Salinas, P.2    Slavny, P.3    Clarke, T.A.4    Dixon, R.5
  • 66
    • 0036174645 scopus 로고    scopus 로고
    • Role of GlnK in NifL-mediated regulation of NifA activity in Azotobacter vinelandii
    • Rudnick P, Kunz C, Gunatilaka MK, Hines ER, Kennedy C. 2002. Role of GlnK in NifL-mediated regulation of NifA activity in Azotobacter vinelandii. J Bacteriol 184:812-820. http://dx.doi.org/10.1128/JB.184.3 .812-820.2002.
    • (2002) J Bacteriol , vol.184 , pp. 812-820
    • Rudnick, P.1    Kunz, C.2    Gunatilaka, M.K.3    Hines, E.R.4    Kennedy, C.5
  • 67
    • 0034669188 scopus 로고    scopus 로고
    • Signal transduction to the Azotobacter vinelandii NifL-NifA regulatory system is influenced directly by interaction with 2-oxoglutarate and the PII regulatory protein
    • Little R, Reyes-Ramirez F, Zhang Y, van Heeswijk WC, Dixon R. 2000. Signal transduction to the Azotobacter vinelandii NifL-NifA regulatory system is influenced directly by interaction with 2-oxoglutarate and the PII regulatory protein. EMBO J 19:6041-6050. http://dx.doi.org/10 .1093/emboj/19.22.6041.
    • (2000) EMBO J , vol.19 , pp. 6041-6050
    • Little, R.1    Reyes-Ramirez, F.2    Zhang, Y.3    Van Heeswijk, W.C.4    Dixon, R.5
  • 68
    • 0043209062 scopus 로고    scopus 로고
    • The amino-terminal GAF domain of Azotobacter vinelandii NifA binds 2-oxoglutarate to resist inhibition by NifL under nitrogen-limiting conditions
    • Little R, Dixon R. 2003. The amino-terminal GAF domain of Azotobacter vinelandii NifA binds 2-oxoglutarate to resist inhibition by NifL under nitrogen-limiting conditions. J Biol Chem 278:28711-28718. http://dx.doi.org/10.1074/jbc.M301992200.
    • (2003) J Biol Chem , vol.278 , pp. 28711-28718
    • Little, R.1    Dixon, R.2
  • 69
    • 13444249595 scopus 로고    scopus 로고
    • Mutational analysis of the nucleotide-binding domain of the anti-activator NifL
    • Perry S, Shearer N, Little R, Dixon R. 2005. Mutational analysis of the nucleotide-binding domain of the anti-activator NifL. J Mol Biol 346: 935-949. http://dx.doi.org/10.1016/j.jmb.2004.12.033.
    • (2005) J Mol Biol , vol.346 , pp. 935-949
    • Perry, S.1    Shearer, N.2    Little, R.3    Dixon, R.4
  • 70
    • 3042640724 scopus 로고    scopus 로고
    • Role of the amino-terminal GAF domain of the NifA activator in controlling the response to the antiactivator protein NifL
    • Martinez-Argudo I, Little R, Dixon R. 2004. Role of the amino-terminal GAF domain of the NifA activator in controlling the response to the antiactivator protein NifL. Mol Microbiol 52:1731-1744. http://dx.doi .org/10.1111/j.1365-2958.2004.04089.x.
    • (2004) Mol Microbiol , vol.52 , pp. 1731-1744
    • Martinez-Argudo, I.1    Little, R.2    Dixon, R.3
  • 71
    • 21544471853 scopus 로고    scopus 로고
    • Functional analysis of the GAF domain of NifA in Azospirillum brasilense: Effects of Tyr-Phe mutations on NifA and its interaction with GlnB
    • Chen S, Liu L, Zhou X, Elmerich C, Ji-Lun L. 2005. Functional analysis of the GAF domain of NifA in Azospirillum brasilense: effects of Tyr-Phe mutations on NifA and its interaction with GlnB. Mol Genet Genomics 273:415-422. http://dx.doi.org/10.1007/s00438-005-1146-5.
    • (2005) Mol Genet Genomics , vol.273 , pp. 415-422
    • Chen, S.1    Liu, L.2    Zhou, X.3    Elmerich, C.4    Ji-Lun, L.5
  • 72
    • 53449098214 scopus 로고    scopus 로고
    • Identification and functional characterization of NifA variants that are independent of GlnB activation in the photosynthetic bacterium Rhodospirillum rubrum
    • Zou X, Zhu Y, Pohlmann EL, Li J, Zhang Y, Roberts GP. 2008. Identification and functional characterization of NifA variants that are independent of GlnB activation in the photosynthetic bacterium Rhodospirillum rubrum. Microbiology 154:2689-2699. http://dx.doi.org/10 .1099/mic.0.2008/019406-0.
    • (2008) Microbiology , vol.154 , pp. 2689-2699
    • Zou, X.1    Zhu, Y.2    Pohlmann, E.L.3    Li, J.4    Zhang, Y.5    Roberts, G.P.6
  • 74
    • 0032587948 scopus 로고    scopus 로고
    • Azorhizobium caulinodans PII and GlnK proteins control nitrogen fixation and ammonia assimilation
    • Michel-Reydellet N, Kaminski PA. 1999. Azorhizobium caulinodans PII and GlnK proteins control nitrogen fixation and ammonia assimilation. J Bacteriol 181:2655-2658.
    • (1999) J Bacteriol , vol.181 , pp. 2655-2658
    • Michel-Reydellet, N.1    Kaminski, P.A.2
  • 75
    • 0042008057 scopus 로고    scopus 로고
    • Role of GlnB and GlnK in ammonium control of both nitrogenase systems in the phototrophic bacterium Rhodobacter capsulatus
    • Drepper T, Gross S, Yakunin AF, Hallenbeck PC, Masepohl B, Klipp W. 2003. Role of GlnB and GlnK in ammonium control of both nitrogenase systems in the phototrophic bacterium Rhodobacter capsulatus. Microbiology 149:2203-2212. http://dx.doi.org/10.1099/mic.0.26235-0.
    • (2003) Microbiology , vol.149 , pp. 2203-2212
    • Drepper, T.1    Gross, S.2    Yakunin, A.F.3    Hallenbeck, P.C.4    Masepohl, B.5    Klipp, W.6
  • 76
    • 0026643227 scopus 로고
    • NtcA, a global nitrogen regulator from the cyanobacterium Synechococcus that belongs to the Crp family of bacterial regulators
    • Vega-Palas MA, Flores E, Herrero A. 1992. NtcA, a global nitrogen regulator from the cyanobacterium Synechococcus that belongs to the Crp family of bacterial regulators. Mol Microbiol 6:1853-1859. http://dx.doi .org/10.1111/j.1365-2958.1992.tb01357.x.
    • (1992) Mol Microbiol , vol.6 , pp. 1853-1859
    • Vega-Palas, M.A.1    Flores, E.2    Herrero, A.3
  • 78
    • 84892405572 scopus 로고    scopus 로고
    • ChIP analysis unravels an exceptionally wide distribution of DNA binding sites for the NtcA transcription factor in a heterocyst-forming cyanobacterium
    • Picossi S, Flores E, Herrero A. 2014. ChIP analysis unravels an exceptionally wide distribution of DNA binding sites for the NtcA transcription factor in a heterocyst-forming cyanobacterium. BMC Genomics 15:22. http://dx.doi.org/10.1186/1471-2164-15-22.
    • (2014) BMC Genomics , vol.15 , pp. 22
    • Picossi, S.1    Flores, E.2    Herrero, A.3
  • 79
    • 0037007112 scopus 로고    scopus 로고
    • Transcriptional activation of NtcA-dependent promoters of Synechococcus sp. PCC7942 by 2-oxoglutarate in vitro
    • Tanigawa R, Shirokane M, Maeda SS, Omata T, Tanaka K, Takahashi H. 2002. Transcriptional activation of NtcA-dependent promoters of Synechococcus sp.PCC7942 by 2-oxoglutarate in vitro. Proc Natl Acad Sci U S A 99:4251-4255.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 4251-4255
    • Tanigawa, R.1    Shirokane, M.2    Maeda, S.S.3    Omata, T.4    Tanaka, K.5    Takahashi, H.6
  • 80
    • 0037070157 scopus 로고    scopus 로고
    • 2-Oxoglutarate increases the binding affinity of the NtcA (nitrogen control) transcription factor for the Synechococcus glnA promoter
    • Vazquez-Bermudez MF, Herrero A, Flores E. 2002. 2-Oxoglutarate increases the binding affinity of the NtcA (nitrogen control) transcription factor for the Synechococcus glnA promoter. FEBS Lett 512:71-74. http://dx.doi.org/10.1016/S0014-5793(02)02219-6.
    • (2002) FEBS Lett , vol.512 , pp. 71-74
    • Vazquez-Bermudez, M.F.1    Herrero, A.2    Flores, E.3
  • 81
    • 51549091583 scopus 로고    scopus 로고
    • Transcription activation by NtcA and 2-oxoglutarate of three genes involved in heterocyst differentiation in the cyanobacterium Anabaena sp. Strain PCC7120
    • Valladares A, Flores E, Herrero A. 2008. Transcription activation by NtcA and 2-oxoglutarate of three genes involved in heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 190:6126-6133. http://dx.doi.org/10.1128/JB.00787-08.
    • (2008) J Bacteriol , vol.190 , pp. 6126-6133
    • Valladares, A.1    Flores, E.2    Herrero, A.3
  • 82
    • 0035160868 scopus 로고    scopus 로고
    • Nitrogen control in cyanobacteria
    • Herrero A, Muro-Pastor AM, Flores E. 2001. Nitrogen control in cyanobacteria. J Bacteriol 183:411-425. http://dx.doi.org/10.1128/JB.183.2.411-425.2001.
    • (2001) J Bacteriol , vol.183 , pp. 411-425
    • Herrero, A.1    Muro-Pastor, A.M.2    Flores, E.3
  • 83
    • 84867061721 scopus 로고    scopus 로고
    • Activating transcription in bacteria
    • Lee DJ, Minchin SD, Busby SJ. 2012. Activating transcription in bacteria. Annu Rev Microbiol 66:125-152. http://dx.doi.org/10.1146/annurev-micro-092611-150012.
    • (2012) Annu Rev Microbiol , vol.66 , pp. 125-152
    • Lee, D.J.1    Minchin, S.D.2    Busby, S.J.3
  • 84
    • 77957268031 scopus 로고    scopus 로고
    • Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PII
    • Llacer JL, Espinosa J, Castells MA, Contreras A, Forchhammer K, Rubio V. 2010. Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PII. Proc Natl Acad Sci U S A 107: 15397-15402. http://dx.doi.org/10.1073/pnas.1007015107.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 15397-15402
    • Llacer, J.L.1    Espinosa, J.2    Castells, M.A.3    Contreras, A.4    Forchhammer, K.5    Rubio, V.6
  • 85
    • 77955446124 scopus 로고    scopus 로고
    • Structural basis for the allosteric control of the global transcription factor NtcA by the nitrogen starvation signal 2-oxoglutarate
    • Zhao MX, Jiang YL, He YX, Chen YF, Teng YB, Chen Y, Zhang CC, Zhou CZ. 2010. Structural basis for the allosteric control of the global transcription factor NtcA by the nitrogen starvation signal 2-oxoglutarate. Proc Natl Acad Sci U S A 107:12487-12492. http://dx.doi.org/10 .1073/pnas.1001556107.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 12487-12492
    • Zhao, M.X.1    Jiang, Y.L.2    He, Y.X.3    Chen, Y.F.4    Teng, Y.B.5    Chen, Y.6    Zhang, C.C.7    Zhou, C.Z.8
  • 86
    • 66349083528 scopus 로고    scopus 로고
    • Structural basis for cAMP-mediated allosteric control of the catabolite activator protein
    • Popovych N, Tzeng SR, Tonelli M, Ebright RH, Kalodimos CG. 2009. Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proc Natl Acad SciUSA106:6927-6932. http://dx.doi .org/10.1073/pnas.0900595106.
    • (2009) Proc Natl Acad SciUSA , vol.106 , pp. 6927-6932
    • Popovych, N.1    Tzeng, S.R.2    Tonelli, M.3    Ebright, R.H.4    Kalodimos, C.G.5
  • 87
    • 70349734666 scopus 로고    scopus 로고
    • Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding
    • Sharma H, Yu S, Kong J, Wang J, Steitz TA. 2009. Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding. Proc Natl Acad Sci U S A 106:16604-16609. http://dx.doi .org/10.1073/pnas.0908380106.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 16604-16609
    • Sharma, H.1    Yu, S.2    Kong, J.3    Wang, J.4    Steitz, T.A.5
  • 88
    • 84902657080 scopus 로고    scopus 로고
    • SPR analysis of promoter binding of Synechocystis PCC6803 transcription factors NtcA and CRP suggests cross-talk and sheds light on regulation by effector molecules
    • Forcada-Nadal A, Forchhammer K, Rubio V. 2014. SPR analysis of promoter binding of Synechocystis PCC6803 transcription factors NtcA and CRP suggests cross-talk and sheds light on regulation by effector molecules. FEBS Lett 588:2270-2276. http://dx.doi.org/10.1016/j.febslet .2014.05.010.
    • (2014) FEBS Lett , vol.588 , pp. 2270-2276
    • Forcada-Nadal, A.1    Forchhammer, K.2    Rubio, V.3
  • 90
    • 33748509737 scopus 로고    scopus 로고
    • Interaction network in cyanobacterial nitrogen regulation: PipX, a protein that interacts in a 2-oxoglutarate dependent manner with PII and NtcA
    • Espinosa J, Forchhammer K, Burillo S, Contreras A. 2006. Interaction network in cyanobacterial nitrogen regulation: PipX, a protein that interacts in a 2-oxoglutarate dependent manner with PII and NtcA. Mol Microbiol 61:457-469. http://dx.doi.org/10.1111/j.1365-2958.2006.05231.x.
    • (2006) Mol Microbiol , vol.61 , pp. 457-469
    • Espinosa, J.1    Forchhammer, K.2    Burillo, S.3    Contreras, A.4
  • 91
    • 2442657884 scopus 로고    scopus 로고
    • Interactions between the nitrogen signal transduction protein PII and N-acetyl glutamate kinase in organisms that perform oxygenic photosynthesis
    • Burillo S, Luque I, Fuentes I, Contreras A. 2004. Interactions between the nitrogen signal transduction protein PII and N-acetyl glutamate kinase in organisms that perform oxygenic photosynthesis. J Bacteriol 186: 3346-3354. http://dx.doi.org/10.1128/JB.186.11.3346-3354.2004.
    • (2004) J Bacteriol , vol.186 , pp. 3346-3354
    • Burillo, S.1    Luque, I.2    Fuentes, I.3    Contreras, A.4
  • 92
    • 84897470667 scopus 로고    scopus 로고
    • Structural basis and targetspecific modulation of ADP sensing by the Synechococcus elongatus PII signaling protein
    • Zeth K, Fokina O, Forchhammer K. 2014. Structural basis and targetspecific modulation of ADP sensing by the Synechococcus elongatus PII signaling protein. J Biol Chem 289:8960-8972. http://dx.doi.org/10 .1074/jbc.M113.536557.
    • (2014) J Biol Chem , vol.289 , pp. 8960-8972
    • Zeth, K.1    Fokina, O.2    Forchhammer, K.3
  • 93
    • 33947367418 scopus 로고    scopus 로고
    • Role of the Synechococcus PCC 7942 nitrogen regulator protein PipX in NtcA-controlled processes
    • Espinosa J, Forchhammer K, Contreras A. 2007. Role of the Synechococcus PCC 7942 nitrogen regulator protein PipX in NtcA-controlled processes. Microbiology 153:711-718. http://dx.doi.org/10.1099/mic.0.2006/003574-0.
    • (2007) Microbiology , vol.153 , pp. 711-718
    • Espinosa, J.1    Forchhammer, K.2    Contreras, A.3
  • 94
    • 77956895972 scopus 로고    scopus 로고
    • Crystal structure of the cyanobacterial signal transduction protein PII in complex with PipX
    • Zhao MX, Jiang YL, Xu BY, Chen Y, Zhang CC, Zhou CZ. 2010. Crystal structure of the cyanobacterial signal transduction protein PII in complex with PipX. J Mol Biol 402:552-559. http://dx.doi.org/10.1016/j .jmb.2010.08.006.
    • (2010) J Mol Biol , vol.402 , pp. 552-559
    • Zhao, M.X.1    Jiang, Y.L.2    Xu, B.Y.3    Chen, Y.4    Zhang, C.C.5    Zhou, C.Z.6
  • 95
    • 0037221867 scopus 로고    scopus 로고
    • A novel repressor of nif and glnA expression in the methanogenic archaeon Methanococcus maripaludis
    • Lie TJ, Leigh JA. 2003. A novel repressor of nif and glnA expression in the methanogenic archaeon Methanococcus maripaludis. Mol Microbiol 47: 235-246.
    • (2003) Mol Microbiol , vol.47 , pp. 235-246
    • Lie, T.J.1    Leigh, J.A.2
  • 96
    • 14044255851 scopus 로고    scopus 로고
    • Regulation of nif expression in Methanococcus maripaludis: Roles of the euryarchaeal repressor NrpR, 2-oxoglutarate, and two operators
    • Lie TJ, Wood GE, Leigh JA. 2005. Regulation of nif expression in Methanococcus maripaludis: roles of the euryarchaeal repressor NrpR, 2-oxoglutarate, and two operators. J Biol Chem 280:5236-5241. http://dx.doi.org/10.1074/jbc.M411778200.
    • (2005) J Biol Chem , vol.280 , pp. 5236-5241
    • Lie, T.J.1    Wood, G.E.2    Leigh, J.A.3
  • 97
    • 34249023906 scopus 로고    scopus 로고
    • Diverse homologues of the archaeal repressor NrpR function similarly in nitrogen regulation
    • Lie TJ, Dodsworth JA, Nickle DC, Leigh JA. 2007. Diverse homologues of the archaeal repressor NrpR function similarly in nitrogen regulation. FEMS Microbiol Lett 271:281-288. http://dx.doi.org/10.1111/j.1574-6968.2007.00726.x.
    • (2007) FEMS Microbiol Lett , vol.271 , pp. 281-288
    • Lie, T.J.1    Dodsworth, J.A.2    Nickle, D.C.3    Leigh, J.A.4
  • 98
    • 49749117821 scopus 로고    scopus 로고
    • Insights into the NrpR regulon in Methanosarcina mazei Go1
    • Weidenbach K, Ehlers C, Kock J, Ehrenreich A, Schmitz RA. 2008. Insights into the NrpR regulon in Methanosarcina mazei Go1. Arch Microbiol 190:319-332. http://dx.doi.org/10.1007/s00203-008-0369-3.
    • (2008) Arch Microbiol , vol.190 , pp. 319-332
    • Weidenbach, K.1    Ehlers, C.2    Kock, J.3    Ehrenreich, A.4    Schmitz, R.A.5
  • 99
    • 79952113624 scopus 로고    scopus 로고
    • NrpRII mediates contacts between NrpRI and general transcription factors in the archaeon Methanosarcina mazei Go1
    • Weidenbach K, Ehlers C, Kock J, Schmitz RA. 2010. NrpRII mediates contacts between NrpRI and general transcription factors in the archaeon Methanosarcina mazei Go1. FEBS J 277:4398-4411. http://dx.doi .org/10.1111/j.1742-4658.2010.07821.x.
    • (2010) FEBS J , vol.277 , pp. 4398-4411
    • Weidenbach, K.1    Ehlers, C.2    Kock, J.3    Schmitz, R.A.4
  • 101
    • 36749063953 scopus 로고    scopus 로고
    • The ancestral role of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) as exposed by comparative genomics
    • Cases I, Velazquez F, de Lorenzo V. 2007. The ancestral role of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) as exposed by comparative genomics. Res Microbiol 158:666-670. http://dx.doi.org/10.1016/j.resmic.2007.08.002.
    • (2007) Res Microbiol , vol.158 , pp. 666-670
    • Cases, I.1    Velazquez, F.2    De Lorenzo, V.3
  • 102
    • 33845626641 scopus 로고    scopus 로고
    • How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria
    • Deutscher J, Francke C, Postma PW. 2006. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939-1031. http://dx.doi.org/10.1128/MMBR.00024-06.
    • (2006) Microbiol Mol Biol Rev , vol.70 , pp. 939-1031
    • Deutscher, J.1    Francke, C.2    Postma, P.W.3
  • 103
    • 84901013706 scopus 로고    scopus 로고
    • The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: Regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions
    • Deutscher J, Ake FM, Derkaoui M, Zebre AC, Cao TN, Bouraoui H, Kentache T, Mokhtari A, Milohanic E, Joyet P. 2014. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 78:231-256. http://dx .doi.org/10.1128/MMBR.00001-14.
    • (2014) Microbiol Mol Biol Rev , vol.78 , pp. 231-256
    • Deutscher, J.1    Ake, F.M.2    Derkaoui, M.3    Zebre, A.C.4    Cao, T.N.5    Bouraoui, H.6    Kentache, T.7    Mokhtari, A.8    Milohanic, E.9    Joyet, P.10
  • 104
    • 0020479946 scopus 로고
    • Sugar transport by the bacterial phosphotransferase system. Phosphoryl transfer reactions catalyzed by enzyme i of Salmonella typhimurium
    • Weigel N, Kukuruzinska MA, Nakazawa A, Waygood EB, Roseman S. 1982. Sugar transport by the bacterial phosphotransferase system. Phosphoryl transfer reactions catalyzed by enzyme I of Salmonella typhimurium. J Biol Chem 257:14477-14491.
    • (1982) J Biol Chem , vol.257 , pp. 14477-14491
    • Weigel, N.1    Kukuruzinska, M.A.2    Nakazawa, A.3    Waygood, E.B.4    Roseman, S.5
  • 105
    • 0027291428 scopus 로고
    • Phosphoenolpyruvate: Carbohydrate phosphotransferase systems in bacteria
    • Postma PW, Lengeler JW, Jacobson GR. 1993. Phosphoenolpyruvate: carbohydrate phosphotransferase systems in bacteria. Microbiol Rev 57: 543-594.
    • (1993) Microbiol Rev , vol.57 , pp. 543-594
    • Postma, P.W.1    Lengeler, J.W.2    Jacobson, G.R.3
  • 106
    • 33646570920 scopus 로고    scopus 로고
    • In vitro reconstitution of catabolite repression in Escherichia coli
    • Park YH, Lee BR, Seok YJ, Peterkofsky A. 2006. In vitro reconstitution of catabolite repression in Escherichia coli. J Biol Chem 281:6448-6454. http://dx.doi.org/10.1074/jbc.M512672200.
    • (2006) J Biol Chem , vol.281 , pp. 6448-6454
    • Park, Y.H.1    Lee, B.R.2    Seok, Y.J.3    Peterkofsky, A.4
  • 107
    • 47549110972 scopus 로고    scopus 로고
    • Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients
    • Gorke B, Stulke J. 2008. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613-624. http://dx.doi.org/10.1038/nrmicro1932.
    • (2008) Nat Rev Microbiol , vol.6 , pp. 613-624
    • Gorke, B.1    Stulke, J.2
  • 108
    • 81355127364 scopus 로고    scopus 로고
    • Alphaketoglutarate coordinates carbon and nitrogen utilization via enzyme i inhibition
    • Doucette CD, Schwab DJ, Wingreen NS, Rabinowitz JD. 2011. Alphaketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat Chem Biol 16:894-901. http://dx.doi.org/10.1038/nchembio .685.
    • (2011) Nat Chem Biol , vol.16 , pp. 894-901
    • Doucette, C.D.1    Schwab, D.J.2    Wingreen, N.S.3    Rabinowitz, J.D.4
  • 109
    • 84879409320 scopus 로고    scopus 로고
    • Structural basis for enzyme i inhibition by alpha-ketoglutarate
    • Venditti V, Ghirlando R, Clore GM. 2013. Structural basis for enzyme I inhibition by alpha-ketoglutarate. ACS Chem Biol 8:1232-1240. http://dx.doi.org/10.1021/cb400027q.
    • (2013) ACS Chem Biol , vol.8 , pp. 1232-1240
    • Venditti, V.1    Ghirlando, R.2    Clore, G.M.3
  • 110
    • 84923110855 scopus 로고    scopus 로고
    • Large interdomain rearrangement triggered by suppression of micro-to millisecond dynamics in bacterial enzyme i
    • Venditti V, Tugarinov V, Schwieters CD, Grishaev A, Clore GM. 2015. Large interdomain rearrangement triggered by suppression of micro-to millisecond dynamics in bacterial enzyme I. Nat Commun 6:5960. http://dx.doi.org/10.1038/ncomms6960.
    • (2015) Nat Commun , vol.6 , pp. 5960
    • Venditti, V.1    Tugarinov, V.2    Schwieters, C.D.3    Grishaev, A.4    Clore, G.M.5
  • 111
    • 0022622273 scopus 로고
    • 2-Ketoglutarate as a possible regulatory metabolite involved in cyclic AMP-dependent catabolite repression in Escherichia coli K12
    • Daniel J, Danchin A. 1986. 2-Ketoglutarate as a possible regulatory metabolite involved in cyclic AMP-dependent catabolite repression in Escherichia coli K12. Biochimie 68:303-310. http://dx.doi.org/10.1016/S0300-9084(86)80027-X.
    • (1986) Biochimie , vol.68 , pp. 303-310
    • Daniel, J.1    Danchin, A.2
  • 113
    • 84881663190 scopus 로고    scopus 로고
    • Systems biology: Metabolite turns master regulator
    • Rabinowitz JD, Silhavy TJ. 2013. Systems biology: metabolite turns master regulator. Nature 500:283-284. http://dx.doi.org/10.1038/nature12544.
    • (2013) Nature , vol.500 , pp. 283-284
    • Rabinowitz, J.D.1    Silhavy, T.J.2
  • 114
  • 115
    • 77952552068 scopus 로고    scopus 로고
    • Regulatory roles of the bacterial nitrogen-related phosphotransferase system
    • Pfluger-Grau K, Gorke B. 2010. Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol 18:205-214. http://dx.doi.org/10.1016/j.tim.2010.02.003.
    • (2010) Trends Microbiol , vol.18 , pp. 205-214
    • Pfluger-Grau, K.1    Gorke, B.2
  • 116
    • 47849122007 scopus 로고    scopus 로고
    • Requirements for the phosphorylation of the Escherichia coli EIIANtr protein in vivo
    • Zimmer B, Hillmann A, Gorke B. 2008. Requirements for the phosphorylation of the Escherichia coli EIIANtr protein in vivo. FEMS Microbiol Lett 286:96-102. http://dx.doi.org/10.1111/j.1574-6968.2008.01262.x.
    • (2008) FEMS Microbiol Lett , vol.286 , pp. 96-102
    • Zimmer, B.1    Hillmann, A.2    Gorke, B.3
  • 117
    • 0024830930 scopus 로고
    • Mutations in genes downstream of the rpoN gene (encoding →54) of Klebsiella pneumoniae affect expression from →54-dependent promoters
    • Merrick MJ, Coppard JR. 1989. Mutations in genes downstream of the rpoN gene (encoding →54) of Klebsiella pneumoniae affect expression from →54-dependent promoters. Mol Microbiol 3:1765-1775. http://dx .doi.org/10.1111/j.1365-2958.1989.tb00162.x.
    • (1989) Mol Microbiol , vol.3 , pp. 1765-1775
    • Merrick, M.J.1    Coppard, J.R.2
  • 118
    • 0030605252 scopus 로고    scopus 로고
    • Novel phosphotransferase-encoding genes revealed by analysis of the Escherichia coli genome: A chimeric gene encoding an enzyme i homologue that possesses a putative sensory transduction domain
    • Reizer J, Reizer A, Merrick MJ, Plunkett G, III, Rose DJ, Saier MH, Jr. 1996. Novel phosphotransferase-encoding genes revealed by analysis of the Escherichia coli genome: A chimeric gene encoding an enzyme I homologue that possesses a putative sensory transduction domain. Gene 181:103-108. http://dx.doi.org/10.1016/S0378-1119(96)00481-7.
    • (1996) Gene , vol.181 , pp. 103-108
    • Reizer, J.1    Reizer, A.2    Merrick, M.J.3    Plunkett, G.4    Rose, D.J.5    Saier, M.H.6
  • 119
    • 0028243379 scopus 로고
    • Overexpression, phosphorylation, and growth effects of ORF162, a Klebsiella pneumoniae protein that is encoded by a gene linked to rpoN, the gene encoding →54
    • Begley GS, Jacobson GR. 1994. Overexpression, phosphorylation, and growth effects of ORF162, a Klebsiella pneumoniae protein that is encoded by a gene linked to rpoN, the gene encoding →54. FEMS Microbiol Lett 119:389-394.
    • (1994) FEMS Microbiol Lett , vol.119 , pp. 389-394
    • Begley, G.S.1    Jacobson, G.R.2
  • 120
    • 80052553222 scopus 로고    scopus 로고
    • Unnecessary signaling: Poorly named?
    • Ninfa AJ. 2011. Unnecessary signaling: poorly named? J Bacteriol 193: 4571-4573. http://dx.doi.org/10.1128/JB.05682-11.
    • (2011) J Bacteriol , vol.193 , pp. 4571-4573
    • Ninfa, A.J.1
  • 121
    • 80052540446 scopus 로고    scopus 로고
    • Characteristic phenotypes associated with ptsN-null mutants in Escherichia coli K-12 are absent in strains with functional ilvG
    • Reaves ML, Rabinowitz JD. 2011. Characteristic phenotypes associated with ptsN-null mutants in Escherichia coli K-12 are absent in strains with functional ilvG. J Bacteriol 193:4576-4581. http://dx.doi.org/10.1128/JB .00325-11.
    • (2011) J Bacteriol , vol.193 , pp. 4576-4581
    • Reaves, M.L.1    Rabinowitz, J.D.2
  • 124
    • 84876703328 scopus 로고    scopus 로고
    • Reciprocal regulation of the autophosphorylation of enzyme INtr by glutamine and alpha-ketoglutarate in Escherichia coli
    • Lee CR, Park YH, Kim M, Kim YR, Park S, Peterkofsky A, Seok YJ. 2013. Reciprocal regulation of the autophosphorylation of enzyme INtr by glutamine and alpha-ketoglutarate in Escherichia coli. Mol Microbiol 88:473-485. http://dx.doi.org/10.1111/mmi.12196.
    • (2013) Mol Microbiol , vol.88 , pp. 473-485
    • Lee, C.R.1    Park, Y.H.2    Kim, M.3    Kim, Y.R.4    Park, S.5    Peterkofsky, A.6    Seok, Y.J.7
  • 125
    • 84898839899 scopus 로고    scopus 로고
    • Biochemical characterization of a nitrogen-type phosphotransferase system reveals that enzyme EI(Ntr) integrates carbon and nitrogen signaling in Sinorhizobium meliloti
    • Goodwin RA, Gage DJ. 2014. Biochemical characterization of a nitrogen-type phosphotransferase system reveals that enzyme EI(Ntr) integrates carbon and nitrogen signaling in Sinorhizobium meliloti. J Bacteriol 196:1901-1907. http://dx.doi.org/10.1128/JB.01489-14.
    • (2014) J Bacteriol , vol.196 , pp. 1901-1907
    • Goodwin, R.A.1    Gage, D.J.2
  • 126
    • 34247251299 scopus 로고    scopus 로고
    • Escherichia coli enzyme IIANtr regulates the K transporter TrkA
    • Lee CR, Cho SH, Yoon MJ, Peterkofsky A, Seok YJ. 2007. Escherichia coli enzyme IIANtr regulates the K transporter TrkA. Proc Natl Acad Sci U S A 104:4124-4129. http://dx.doi.org/10.1073/pnas.0609897104.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 4124-4129
    • Lee, C.R.1    Cho, S.H.2    Yoon, M.J.3    Peterkofsky, A.4    Seok, Y.J.5
  • 127
    • 65549161404 scopus 로고    scopus 로고
    • Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIA(Ntr) in Escherichia coli
    • Luttmann D, Heermann R, Zimmer B, Hillmann A, Rampp IS, Jung K, Gorke B. 2009. Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIA(Ntr) in Escherichia coli. Mol Microbiol 72:978-994. http://dx.doi.org/10.1111/j .1365-2958.2009.06704.x.
    • (2009) Mol Microbiol , vol.72 , pp. 978-994
    • Luttmann, D.1    Heermann, R.2    Zimmer, B.3    Hillmann, A.4    Rampp, I.S.5    Jung, K.6    Gorke, B.7
  • 128
    • 84863415995 scopus 로고    scopus 로고
    • The PTS(Ntr) system globally regulates ATP-dependent transporters in Rhizobium leguminosarum
    • Prell J, Mulley G, Haufe F, White JP, Williams A, Karunakaran R, Downie JA, Poole PS. 2012. The PTS(Ntr) system globally regulates ATP-dependent transporters in Rhizobium leguminosarum. Mol Microbiol 84:117-129. http://dx.doi.org/10.1111/j.1365-2958.2012.08014.x.
    • (2012) Mol Microbiol , vol.84 , pp. 117-129
    • Prell, J.1    Mulley, G.2    Haufe, F.3    White, J.P.4    Williams, A.5    Karunakaran, R.6    Downie, J.A.7    Poole, P.S.8
  • 129
    • 84878393284 scopus 로고    scopus 로고
    • ABCtransport is inactivated by the PTS(Ntr) under potassium limitation in Rhizobium leguminosarum 3841
    • Untiet V, Karunakaran R, Kramer M, Poole P, Priefer U, Prell J. 2013. ABCtransport is inactivated by the PTS(Ntr) under potassium limitation in Rhizobium leguminosarum 3841. PLoS One 8:e64682. http://dx.doi .org/10.1371/journal.pone.0064682.
    • (2013) PLoS One , vol.8 , pp. e64682
    • Untiet, V.1    Karunakaran, R.2    Kramer, M.3    Poole, P.4    Priefer, U.5    Prell, J.6
  • 131
    • 0017276787 scopus 로고
    • Cation transport in Escherichia coli. VIII. Potassium transport mutants
    • Rhoads DB, Waters FB, Epstein W. 1976. Cation transport in Escherichia coli. VIII. Potassium transport mutants. J Gen Physiol 67:325-341.
    • (1976) J Gen Physiol , vol.67 , pp. 325-341
    • Rhoads, D.B.1    Waters, F.B.2    Epstein, W.3
  • 132
    • 78650034955 scopus 로고    scopus 로고
    • Potassium mediates Escherichia coli enzyme IIA(Ntr)-dependent regulation of sigma factor selectivity
    • Lee CR, Cho SH, Kim HJ, Kim M, Peterkofsky A, Seok YJ. 2010. Potassium mediates Escherichia coli enzyme IIA(Ntr)-dependent regulation of sigma factor selectivity. Mol Microbiol 78:1468-1483. http://dx .doi.org/10.1111/j.1365-2958.2010.07419.x.
    • (2010) Mol Microbiol , vol.78 , pp. 1468-1483
    • Lee, C.R.1    Cho, S.H.2    Kim, H.J.3    Kim, M.4    Peterkofsky, A.5    Seok, Y.J.6
  • 133
    • 14744269033 scopus 로고    scopus 로고
    • Lessons from Escherichia coli genes similarly regulated in response to nitrogen and sulfur limitation
    • Gyaneshwar P, Paliy O, McAuliffe J, Jones A, Jordan MI, Kustu S. 2005. Lessons from Escherichia coli genes similarly regulated in response to nitrogen and sulfur limitation. Proc Natl Acad Sci U S A 102:3453-3458. http://dx.doi.org/10.1073/pnas.0500141102.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 3453-3458
    • Gyaneshwar, P.1    Paliy, O.2    McAuliffe, J.3    Jones, A.4    Jordan, M.I.5    Kustu, S.6
  • 134
    • 13244265501 scopus 로고    scopus 로고
    • Sulfur and nitrogen limitation in Escherichia coli K-12: Specific homeostatic responses
    • Gyaneshwar P, Paliy O, McAuliffe J, Popham DL, Jordan MI, Kustu S. 2005. Sulfur and nitrogen limitation in Escherichia coli K-12: specific homeostatic responses. J Bacteriol 187:1074-1090. http://dx.doi.org/10 .1128/JB.187.3.1074-1090.2005.
    • (2005) J Bacteriol , vol.187 , pp. 1074-1090
    • Gyaneshwar, P.1    Paliy, O.2    McAuliffe, J.3    Popham, D.L.4    Jordan, M.I.5    Kustu, S.6
  • 135
    • 11844276053 scopus 로고    scopus 로고
    • Starvation for different nutrients in Escherichia coli results in differential modulation of RpoS levels and stability
    • Mandel MJ, Silhavy TJ. 2005. Starvation for different nutrients in Escherichia coli results in differential modulation of RpoS levels and stability. J Bacteriol 187:434-442. http://dx.doi.org/10.1128/JB.187.2.434-442 .2005.
    • (2005) J Bacteriol , vol.187 , pp. 434-442
    • Mandel, M.J.1    Silhavy, T.J.2
  • 136
    • 27744450676 scopus 로고    scopus 로고
    • Escherichia coli starvation diets: Essential nutrients weigh in distinctly
    • Peterson CN, Mandel MJ, Silhavy TJ. 2005. Escherichia coli starvation diets: essential nutrients weigh in distinctly. J Bacteriol 187:7549-7553. http://dx.doi.org/10.1128/JB.187.22.7549-7553.2005.
    • (2005) J Bacteriol , vol.187 , pp. 7549-7553
    • Peterson, C.N.1    Mandel, M.J.2    Silhavy, T.J.3
  • 137
  • 138
    • 84922513517 scopus 로고    scopus 로고
    • The unphosphorylated EIIA(Ntr) protein represses the synthesis of alkylresorcinols in Azotobacter vinelandii
    • Muriel-Millan LF, Moreno S, Romero Y, Bedoya-Perez LP, Castaneda M, Segura D, Espin G. 2015. The unphosphorylated EIIA(Ntr) protein represses the synthesis of alkylresorcinols in Azotobacter vinelandii. PLoS One 10:e0117184. http://dx.doi.org/10.1371/journal.pone.0117184.
    • (2015) PLoS One , vol.10 , pp. e0117184
    • Muriel-Millan, L.F.1    Moreno, S.2    Romero, Y.3    Bedoya-Perez, L.P.4    Castaneda, M.5    Segura, D.6    Espin, G.7
  • 139
    • 84863594395 scopus 로고    scopus 로고
    • Control of glutamate homeostasis in Bacillus subtilis: A complex interplay between ammonium assimilation, glutamate biosynthesis and degradation
    • Gunka K, Commichau FM. 2012. Control of glutamate homeostasis in Bacillus subtilis: A complex interplay between ammonium assimilation, glutamate biosynthesis and degradation. Mol Microbiol 85:213-224. http://dx.doi.org/10.1111/j.1365-2958.2012.08105.x.
    • (2012) Mol Microbiol , vol.85 , pp. 213-224
    • Gunka, K.1    Commichau, F.M.2
  • 140
    • 33845970515 scopus 로고    scopus 로고
    • Molecular mechanism of the regulation of Bacillus subtilis gltAB expression by GltC
    • Picossi S, Belitsky BR, Sonenshein AL. 2007. Molecular mechanism of the regulation of Bacillus subtilis gltAB expression by GltC. J Mol Biol 365:1298-1313. http://dx.doi.org/10.1016/j.jmb.2006.10.100.
    • (2007) J Mol Biol , vol.365 , pp. 1298-1313
    • Picossi, S.1    Belitsky, B.R.2    Sonenshein, A.L.3
  • 141
    • 34247640781 scopus 로고    scopus 로고
    • Transcriptional regulation of the CO2-concentrating mechanism in a euryhaline, coastal marine cyanobacterium, Synechococcus sp. Strain PCC 7002: Role of NdhR/CcmR
    • Woodger FJ, Bryant DA, Price GD. 2007. Transcriptional regulation of the CO2-concentrating mechanism in a euryhaline, coastal marine cyanobacterium, Synechococcus sp. strain PCC 7002: role of NdhR/CcmR. J Bacteriol 189:3335-3347. http://dx.doi.org/10.1128/JB.01745-06.
    • (2007) J Bacteriol , vol.189 , pp. 3335-3347
    • Woodger, F.J.1    Bryant, D.A.2    Price, G.D.3
  • 142
    • 84864082503 scopus 로고    scopus 로고
    • Regulation of the cyanobacterial CO2-concentrating mechanism involves internal sensing of NADP and alpha-ketoglutarate levels by transcription factor CcmR
    • Daley SM, Kappell AD, Carrick MJ, Burnap RL. 2012. Regulation of the cyanobacterial CO2-concentrating mechanism involves internal sensing of NADP and alpha-ketoglutarate levels by transcription factor CcmR. PLoS One 7:e41286. http://dx.doi.org/10.1371/journal.pone.0041286.
    • (2012) PLoS One , vol.7 , pp. e41286
    • Daley, S.M.1    Kappell, A.D.2    Carrick, M.J.3    Burnap, R.L.4
  • 143
  • 148
    • 2442649129 scopus 로고    scopus 로고
    • Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors
    • He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, Gao J, Chen JL, Tian H, Ling L. 2004. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429:188-193. http://dx.doi .org/10.1038/nature02488.
    • (2004) Nature , vol.429 , pp. 188-193
    • He, W.1    Miao, F.J.2    Lin, D.C.3    Schwandner, R.T.4    Wang, Z.5    Gao, J.6    Chen, J.L.7    Tian, H.8    Ling, L.9
  • 150
    • 0036010137 scopus 로고    scopus 로고
    • Enzyme redundancy and the importance of 2-oxoglutarate in plant ammonium assimilation
    • Hodges M. 2002. Enzyme redundancy and the importance of 2-oxoglutarate in plant ammonium assimilation. J Exp Bot 53:905-916. http://dx .doi.org/10.1093/jexbot/53.370.905.
    • (2002) J Exp Bot , vol.53 , pp. 905-916
    • Hodges, M.1
  • 151
    • 84907993199 scopus 로고    scopus 로고
    • 2-Oxoglutarate: Linking TCA cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis
    • Araujo WL, Martins AO, Fernie AR, Tohge T. 2014. 2-Oxoglutarate: linking TCA cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis. Front Plant Sci 5:552. http://dx.doi .org/10.3389/fpls.2014.00552.
    • (2014) Front Plant Sci , vol.5 , pp. 552
    • Araujo, W.L.1    Martins, A.O.2    Fernie, A.R.3    Tohge, T.4
  • 152
    • 68549109337 scopus 로고    scopus 로고
    • Metabolite regulation of the interaction between Arabidopsis thaliana PII and N-acetyl-L-glutamate kinase
    • Feria Bourrellier AB, Ferrario-Mery S, Vidal J, Hodges M. 2009. Metabolite regulation of the interaction between Arabidopsis thaliana PII and N-acetyl-L-glutamate kinase. Biochem Biophys Res Commun 387: 700-704. http://dx.doi.org/10.1016/j.bbrc.2009.07.088.
    • (2009) Biochem Biophys Res Commun , vol.387 , pp. 700-704
    • Feria Bourrellier, A.B.1    Ferrario-Mery, S.2    Vidal, J.3    Hodges, M.4
  • 153
    • 33645224984 scopus 로고    scopus 로고
    • The regulatory PII protein controls arginine biosynthesis in Arabidopsis
    • Ferrario-Mery S, Besin E, Pichon O, Meyer C, Hodges M. 2006. The regulatory PII protein controls arginine biosynthesis in Arabidopsis. FEBS Lett 580: 2015-2020. http://dx.doi.org/10.1016/j.febslet.2006.02.075.
    • (2006) FEBS Lett , vol.580 , pp. 2015-2020
    • Ferrario-Mery, S.1    Besin, E.2    Pichon, O.3    Meyer, C.4    Hodges, M.5
  • 155
    • 84898845550 scopus 로고    scopus 로고
    • Krebs cycle dysfunction shapes epigenetic landscape of chromatin: Novel insights into mitochondrial regulation of aging process
    • Salminen A, Kaarniranta K, Hiltunen M, Kauppinen A. 2014. Krebs cycle dysfunction shapes epigenetic landscape of chromatin: novel insights into mitochondrial regulation of aging process. Cell Signal 26: 1598-1603. http://dx.doi.org/10.1016/j.cellsig.2014.03.030.
    • (2014) Cell Signal , vol.26 , pp. 1598-1603
    • Salminen, A.1    Kaarniranta, K.2    Hiltunen, M.3    Kauppinen, A.4
  • 156
    • 84925503908 scopus 로고    scopus 로고
    • Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells
    • Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB. 2015. Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518:413-416. http://dx.doi.org/10.1038/nature13981.
    • (2015) Nature , vol.518 , pp. 413-416
    • Carey, B.W.1    Finley, L.W.2    Cross, J.R.3    Allis, C.D.4    Thompson, C.B.5
  • 158
    • 0035724135 scopus 로고    scopus 로고
    • The CRP-cAMP complex and downregulation of the glnAp2 promoter provides a novel regulatory linkage between carbon metabolism and nitrogen assimilation in Escherichia coli
    • Tian ZX, Li QS, Buck M, Kolb A, Wang YP. 2001. The CRP-cAMP complex and downregulation of the glnAp2 promoter provides a novel regulatory linkage between carbon metabolism and nitrogen assimilation in Escherichia coli. Mol Microbiol 41:911-924.
    • (2001) Mol Microbiol , vol.41 , pp. 911-924
    • Tian, Z.X.1    Li, Q.S.2    Buck, M.3    Kolb, A.4    Wang, Y.P.5
  • 159
    • 34247146736 scopus 로고    scopus 로고
    • Interplay between CRP-cAMP and PII-Ntr systems forms novel regulatory network between carbon metabolism and nitrogen assimilation in Escherichia coli
    • Mao XJ, Huo YX, Buck M, Kolb A, Wang YP. 2007. Interplay between CRP-cAMP and PII-Ntr systems forms novel regulatory network between carbon metabolism and nitrogen assimilation in Escherichia coli. Nucleic Acids Res 35:1432-1440. http://dx.doi.org/10.1093/nar/gkl1142.
    • (2007) Nucleic Acids Res , vol.35 , pp. 1432-1440
    • Mao, X.J.1    Huo, Y.X.2    Buck, M.3    Kolb, A.4    Wang, Y.P.5
  • 160
    • 0034193522 scopus 로고    scopus 로고
    • Structure, function and regulation of ammonium transporters in plants
    • Howitt S, Udvardi M. 2000. Structure, function and regulation of ammonium transporters in plants. Biochim Biophys Acta 1465:152-170. http://dx.doi.org/10.1016/S0005-2736(00)00136-X.
    • (2000) Biochim Biophys Acta , vol.1465 , pp. 152-170
    • Howitt, S.1    Udvardi, M.2
  • 161
    • 0026028105 scopus 로고
    • Futile cycling of ammonium ions via the high affinity potassium uptake system (Kdp) of Escherichia coli
    • Buurman ET, Teixeira de Mattos MJ, Neijssel OM. 1991. Futile cycling of ammonium ions via the high affinity potassium uptake system (Kdp) of Escherichia coli. Arch Microbiol 155:391-395.
    • (1991) Arch Microbiol , vol.155 , pp. 391-395
    • Buurman, E.T.1    Teixeira De Mattos, M.J.2    Neijssel, O.M.3
  • 162
    • 0041387474 scopus 로고    scopus 로고
    • Mutational loss of a K and NH4 transporter affects the growth and endospore formation of alkaliphilic Bacillus pseudofirmus OF4
    • Wei Y, Southworth TW, Kloster H, Ito M, Guffanti AA, Moir A, Krulwich TA. 2003. Mutational loss of a K and NH4 transporter affects the growth and endospore formation of alkaliphilic Bacillus pseudofirmus OF4. J Bacteriol 185:5133-5147. http://dx.doi.org/10.1128/JB .185.17.5133-5147.2003.
    • (2003) J Bacteriol , vol.185 , pp. 5133-5147
    • Wei, Y.1    Southworth, T.W.2    Kloster, H.3    Ito, M.4    Guffanti, A.A.5    Moir, A.6    Krulwich, T.A.7
  • 163
    • 33751066925 scopus 로고    scopus 로고
    • Ammonium toxicity and potassium limitation in yeast
    • Hess DC, Lu W, Rabinowitz JD, Botstein D. 2006. Ammonium toxicity and potassium limitation in yeast. PLoS Biol 4:e351. http://dx.doi.org/10 .1371/journal.pbio.0040351.
    • (2006) PLoS Biol , vol.4 , pp. e351
    • Hess, D.C.1    Lu, W.2    Rabinowitz, J.D.3    Botstein, D.4
  • 164
    • 84877070776 scopus 로고    scopus 로고
    • Capacity and plasticity of potassium channels and high-affinity transporters in roots of barley and Arabidopsis
    • Coskun D, Britto DT, Li M, Oh S, Kronzucker HJ. 2013. Capacity and plasticity of potassium channels and high-affinity transporters in roots of barley and Arabidopsis. Plant Physiol 162:496-511. http://dx.doi.org/10 .1104/pp.113.215913.
    • (2013) Plant Physiol , vol.162 , pp. 496-511
    • Coskun, D.1    Britto, D.T.2    Li, M.3    Oh, S.4    Kronzucker, H.J.5
  • 165
    • 77953005727 scopus 로고    scopus 로고
    • Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: Molecular mechanisms and physiological consequences
    • ten Hoopen F, Cuin TA, Pedas P, Hegelund JN, Shabala S, Schjoerring JK, Jahn TP. 2010. Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: molecular mechanisms and physiological consequences. J Exp Bot 61:2303-2315. http://dx.doi.org/10.1093/jxb/erq057.
    • (2010) J Exp Bot , vol.61 , pp. 2303-2315
    • Ten Hoopen, F.1    Cuin, T.A.2    Pedas, P.3    Hegelund, J.N.4    Shabala, S.5    Schjoerring, J.K.6    Jahn, T.P.7
  • 166
    • 0000909263 scopus 로고
    • NH4 transport systems
    • Bakker EP (ed), CRC Press, Boca Raton, FL
    • Kleiner D. 1993. NH4 transport systems, p 379-396. In Bakker EP (ed), Alkali cation transport systems in prokaryotes. CRC Press, Boca Raton, FL.
    • (1993) Alkali Cation Transport Systems in Prokaryotes , pp. 379-396
    • Kleiner, D.1
  • 167
    • 78650857714 scopus 로고    scopus 로고
    • AmtBmediated NH3 transport in prokaryotes must be active and as a consequence regulation of transport by GlnK is mandatory to limit futile cycling of NH4/NH3
    • Boogerd FC, Ma H, Bruggeman FJ, van Heeswijk WC, Garcia-Contreras R, Molenaar D, Krab K, Westerhoff HV. 2011. AmtBmediated NH3 transport in prokaryotes must be active and as a consequence regulation of transport by GlnK is mandatory to limit futile cycling of NH4/NH3. FEBS Lett 585:23-28. http://dx.doi.org/10.1016/j .febslet.2010.11.055.
    • (2011) FEBS Lett , vol.585 , pp. 23-28
    • Boogerd, F.C.1    Ma, H.2    Bruggeman, F.J.3    Van Heeswijk, W.C.4    Garcia-Contreras, R.5    Molenaar, D.6    Krab, K.7    Westerhoff, H.V.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.