메뉴 건너뛰기




Volumn 16, Issue 12, 2015, Pages 711-726

Control of microtubule organization and dynamics: Two ends in the limelight

Author keywords

[No Author keywords available]

Indexed keywords

BINDING PROTEIN; END TRACKING PROTEIN 1; LIGAND; MICROTUBULE ASSOCIATED PROTEIN; PACLITAXEL; PROTEIN; UNCLASSIFIED DRUG; XMAP215 PROTEIN; PROTEIN BINDING; TUBULIN; TUBULIN MODULATOR;

EID: 84948115174     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm4084     Document Type: Review
Times cited : (663)

References (180)
  • 2
    • 0028887848 scopus 로고
    • Structural changes accompanying GTP hydrolysis in microtubules: Information from a slowly hydrolyzable analogue guanylyl-(α, β)-methylene-diphosphonate
    • Hyman A. A., Chretien D., Arnal I., & Wade R. H. Structural changes accompanying GTP hydrolysis in microtubules: information from a slowly hydrolyzable analogue guanylyl-(α, β)-methylene-diphosphonate. J. Cell Biol. 128, 117-125 (1995
    • (1995) J. Cell Biol , vol.128 , pp. 117-125
    • Hyman, A.A.1    Chretien, D.2    Arnal, I.3    Wade, R.H.4
  • 3
    • 84901362834 scopus 로고    scopus 로고
    • High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis
    • Alushin G. M., et al. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Cell 157, 1117-1129 (2014
    • (2014) Cell , vol.157 , pp. 1117-1129
    • Alushin, G.M.1
  • 4
    • 84939265872 scopus 로고    scopus 로고
    • Mechanistic origin of microtubule dynamic instability, and its modulation by EB proteins
    • Zhang R., Alushin G. M., Brown A., & Nogales E. Mechanistic origin of microtubule dynamic instability, and its modulation by EB proteins. Cell 162, 849-859 (2015
    • (2015) Cell , vol.162 , pp. 849-859
    • Zhang, R.1    Alushin, G.M.2    Brown, A.3    Nogales, E.4
  • 5
    • 84866447226 scopus 로고    scopus 로고
    • Conformational changes in tubulin in GMPCPP, and GDP-taxol microtubules observed by cryoelectron microscopy
    • Yajima H., et al. Conformational changes in tubulin in GMPCPP, and GDP-taxol microtubules observed by cryoelectron microscopy. J. Cell Biol. 198, 315-322 (2012
    • (2012) J. Cell Biol , vol.198 , pp. 315-322
    • Yajima, H.1
  • 6
    • 0030748335 scopus 로고    scopus 로고
    • A metastable intermediate state of microtubule dynamic instability that differs significantly between plus, and minus ends
    • Tran P. T., Walker R. A., & Salmon E. D. A metastable intermediate state of microtubule dynamic instability that differs significantly between plus, and minus ends. J. Cell Biol. 138, 105-117 (1997
    • (1997) J. Cell Biol , vol.138 , pp. 105-117
    • Tran, P.T.1    Walker, R.A.2    Salmon, E.D.3
  • 7
    • 0024544706 scopus 로고
    • Asymmetric behavior of severed microtubule ends after ultraviolet-microbeam irradiation of individual microtubules in vitro
    • Walker R. A., Inoue S., & Salmon E. D. Asymmetric behavior of severed microtubule ends after ultraviolet-microbeam irradiation of individual microtubules in vitro. J. Cell Biol. 108, 931-937 (1989
    • (1989) J. Cell Biol , vol.108 , pp. 931-937
    • Walker, R.A.1    Inoue, S.2    Salmon, E.D.3
  • 8
    • 0025868445 scopus 로고
    • Microtubule dynamics, and microtubule caps: A time-resolved cryo-electron microscopy study
    • Mandelkow E. M., Mandelkow E., & Milligan R. A. Microtubule dynamics, and microtubule caps: a time-resolved cryo-electron microscopy study. J. Cell Biol. 114, 977-991 (1991
    • (1991) J. Cell Biol , vol.114 , pp. 977-991
    • Mandelkow, E.M.1    Mandelkow, E.2    Milligan, R.A.3
  • 9
    • 84918514058 scopus 로고    scopus 로고
    • The contribution of αβ-tubulin curvature to microtubule dynamics
    • Brouhard G. J., & Rice L. M. The contribution of αβ-tubulin curvature to microtubule dynamics. J. Cell Biol. 207, 323-334 (2014
    • (2014) J. Cell Biol , vol.207 , pp. 323-334
    • Brouhard, G.J.1    Rice, L.M.2
  • 10
    • 0029091976 scopus 로고
    • Kinetics of microtubule catastrophe assessed by probabilistic analysis
    • Odde D. J., Cassimeris L., & Buettner H. M. Kinetics of microtubule catastrophe assessed by probabilistic analysis. Biophys. J. 69, 796-802 (1995
    • (1995) Biophys. J. , vol.69 , pp. 796-802
    • Odde, D.J.1    Cassimeris, L.2    Buettner, H.M.3
  • 11
    • 81855189480 scopus 로고    scopus 로고
    • The depolymerizing kinesins Kip3 (kinesin 8), and MCAK (kinesin 13) are catastrophe factors that destabilize microtubules by different mechanisms
    • Gardner M. K., Zanic M., Gell C., Bormuth V., & Howard J. The depolymerizing kinesins Kip3 (kinesin 8), and MCAK (kinesin 13) are catastrophe factors that destabilize microtubules by different mechanisms. Cell 147, 1092-1103 (2011
    • (2011) Cell , vol.147 , pp. 1092-1103
    • Gardner, M.K.1    Zanic, M.2    Gell, C.3    Bormuth, V.4    Howard, J.5
  • 12
    • 84880701139 scopus 로고    scopus 로고
    • Evolving tip structures can explain age-dependent microtubule catastrophe
    • Coombes C. E., Yamamoto A., Kenzie M. R., Odde D. J., & Gardner M. K. Evolving tip structures can explain age-dependent microtubule catastrophe. Curr. Biol. 23, 1342-1348 (2013
    • (2013) Curr. Biol , vol.23 , pp. 1342-1348
    • Coombes, C.E.1    Yamamoto, A.2    Kenzie, M.R.3    Odde, D.J.4    Gardner, M.K.5
  • 13
    • 0037477845 scopus 로고    scopus 로고
    • Dynamic instability of microtubules is regulated by force
    • Janson M. E., de Dood M. E., & Dogterom M. Dynamic instability of microtubules is regulated by force. J. Cell Biol. 161, 1029-1034 (2003
    • (2003) J. Cell Biol , vol.161 , pp. 1029-1034
    • Janson, M.E.1    De Dood, M.E.2    Dogterom, M.3
  • 14
    • 0024094432 scopus 로고
    • Dynamic instability of individual microtubules analyzed by video light microscopy: Rate constants, and transition frequencies
    • Walker R. A., et al. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants, and transition frequencies. J. Cell Biol. 107, 1437-1448 (1988
    • (1988) J. Cell Biol , vol.107 , pp. 1437-1448
    • Walker, R.A.1
  • 15
    • 57149102485 scopus 로고    scopus 로고
    • Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues
    • Dimitrov A., et al. Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Science 322, 1353-1356 (2008
    • (2008) Science , vol.322 , pp. 1353-1356
    • Dimitrov, A.1
  • 16
    • 0035906940 scopus 로고    scopus 로고
    • Microtubule 'plus-end-tracking proteins': The end is just the beginning
    • Schuyler S. C., & Pellman D. Microtubule 'plus-end-tracking proteins': the end is just the beginning. Cell 105, 421-424 (2001
    • (2001) Cell , vol.105 , pp. 421-424
    • Schuyler, S.C.1    Pellman, D.2
  • 17
    • 41149156427 scopus 로고    scopus 로고
    • Tracking the ends: A dynamic protein network controls the fate of microtubule tips
    • Akhmanova A., & Steinmetz M. O. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat. Rev. Mol. Cell Biol. 9, 309-322 (2008
    • (2008) Nat. Rev. Mol. Cell Biol , vol.9 , pp. 309-322
    • Akhmanova, A.1    Steinmetz, M.O.2
  • 18
    • 37649004096 scopus 로고    scopus 로고
    • XMAP215 is a processive microtubule polymerase
    • Brouhard G. J., et al. XMAP215 is a processive microtubule polymerase. Cell 132, 79-88 (2008
    • (2008) Cell , vol.132 , pp. 79-88
    • Brouhard, G.J.1
  • 19
    • 84864759021 scopus 로고    scopus 로고
    • Fission yeast Alp14 is a dose-dependent plus end-tracking microtubule polymerase
    • Al Bassam J., et al. Fission yeast Alp14 is a dose-dependent plus end-tracking microtubule polymerase. Mol. Biol. Cell 23, 2878-2890 (2012
    • (2012) Mol. Biol. Cell , vol.23 , pp. 2878-2890
    • Al Bassam, J.1
  • 20
    • 22944457527 scopus 로고    scopus 로고
    • Identification and characterization of factors required for microtubule growth, and nucleation in the early C elegans embryo
    • Srayko M., Kaya A., Stamford J., & Hyman A. A. Identification, and characterization of factors required for microtubule growth, and nucleation in the early C. elegans embryo. Dev. Cell 9, 223-236 (2005
    • (2005) Dev. Cell , vol.9 , pp. 223-236
    • Srayko, M.1    Kaya, A.2    Stamford, J.3    Hyman, A.A.4
  • 21
    • 79959468196 scopus 로고    scopus 로고
    • Slain2 links microtubule plus end-tracking proteins, and controls microtubule growth in interphase
    • Van Der Vaart B., et al. SLAIN2 links microtubule plus end-tracking proteins, and controls microtubule growth in interphase. J. Cell Biol. 193, 1083-1099 (2011
    • (2011) J. Cell Biol , vol.193 , pp. 1083-1099
    • Van Der Vaart, B.1
  • 22
    • 81755184372 scopus 로고    scopus 로고
    • The microtubule lattice, and plus-end association of Drosophila Mini spindles is spatially regulated to fine-tune microtubule dynamics
    • Currie J. D., et al. The microtubule lattice, and plus-end association of Drosophila Mini spindles is spatially regulated to fine-tune microtubule dynamics. Mol. Biol. Cell 22, 4343-4361 (2011
    • (2011) Mol. Biol. Cell , vol.22 , pp. 4343-4361
    • Currie, J.D.1
  • 23
    • 64749115790 scopus 로고    scopus 로고
    • Mammalian end binding proteins control persistent microtubule growth
    • Komarova Y., et al. Mammalian end binding proteins control persistent microtubule growth. J. Cell Biol. 184, 691-706 (2009
    • (2009) J. Cell Biol , vol.184 , pp. 691-706
    • Komarova, Y.1
  • 24
    • 84878540115 scopus 로고    scopus 로고
    • Synergy between XMAP215, and EB1 increases microtubule growth rates to physiological levels
    • Zanic M., Widlund P. O., Hyman A. A., & Howard J. Synergy between XMAP215, and EB1 increases microtubule growth rates to physiological levels. Nat. Cell Biol. 15, 688-693 (2013
    • (2013) Nat. Cell Biol , vol.15 , pp. 688-693
    • Zanic, M.1    Widlund, P.O.2    Hyman, A.A.3    Howard, J.4
  • 25
    • 84894334053 scopus 로고    scopus 로고
    • EB1 accelerates two conformational transitions important for microtubule maturation, and dynamics
    • Maurer S. P., et al. EB1 accelerates two conformational transitions important for microtubule maturation, and dynamics. Curr. Biol. 24, 372-384 (2014
    • (2014) Curr. Biol , vol.24 , pp. 372-384
    • Maurer, S.P.1
  • 26
    • 0033534575 scopus 로고    scopus 로고
    • Kin i kinesins are microtubule-destabilizing enzymes
    • Desai A., Verma S., Mitchison T. J., & Walczak C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69-78 (1999
    • (1999) Cell , vol.96 , pp. 69-78
    • Desai, A.1    Verma, S.2    Mitchison, T.J.3    Walczak, C.E.4
  • 27
    • 0036242697 scopus 로고    scopus 로고
    • A mechanism for microtubule depolymerization by kini kinesins
    • Moores C. A., et al. A mechanism for microtubule depolymerization by KinI kinesins. Mol. Cell 9, 903-909 (2002
    • (2002) Mol. Cell , vol.9 , pp. 903-909
    • Moores, C.A.1
  • 28
    • 0037292454 scopus 로고    scopus 로고
    • The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends
    • Hunter A. W., et al. The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol. Cell 11, 445-457 (2003
    • (2003) Mol. Cell , vol.11 , pp. 445-457
    • Hunter, A.W.1
  • 29
    • 84875806836 scopus 로고    scopus 로고
    • Structural model for tubulin recognition, and deformation by kinesin 13 microtubule depolymerases
    • Asenjo A. B., et al. Structural model for tubulin recognition, and deformation by kinesin 13 microtubule depolymerases. Cell Rep. 3, 759-768 (2013
    • (2013) Cell Rep , vol.3 , pp. 759-768
    • Asenjo, A.B.1
  • 30
    • 84905721040 scopus 로고    scopus 로고
    • Nucleotide exchange in dimeric MCAK induces longitudinal, and lateral stress at microtubule ends to support depolymerization
    • Burns K. M., Wagenbach M., Wordeman L., & Schriemer D. C. Nucleotide exchange in dimeric MCAK induces longitudinal, and lateral stress at microtubule ends to support depolymerization. Structure 22, 1173-1183 (2014
    • (2014) Structure , vol.22 , pp. 1173-1183
    • Burns, K.M.1    Wagenbach, M.2    Wordeman, L.3    Schriemer, D.C.4
  • 31
    • 70149111601 scopus 로고    scopus 로고
    • Kinesin 8 motors act cooperatively to mediate length-dependent microtubule depolymerization
    • Varga V., Leduc C., Bormuth V., Diez S., & Howard J. Kinesin 8 motors act cooperatively to mediate length-dependent microtubule depolymerization. Cell 138, 1174-1183 (2009
    • (2009) Cell , vol.138 , pp. 1174-1183
    • Varga, V.1    Leduc, C.2    Bormuth, V.3    Diez, S.4    Howard, J.5
  • 32
    • 84867890758 scopus 로고    scopus 로고
    • Move in for the kill: Motile microtubule regulators
    • Su X., Ohi R., & Pellman D. Move in for the kill: motile microtubule regulators. Trends Cell Biol. 22, 567-575 (2012
    • (2012) Trends Cell Biol , vol.22 , pp. 567-575
    • Su, X.1    Ohi, R.2    Pellman, D.3
  • 33
    • 23244462047 scopus 로고    scopus 로고
    • Cik1 targets the minus-end kinesin depolymerase Kar3 to microtubule plus ends
    • Sproul L. R., Anderson D. J., Mackey A. T., Saunders W. S., & Gilbert S. P. Cik1 targets the minus-end kinesin depolymerase Kar3 to microtubule plus ends. Curr. Biol. 15, 1420-1427 (2005
    • (2005) Curr. Biol , vol.15 , pp. 1420-1427
    • Sproul, L.R.1    Anderson, D.J.2    Mackey, A.T.3    Saunders, W.S.4    Gilbert, S.P.5
  • 34
    • 79952760876 scopus 로고    scopus 로고
    • GTPγS microtubules mimic the growing microtubule end structure recognised by end-binding proteins (EBs
    • Maurer S. P., Bieling P., Cope J., Hoenger A., & Surrey T. GTPγS microtubules mimic the growing microtubule end structure recognised by end-binding proteins (EBs). Proc. Natl Acad. Sci. USA 109, 3988-3993 (2011
    • (2011) Proc. Natl Acad. Sci. USA , vol.109 , pp. 3988-3993
    • Maurer, S.P.1    Bieling, P.2    Cope, J.3    Hoenger, A.4    Surrey, T.5
  • 35
    • 0037009077 scopus 로고    scopus 로고
    • Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle
    • Rogers S. L., Rogers G. C., Sharp D. J., & Vale R. D. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 158, 873-884 (2002
    • (2002) J. Cell Biol , vol.158 , pp. 873-884
    • Rogers, S.L.1    Rogers, G.C.2    Sharp, D.J.3    Vale, R.D.4
  • 36
    • 1842665850 scopus 로고    scopus 로고
    • The microtubule plus end-tracking proteins mal3p, and tip1p cooperate for cell-end targeting of interphase microtubules
    • Busch K. E., & Brunner D. The microtubule plus end-tracking proteins mal3p, and tip1p cooperate for cell-end targeting of interphase microtubules. Curr. Biol. 14, 548-559 (2004
    • (2004) Curr. Biol , vol.14 , pp. 548-559
    • Busch, K.E.1    Brunner, D.2
  • 37
    • 77955339199 scopus 로고    scopus 로고
    • A minimal midzone protein module controls formation, and length of antiparallel microtubule overlaps
    • Bieling P., Telley I. A., & Surrey T. A minimal midzone protein module controls formation, and length of antiparallel microtubule overlaps. Cell 142, 420-432 (2010
    • (2010) Cell , vol.142 , pp. 420-432
    • Bieling, P.1    Telley, I.A.2    Surrey, T.3
  • 38
    • 84886639343 scopus 로고    scopus 로고
    • CFEOM1 associated kinesin KIF21A is a cortical microtubule growth inhibitor
    • Van Der Vaart B., et al. CFEOM1 associated kinesin KIF21A is a cortical microtubule growth inhibitor. Dev. Cell 27, 145-160 (2013
    • (2013) Dev. Cell , vol.27 , pp. 145-160
    • Van Der Vaart, B.1
  • 39
    • 84903701173 scopus 로고    scopus 로고
    • The kinesin 4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment
    • He M., et al. The kinesin 4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment. Nat. Cell Biol. 16, 663-672 (2014
    • (2014) Nat. Cell Biol , vol.16 , pp. 663-672
    • He, M.1
  • 40
    • 84918532363 scopus 로고    scopus 로고
    • Pre-anaphase chromosome oscillations are regulated by the antagonistic activities of Cdk1, and PP1 on Kif18A
    • Hafner J., Mayr M. I., Mockel M. M., & Mayer T. U. Pre-anaphase chromosome oscillations are regulated by the antagonistic activities of Cdk1, and PP1 on Kif18A. Nat. Commun. 5, 4397 (2014
    • (2014) Nat. Commun , vol.5 , pp. 4397
    • Hafner, J.1    Mayr, M.I.2    Mockel, M.M.3    Mayer, T.U.4
  • 41
    • 76749091008 scopus 로고    scopus 로고
    • The kinesin 8 Kif18A dampens microtubule plus-end dynamics
    • Du Y., English C. A., & Ohi R. The kinesin 8 Kif18A dampens microtubule plus-end dynamics. Curr. Biol. 20, 374-380 (2010
    • (2010) Curr. Biol , vol.20 , pp. 374-380
    • Du, Y.1    English, C.A.2    Ohi, R.3
  • 42
    • 38849201167 scopus 로고    scopus 로고
    • The kinesin 8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment
    • Stumpff J., von Dassow G., Wagenbach M., Asbury C., & Wordeman L. The kinesin 8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev. Cell 14, 252-262 (2008
    • (2008) Dev. Cell , vol.14 , pp. 252-262
    • Stumpff, J.1    Von Dassow, G.2    Wagenbach, M.3    Asbury, C.4    Wordeman, L.5
  • 43
    • 77955588492 scopus 로고    scopus 로고
    • CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule
    • Al Bassam J., et al. CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule. Dev. Cell 19, 245-258 (2010
    • (2010) Dev. Cell , vol.19 , pp. 245-258
    • Al Bassam, J.1
  • 44
    • 84905686589 scopus 로고    scopus 로고
    • CLASPs are required for proper microtubule localization of end-binding proteins
    • Grimaldi A. D., et al. CLASPs are required for proper microtubule localization of end-binding proteins. Dev. Cell 30, 343-352 (2014
    • (2014) Dev. Cell , vol.30 , pp. 343-352
    • Grimaldi, A.D.1
  • 45
    • 20344364415 scopus 로고    scopus 로고
    • CLIPs, and CLASPs, and cellular dynamics
    • Galjart N. CLIPs, and CLASPs, and cellular dynamics. Nat. Rev. Mol. Cell Biol. 6, 487-498 (2005
    • (2005) Nat. Rev. Mol. Cell Biol , vol.6 , pp. 487-498
    • Galjart, N.1
  • 47
    • 84880944148 scopus 로고    scopus 로고
    • Dynactin subunit p150(Glued) is a neuron-specific anti-catastrophe factor
    • Lazarus J. E., Moughamian A. J., Tokito M. K., & Holzbaur E. L. Dynactin subunit p150(Glued) is a neuron-specific anti-catastrophe factor. PLoS Biol. 11, e1001611 (2013
    • (2013) PLoS Biol , vol.11 , pp. e1001611
    • Lazarus, J.E.1    Moughamian, A.J.2    Tokito, M.K.3    Holzbaur, E.L.4
  • 48
    • 84859594032 scopus 로고    scopus 로고
    • Dynein tethers, and stabilizes dynamic microtubule plus ends
    • Hendricks A. G., et al. Dynein tethers, and stabilizes dynamic microtubule plus ends. Curr. Biol. 22, 632-637 (2012
    • (2012) Curr. Biol , vol.22 , pp. 632-637
    • Hendricks, A.G.1
  • 49
    • 84856753159 scopus 로고    scopus 로고
    • Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters
    • Laan L., et al. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 148, 502-514 (2012
    • (2012) Cell , vol.148 , pp. 502-514
    • Laan, L.1
  • 50
    • 77957930053 scopus 로고    scopus 로고
    • Membrane invaginations reveal cortical sites that pull on mitotic spindles in one-cell C elegans embryos
    • Redemann S., et al. Membrane invaginations reveal cortical sites that pull on mitotic spindles in one-cell C. elegans embryos. PLoS ONE 5, e12301 (2010
    • (2010) Plos One , vol.5 , pp. e12301
    • Redemann, S.1
  • 51
    • 0042845879 scopus 로고    scopus 로고
    • The distribution of active force generators controls mitotic spindle position
    • Grill S. W., Howard J., Schaffer E., Stelzer E. H., & Hyman A. A. The distribution of active force generators controls mitotic spindle position. Science 301, 518-521 (2003
    • (2003) Science , vol.301 , pp. 518-521
    • Grill, S.W.1    Howard, J.2    Schaffer, E.3    Stelzer, E.H.4    Hyman, A.A.5
  • 52
    • 84873044987 scopus 로고    scopus 로고
    • Mechanisms of spindle positioning
    • McNally F. J. Mechanisms of spindle positioning. J. Cell Biol. 200, 131-140 (2013
    • (2013) J. Cell Biol , vol.200 , pp. 131-140
    • McNally, F.J.1
  • 53
    • 80052495937 scopus 로고    scopus 로고
    • Map4, and clasp1 operate as a safety mechanism to maintain a stable spindle position in mitosis
    • Samora C. P., et al. MAP4, and CLASP1 operate as a safety mechanism to maintain a stable spindle position in mitosis. Nat. Cell Biol. 13, 1040-1050 (2011
    • (2011) Nat. Cell Biol , vol.13 , pp. 1040-1050
    • Samora, C.P.1
  • 54
    • 0141480958 scopus 로고    scopus 로고
    • Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1
    • Hayashi I., & Ikura M. Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1). J. Biol. Chem. 278, 36430-36434 (2003
    • (2003) J. Biol. Chem , vol.278 , pp. 36430-36434
    • Hayashi, I.1    Ikura, M.2
  • 55
    • 77949324196 scopus 로고    scopus 로고
    • Molecular insights into mammalian end-binding protein heterodimerization
    • De Groot C. O., et al. Molecular insights into mammalian end-binding protein heterodimerization. J. Biol. Chem. 285, 5802-5814 (2010
    • (2010) J. Biol. Chem , vol.285 , pp. 5802-5814
    • De Groot, C.O.1
  • 56
    • 13944255721 scopus 로고    scopus 로고
    • Structural determinants for EB1 mediated recruitment of APC, and spectraplakins to the microtubule plus end
    • Slep K. C., et al. Structural determinants for EB1 mediated recruitment of APC, and spectraplakins to the microtubule plus end. J. Cell Biol. 168, 587-598 (2005
    • (2005) J. Cell Biol , vol.168 , pp. 587-598
    • Slep, K.C.1
  • 57
    • 84906879124 scopus 로고    scopus 로고
    • Microtubule +TIP protein EB1 binds to GTP, and undergoes dissociation from dimer to monomer on binding GTP
    • Gireesh K. K., et al. Microtubule +TIP protein EB1 binds to GTP, and undergoes dissociation from dimer to monomer on binding GTP. Biochemistry 53, 5551-5557 (2014
    • (2014) Biochemistry , vol.53 , pp. 5551-5557
    • Gireesh, K.K.1
  • 58
    • 34748862943 scopus 로고    scopus 로고
    • Structural basis of microtubule plus end tracking by XMAP215 CLIP 170, and EB1
    • Slep K. C., & Vale R. D. Structural basis of microtubule plus end tracking by XMAP215, CLIP 170, and EB1. Mol. Cell 27, 976-991 (2007
    • (2007) Mol. Cell , vol.27 , pp. 976-991
    • Slep, K.C.1    Vale, R.D.2
  • 59
    • 84912130653 scopus 로고    scopus 로고
    • Superresolution imaging reveals structural features of EB1 in microtubule plus-end tracking
    • Xia P., et al. Superresolution imaging reveals structural features of EB1 in microtubule plus-end tracking. Mol. Biol. Cell 25, 4166-4173 (2014
    • (2014) Mol. Biol. Cell , vol.25 , pp. 4166-4173
    • Xia, P.1
  • 60
    • 80051682552 scopus 로고    scopus 로고
    • Insights into EB structure, and the role of its C terminal domain in discriminating microtubule tips from lattice
    • Buey R. M., et al. Insights into EB structure, and the role of its C terminal domain in discriminating microtubule tips from lattice. Mol. Biol. Cell 22, 2912-2923 (2011
    • (2011) Mol. Biol. Cell , vol.22 , pp. 2912-2923
    • Buey, R.M.1
  • 61
    • 84855841218 scopus 로고    scopus 로고
    • A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation, and stabilizes microtubules
    • Iimori M., et al. A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation, and stabilizes microtubules. Exp. Cell Res. 318, 262-275 (2012
    • (2012) Exp. Cell Res , vol.318 , pp. 262-275
    • Iimori, M.1
  • 62
    • 84878560571 scopus 로고    scopus 로고
    • Aurora B spatially regulates EB3 phosphorylation to coordinate daughter cell adhesion with cytokinesis
    • Ferreira J. G., Pereira A. J., Akhmanova A., & Maiato H. Aurora B spatially regulates EB3 phosphorylation to coordinate daughter cell adhesion with cytokinesis. J. Cell Biol. 201, 709-724 (2013
    • (2013) J. Cell Biol , vol.201 , pp. 709-724
    • Ferreira, J.G.1    Pereira, A.J.2    Akhmanova, A.3    Maiato, H.4
  • 63
    • 68549121078 scopus 로고    scopus 로고
    • Phosphoregulation of the budding yeast eb1 homologue bim1p by aurora/ipl1p
    • Zimniak T., Stengl K., Mechtler K., & Westermann S. Phosphoregulation of the budding yeast EB1 homologue Bim1p by Aurora/Ipl1p. J. Cell Biol. 186, 379-391 (2009
    • (2009) J. Cell Biol , vol.186 , pp. 379-391
    • Zimniak, T.1    Stengl, K.2    Mechtler, K.3    Westermann, S.4
  • 64
    • 84867345012 scopus 로고    scopus 로고
    • EB1 acetylation by P300/CBP-associated factor (PCAF) ensures accurate kinetochore-microtubule interactions in mitosis
    • Xia P., et al. EB1 acetylation by P300/CBP-associated factor (PCAF) ensures accurate kinetochore-microtubule interactions in mitosis. Proc. Natl Acad. Sci. USA 109, 16564-16569 (2012
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 16564-16569
    • Xia, P.1
  • 65
    • 33947605240 scopus 로고    scopus 로고
    • Ubiquitin-dependent proteolysis of the microtubule end-binding protein 1, EB1, is controlled by the COP9 signalosome: Possible consequences for microtubule filament stability
    • Peth A., Boettcher J. P., & Dubiel W. Ubiquitin-dependent proteolysis of the microtubule end-binding protein 1, EB1, is controlled by the COP9 signalosome: possible consequences for microtubule filament stability. J. Mol. Biol. 368, 550-563 (2007
    • (2007) J. Mol. Biol , vol.368 , pp. 550-563
    • Peth, A.1    Boettcher, J.P.2    Dubiel, W.3
  • 66
    • 0034644119 scopus 로고    scopus 로고
    • The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules
    • Mimori-Kiyosue Y., Shiina N., & Tsukita S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol. 10, 865-868 (2000
    • (2000) Curr. Biol , vol.10 , pp. 865-868
    • Mimori-Kiyosue, Y.1    Shiina, N.2    Tsukita, S.3
  • 67
    • 37249075604 scopus 로고    scopus 로고
    • Reconstitution of a microtubule plus-end tracking system in vitro
    • Bieling P., et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450, 1100-1105 (2007
    • (2007) Nature , vol.450 , pp. 1100-1105
    • Bieling, P.1
  • 69
    • 40849088165 scopus 로고    scopus 로고
    • Dynamic behavior of GFP-CLIP 170 reveals fast protein turnover on microtubule plus ends
    • Dragestein K. A., et al. Dynamic behavior of GFP-CLIP 170 reveals fast protein turnover on microtubule plus ends. J. Cell Biol. 180, 729-737 (2008
    • (2008) J. Cell Biol , vol.180 , pp. 729-737
    • Dragestein, K.A.1
  • 70
    • 70449574092 scopus 로고    scopus 로고
    • EB1 recognizes the nucleotide state of tubulin in the microtubule lattice
    • Zanic M., Stear J. H., Hyman A. A., & Howard J. EB1 recognizes the nucleotide state of tubulin in the microtubule lattice. PLoS ONE 4, e7585 (2009
    • (2009) Plos One , vol.4 , pp. e7585
    • Zanic, M.1    Stear, J.H.2    Hyman, A.A.3    Howard, J.4
  • 71
    • 84859736946 scopus 로고    scopus 로고
    • EBs recognize a nucleotide-dependent structural cap at growing microtubule ends
    • Maurer S. P., Fourniol F. J., Bohner G., Moores C. A., & Surrey T. EBs recognize a nucleotide-dependent structural cap at growing microtubule ends. Cell 149, 371-382 (2012
    • (2012) Cell , vol.149 , pp. 371-382
    • Maurer, S.P.1    Fourniol, F.J.2    Bohner, G.3    Moores, C.A.4    Surrey, T.5
  • 72
    • 84908338443 scopus 로고    scopus 로고
    • Doublecortin recognizes the longitudinal curvature of the microtubule end, and lattice
    • Bechstedt S., Lu K., & Brouhard G. J. Doublecortin recognizes the longitudinal curvature of the microtubule end, and lattice. Curr. Biol. 24, 2366-2375 (2014
    • (2014) Curr. Biol , vol.24 , pp. 2366-2375
    • Bechstedt, S.1    Lu, K.2    Brouhard, G.J.3
  • 73
    • 80053112323 scopus 로고    scopus 로고
    • Regulation of microtubule dynamics by tog-domain proteins xmap215/dis1, and clasp
    • Al Bassam J., & Chang F. Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1, and CLASP. Trends Cell Biol. 21, 604-614 (2011
    • (2011) Trends Cell Biol , vol.21 , pp. 604-614
    • Al Bassam, J.1    Chang, F.2
  • 74
    • 33847639293 scopus 로고    scopus 로고
    • Crystal structure of a TOG domain: Conserved features of XMAP215/Dis1 family TOG domains, and implications for tubulin binding
    • Al Bassam J., Larsen N. A., Hyman A. A., & Harrison S. C. Crystal structure of a TOG domain: conserved features of XMAP215/Dis1 family TOG domains, and implications for tubulin binding. Structure 15, 355-362 (2007
    • (2007) Structure , vol.15 , pp. 355-362
    • Al Bassam, J.1    Larsen, N.A.2    Hyman, A.A.3    Harrison, S.C.4
  • 75
    • 84905976506 scopus 로고    scopus 로고
    • The xmap215 family drives microtubule polymerization using a structurally diverse tog array
    • Fox J. C., Howard A. E., Currie J. D., Rogers S. L., & Slep K. C. The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array. Mol. Biol. Cell 25, 2375-2392 (2014
    • (2014) Mol. Biol. Cell , vol.25 , pp. 2375-2392
    • Fox, J.C.1    Howard, A.E.2    Currie, J.D.3    Rogers, S.L.4    Slep, K.C.5
  • 76
    • 84865074275 scopus 로고    scopus 로고
    • TOG: αβ -tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase
    • Ayaz P., Ye X., Huddleston P., Brautigam C. A., & Rice L. M. A. TOG: αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase. Science 337, 857-860 (2012
    • (2012) Science , vol.337 , pp. 857-860
    • Ayaz, P.1    Ye, X.2    Huddleston, P.3    Brautigam, C.A.4    Rice, L.M.A.5
  • 77
    • 84908330392 scopus 로고    scopus 로고
    • A tethered delivery mechanism explains the catalytic action of a microtubule polymerase
    • Ayaz P., et al. A tethered delivery mechanism explains the catalytic action of a microtubule polymerase. eLife 3, e03069 (2014
    • (2014) ELife , vol.3 , pp. e03069
    • Ayaz, P.1
  • 78
    • 79952598938 scopus 로고    scopus 로고
    • XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains, and a basic lattice-binding region
    • Widlund P. O., et al. XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains, and a basic lattice-binding region. Proc. Natl Acad. Sci. USA 108, 2741-2746 (2011
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 2741-2746
    • Widlund, P.O.1
  • 79
    • 84871203317 scopus 로고    scopus 로고
    • Dissecting the nanoscale distributions, and functions of microtubule-end-binding proteins EB1, and ch TOG in interphase HeLa cells
    • Nakamura S., et al. Dissecting the nanoscale distributions, and functions of microtubule-end-binding proteins EB1, and ch TOG in interphase HeLa cells. PLoS ONE 7, e51442 (2012
    • (2012) Plos One , vol.7 , pp. e51442
    • Nakamura, S.1
  • 80
    • 84883660746 scopus 로고    scopus 로고
    • Kinetochore kinesin CENP e is a processive bi directional tracker of dynamic microtubule tips
    • Gudimchuk N., et al. Kinetochore kinesin CENP E is a processive bi directional tracker of dynamic microtubule tips. Nat. Cell Biol. 15, 1079-1088 (2013
    • (2013) Nat. Cell Biol , vol.15 , pp. 1079-1088
    • Gudimchuk, N.1
  • 81
    • 80052230972 scopus 로고    scopus 로고
    • A tethering mechanism controls the processivity, and kinetochore-microtubule plus-end enrichment of the kinesin 8 kif18a
    • Stumpff J., et al. A tethering mechanism controls the processivity, and kinetochore-microtubule plus-end enrichment of the kinesin 8 Kif18A. Mol. Cell 43, 764-775 (2011
    • (2011) Mol. Cell , vol.43 , pp. 764-775
    • Stumpff, J.1
  • 82
    • 80052209594 scopus 로고    scopus 로고
    • Kif18A uses a microtubule binding site in the tail for plus-end localization, and spindle length regulation
    • Weaver L. N., et al. Kif18A uses a microtubule binding site in the tail for plus-end localization, and spindle length regulation. Curr. Biol. 21, 1500-1506 (2011
    • (2011) Curr. Biol , vol.21 , pp. 1500-1506
    • Weaver, L.N.1
  • 83
    • 80052187303 scopus 로고    scopus 로고
    • Mechanisms underlying the dual-mode regulation of microtubule dynamics by Kip3/kinesin 8
    • Su X., et al. Mechanisms underlying the dual-mode regulation of microtubule dynamics by Kip3/kinesin 8. Mol. Cell 43, 751-763 (2011
    • (2011) Mol. Cell , vol.43 , pp. 751-763
    • Su, X.1
  • 84
    • 77449158973 scopus 로고    scopus 로고
    • Catalysis of the microtubule on rate is the major parameter regulating the depolymerase activity of MCAK
    • Cooper J. R., Wagenbach M., Asbury C. L., & Wordeman L. Catalysis of the microtubule on rate is the major parameter regulating the depolymerase activity of MCAK. Nat. Struct. Mol. Biol. 17, 77-82 (2009
    • (2009) Nat. Struct. Mol. Biol , vol.17 , pp. 77-82
    • Cooper, J.R.1    Wagenbach, M.2    Asbury, C.L.3    Wordeman, L.4
  • 85
    • 84929172163 scopus 로고    scopus 로고
    • The C terminal region of the motor protein MCAK controls its structure, and activity through a conformational switch
    • Talapatra S. K., Harker B., & Welburn J. P. The C terminal region of the motor protein MCAK controls its structure, and activity through a conformational switch. eLife 4, 06421 (2015
    • (2015) ELife , vol.4 , pp. 06421
    • Talapatra, S.K.1    Harker, B.2    Welburn, J.P.3
  • 86
    • 84890792731 scopus 로고    scopus 로고
    • Aurora B inhibits MCAK activity through a phosphoconformational switch that reduces microtubule association
    • Ems-McClung S. C., et al. Aurora B inhibits MCAK activity through a phosphoconformational switch that reduces microtubule association. Curr. Biol. 23, 2491-2499 (2013
    • (2013) Curr. Biol , vol.23 , pp. 2491-2499
    • Ems-McClung, S.C.1
  • 87
    • 33646950699 scopus 로고    scopus 로고
    • The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends
    • Helenius J., Brouhard G., Kalaidzidis Y., Diez S., & Howard J. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441, 115-119 (2006
    • (2006) Nature , vol.441 , pp. 115-119
    • Helenius, J.1    Brouhard, G.2    Kalaidzidis, Y.3    Diez, S.4    Howard, J.5
  • 88
    • 78049489092 scopus 로고    scopus 로고
    • Template-free 13 protofilament microtubule-map assembly visualized at 8 å resolution
    • Fourniol F. J., et al. Template-free 13 protofilament microtubule-MAP assembly visualized at 8 Å resolution. J. Cell Biol. 191, 463-470 (2010
    • (2010) J. Cell Biol , vol.191 , pp. 463-470
    • Fourniol, F.J.1
  • 89
    • 61349161067 scopus 로고    scopus 로고
    • The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion
    • Powers A. F., et al. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136, 865-875 (2009
    • (2009) Cell , vol.136 , pp. 865-875
    • Powers, A.F.1
  • 90
    • 77952377598 scopus 로고    scopus 로고
    • The dam1 complex confers microtubule plus end-racking activity to the ndc80 kinetochore complex
    • Lampert F., Hornung P., & Westermann S. The Dam1 complex confers microtubule plus end-racking activity to the Ndc80 kinetochore complex. J. Cell Biol. 189, 641-649 (2010
    • (2010) J. Cell Biol , vol.189 , pp. 641-649
    • Lampert, F.1    Hornung, P.2    Westermann, S.3
  • 91
    • 77957968002 scopus 로고    scopus 로고
    • The Ndc80 kinetochore complex forms oligomeric arrays along microtubules
    • Alushin G. M., et al. The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature 467, 805-810 (2010
    • (2010) Nature , vol.467 , pp. 805-810
    • Alushin, G.M.1
  • 92
    • 75749117934 scopus 로고    scopus 로고
    • Mechanisms of force generation by end on kinetochore-microtubule attachments
    • Joglekar A. P., Bloom K. S., & Salmon E. D. Mechanisms of force generation by end on kinetochore-microtubule attachments. Curr. Opin. Cell Biol. 22, 57-67 (2010
    • (2010) Curr. Opin. Cell Biol , vol.22 , pp. 57-67
    • Joglekar, A.P.1    Bloom, K.S.2    Salmon, E.D.3
  • 93
    • 34948911230 scopus 로고    scopus 로고
    • Structure-function relationship of CAP-Gly domains
    • Weisbrich A., et al. Structure-function relationship of CAP-Gly domains. Nat. Struct. Mol. Biol. 14, 959-967 (2007
    • (2007) Nat. Struct. Mol. Biol , vol.14 , pp. 959-967
    • Weisbrich, A.1
  • 94
    • 34547532472 scopus 로고    scopus 로고
    • Structural basis for tubulin recognition by cytoplasmic linker protein 170, and its autoinhibition
    • Mishima M., et al. Structural basis for tubulin recognition by cytoplasmic linker protein 170, and its autoinhibition. Proc. Natl Acad. Sci. USA 104, 10346-10351 (2007
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 10346-10351
    • Mishima, M.1
  • 95
    • 33747891739 scopus 로고    scopus 로고
    • Key interaction modes of dynamic +TIP networks
    • Honnappa S., et al. Key interaction modes of dynamic +TIP networks. Mol. Cell 23, 663-671 (2006
    • (2006) Mol. Cell , vol.23 , pp. 663-671
    • Honnappa, S.1
  • 96
    • 67650627616 scopus 로고    scopus 로고
    • An EB1 binding motif acts as a microtubule tip localization signal
    • Honnappa S., et al. An EB1 binding motif acts as a microtubule tip localization signal. Cell 138, 366-376 (2009
    • (2009) Cell , vol.138 , pp. 366-376
    • Honnappa, S.1
  • 97
    • 84864319735 scopus 로고    scopus 로고
    • TIPs: SxIPping along microtubule ends
    • Kumar P., & Wittmann T. TIPs: SxIPping along microtubule ends. Trends Cell Biol. 22, 418-428 (2012
    • (2012) Trends Cell Biol , vol.22 , pp. 418-428
    • Kumar, P.1    Wittmann, T.2
  • 98
    • 84867402137 scopus 로고    scopus 로고
    • A proteome-wide screen for mammalian SxIP motif-containing microtubule plus-end tracking proteins
    • Jiang K., et al. A proteome-wide screen for mammalian SxIP motif-containing microtubule plus-end tracking proteins. Curr. Biol. 22, 1800-1807 (2012
    • (2012) Curr. Biol , vol.22 , pp. 1800-1807
    • Jiang, K.1
  • 99
    • 84979935495 scopus 로고    scopus 로고
    • A proteomic study of mitotic phase-specific interactors of EB1 reveals a role for SXIP-mediated protein interactions in anaphase onset
    • Tamura N., et al. A proteomic study of mitotic phase-specific interactors of EB1 reveals a role for SXIP-mediated protein interactions in anaphase onset. Biol. Open 4, 155-169 (2015
    • (2015) Biol. Open , vol.4 , pp. 155-169
    • Tamura, N.1
  • 100
    • 84861210634 scopus 로고    scopus 로고
    • Multisite phosphorylation disrupts arginine-glutamate salt bridge networks required for binding of cytoplasmic linker-associated protein 2 (CLASP2) to end-binding protein 1 (EB1
    • Kumar P., et al. Multisite phosphorylation disrupts arginine-glutamate salt bridge networks required for binding of cytoplasmic linker-associated protein 2 (CLASP2) to end-binding protein 1 (EB1). J. Biol. Chem. 287, 17050-17064 (2012
    • (2012) J. Biol. Chem , vol.287 , pp. 17050-17064
    • Kumar, P.1
  • 101
    • 84872002781 scopus 로고    scopus 로고
    • Reconstitution of dynamic microtubules with Drosophila XMAP215 EB1 and Sentin
    • Li W., et al. Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and Sentin. J. Cell Biol. 199, 849-862 (2012
    • (2012) J. Cell Biol , vol.199 , pp. 849-862
    • Li, W.1
  • 102
    • 84905961940 scopus 로고    scopus 로고
    • Reconstitution of a hierarchical +TIP interaction network controlling microtubule end tracking of dynein
    • Duellberg C., et al. Reconstitution of a hierarchical +TIP interaction network controlling microtubule end tracking of dynein. Nat. Cell Biol. 16, 804-811 (2014
    • (2014) Nat. Cell Biol , vol.16 , pp. 804-811
    • Duellberg, C.1
  • 103
    • 84902675050 scopus 로고    scopus 로고
    • Reconstitution of dynein transport to the microtubule plus end by kinesin
    • Roberts A. J., Goodman B. S., & Reck-Peterson S. L. Reconstitution of dynein transport to the microtubule plus end by kinesin. eLife 3, e02641 (2014
    • (2014) ELife , vol.3 , pp. e02641
    • Roberts, A.J.1    Goodman, B.S.2    Reck-Peterson, S.L.3
  • 104
    • 80052033722 scopus 로고    scopus 로고
    • A complex of Kif18b, and MCAK promotes microtubule depolymerization, and is negatively regulated by Aurora kinases
    • Tanenbaum M. E., et al. A complex of Kif18b, and MCAK promotes microtubule depolymerization, and is negatively regulated by Aurora kinases. Curr. Biol. 21, 1356-1365 (2011
    • (2011) Curr. Biol , vol.21 , pp. 1356-1365
    • Tanenbaum, M.E.1
  • 105
    • 84905923153 scopus 로고    scopus 로고
    • Promoting microtubule assembly: A hypothesis for the functional significance of the +TIP network
    • Gupta K. K., Alberico E. O., Nathke I. S., & Goodson H. V. Promoting microtubule assembly: a hypothesis for the functional significance of the +TIP network. Bioessays 36, 818-826 (2014
    • (2014) Bioessays , vol.36 , pp. 818-826
    • Gupta, K.K.1    Alberico, E.O.2    Nathke, I.S.3    Goodson, H.V.4
  • 106
    • 0000497321 scopus 로고
    • Equilibrium and kinetic theory of polymerization, and the sol-gel transition
    • Cohen R. J., & Benedek G. B. Equilibrium, and kinetic theory of polymerization, and the sol-gel transition. J. Phys. Chem. 86, 3696-3714 (1982
    • (1982) J. Phys. Chem , vol.86 , pp. 3696-3714
    • Cohen, R.J.1    Benedek, G.B.2
  • 107
    • 84862776582 scopus 로고    scopus 로고
    • Phase transitions in the assembly of multivalent signalling proteins
    • Li P., et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336-340 (2012
    • (2012) Nature , vol.483 , pp. 336-340
    • Li, P.1
  • 108
    • 0344845405 scopus 로고    scopus 로고
    • ACF7: An essential integrator of microtubule dynamics
    • Kodama A., Karakesisoglou I., Wong E., Vaezi A., & Fuchs E. ACF7: an essential integrator of microtubule dynamics. Cell 115, 343-354 (2003
    • (2003) Cell , vol.115 , pp. 343-354
    • Kodama, A.1    Karakesisoglou, I.2    Wong, E.3    Vaezi, A.4    Fuchs, E.5
  • 109
  • 110
    • 84863452328 scopus 로고    scopus 로고
    • Spectraplakins promote microtubule-mediated axonal growth by functioning as structural microtubule-associated proteins, and EB1 dependent +TIPs (tip interacting proteins
    • Alves-Silva J., et al. Spectraplakins promote microtubule-mediated axonal growth by functioning as structural microtubule-associated proteins, and EB1 dependent +TIPs (tip interacting proteins). J. Neurosci. 32, 9143-9158 (2012
    • (2012) J. Neurosci , vol.32 , pp. 9143-9158
    • Alves-Silva, J.1
  • 111
    • 84910020299 scopus 로고    scopus 로고
    • Actin-microtubule coordination at growing microtubule ends
    • Preciado López M., et al. Actin-microtubule coordination at growing microtubule ends. Nat. Commun. 5, 4778 (2014
    • (2014) Nat. Commun , vol.5 , pp. 4778
    • Preciado López, M.1
  • 112
    • 3142673447 scopus 로고    scopus 로고
    • Cdk1-Clb4 controls the interaction of astral microtubule plus ends with subdomains of the daughter cell cortex
    • Maekawa H., & Schiebel E. Cdk1-Clb4 controls the interaction of astral microtubule plus ends with subdomains of the daughter cell cortex. Genes Dev. 18, 1709-1724 (2004
    • (2004) Genes Dev , vol.18 , pp. 1709-1724
    • Maekawa, H.1    Schiebel, E.2
  • 113
    • 0037459058 scopus 로고    scopus 로고
    • Asymmetric loading of Kar9 onto spindle poles, and microtubules ensures proper spindle alignment
    • Liakopoulos D., Kusch J., Grava S., Vogel J., & Barral Y. Asymmetric loading of Kar9 onto spindle poles, and microtubules ensures proper spindle alignment. Cell 112, 561-574 (2003
    • (2003) Cell , vol.112 , pp. 561-574
    • Liakopoulos, D.1    Kusch, J.2    Grava, S.3    Vogel, J.4    Barral, Y.5
  • 114
    • 78650515566 scopus 로고    scopus 로고
    • Directed microtubule growth, + TIPs, and kinesin 2 are required for uniform microtubule polarity in dendrites
    • Mattie F. J., et al. Directed microtubule growth, +TIPs, and kinesin 2 are required for uniform microtubule polarity in dendrites. Curr. Biol. 20, 2169-2177 (2010
    • (2010) Curr. Biol , vol.20 , pp. 2169-2177
    • Mattie, F.J.1
  • 115
    • 84895072689 scopus 로고    scopus 로고
    • Mechanical, and geometrical constraints control kinesin-based microtubule guidance
    • Doodhi H., Katrukha E. A., Kapitein L. C., & Akhmanova A. Mechanical, and geometrical constraints control kinesin-based microtubule guidance. Curr. Biol. 24, 322-328 (2014
    • (2014) Curr. Biol , vol.24 , pp. 322-328
    • Doodhi, H.1    Katrukha, E.A.2    Kapitein, L.C.3    Akhmanova, A.4
  • 116
    • 84895071313 scopus 로고    scopus 로고
    • An EB1-kinesin complex is sufficient to steer microtubule growth in vitro
    • Chen Y., Rolls M. M., & Hancock W. O. An EB1-kinesin complex is sufficient to steer microtubule growth in vitro. Curr. Biol. 24, 316-321 (2014
    • (2014) Curr. Biol , vol.24 , pp. 316-321
    • Chen, Y.1    Rolls, M.M.2    Hancock, W.O.3
  • 117
    • 84870512478 scopus 로고    scopus 로고
    • The kinesin 14 Klp2 is negatively regulated by the SIN for proper spindle elongation, and telophase nuclear positioning
    • Mana-Capelli S., McLean J. R., Chen C. T., Gould K. L., & McCollum D. The kinesin 14 Klp2 is negatively regulated by the SIN for proper spindle elongation, and telophase nuclear positioning. Mol. Biol. Cell 23, 4592-4600 (2012
    • (2012) Mol. Biol. Cell , vol.23 , pp. 4592-4600
    • Mana-Capelli, S.1    McLean, J.R.2    Chen, C.T.3    Gould, K.L.4    McCollum, D.5
  • 118
    • 84885852166 scopus 로고    scopus 로고
    • The human kinesin 14 HSET tracks the tips of growing microtubules in vitro
    • Braun M., et al. The human kinesin 14 HSET tracks the tips of growing microtubules in vitro. Cytoskeleton (Hoboken) 70, 515-521 (2013
    • (2013) Cytoskeleton (Hoboken , vol.70 , pp. 515-521
    • Braun, M.1
  • 119
    • 27544447708 scopus 로고    scopus 로고
    • Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins
    • Goshima G., Nedelec F., & Vale R. D. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J. Cell Biol. 171, 229-240 (2005
    • (2005) J. Cell Biol , vol.171 , pp. 229-240
    • Goshima, G.1    Nedelec, F.2    Vale, R.D.3
  • 120
    • 33846280179 scopus 로고    scopus 로고
    • Crosslinkers, and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast
    • Janson M. E., et al. Crosslinkers, and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell 128, 357-368 (2007
    • (2007) Cell , vol.128 , pp. 357-368
    • Janson, M.E.1
  • 121
    • 16344378770 scopus 로고    scopus 로고
    • A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis
    • Ambrose J. C., Li W., Marcus A., Ma H., & Cyr R. A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol. Biol. Cell 16, 1584-1592 (2005
    • (2005) Mol. Biol. Cell , vol.16 , pp. 1584-1592
    • Ambrose, J.C.1    Li, W.2    Marcus, A.3    Ma, H.4    Cyr, R.5
  • 122
    • 84907987540 scopus 로고    scopus 로고
    • Minus-end-directed Kinesin 14 motors align antiparallel microtubules to control metaphase spindle length
    • Hepperla A. J., et al. Minus-end-directed Kinesin 14 motors align antiparallel microtubules to control metaphase spindle length. Dev. Cell 31, 61-72 (2014
    • (2014) Dev. Cell , vol.31 , pp. 61-72
    • Hepperla, A.J.1
  • 123
    • 84871530214 scopus 로고    scopus 로고
    • Microtubule attachment, and spindle assembly checkpoint signalling at the kinetochore
    • Foley E. A., & Kapoor T. M. Microtubule attachment, and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 14, 25-37 (2013
    • (2013) Nat. Rev. Mol. Cell Biol , vol.14 , pp. 25-37
    • Foley, E.A.1    Kapoor, T.M.2
  • 124
    • 0043199576 scopus 로고    scopus 로고
    • Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension
    • Homma N., et al. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114, 229-239 (2003
    • (2003) Cell , vol.114 , pp. 229-239
    • Homma, N.1
  • 125
    • 1642265093 scopus 로고    scopus 로고
    • Cortical control of microtubule stability, and polarization
    • Gundersen G. G., Gomes E. R., & Wen Y. Cortical control of microtubule stability, and polarization. Curr. Opin. Cell Biol. 16, 106-112 (2004
    • (2004) Curr. Opin. Cell Biol , vol.16 , pp. 106-112
    • Gundersen, G.G.1    Gomes, E.R.2    Wen, Y.3
  • 126
    • 84867433071 scopus 로고    scopus 로고
    • Amer2 protein interacts with EB1 protein, and adenomatous polyposis coli (APC), and controls microtubule stability, and cell migration
    • Pfister A. S., Hadjihannas M. V., Rohrig W., Schambony A., & Behrens J. Amer2 protein interacts with EB1 protein, and adenomatous polyposis coli (APC), and controls microtubule stability, and cell migration. J. Biol. Chem. 287, 35333-35340 (2012
    • (2012) J. Biol. Chem , vol.287 , pp. 35333-35340
    • Pfister, A.S.1    Hadjihannas, M.V.2    Rohrig, W.3    Schambony, A.4    Behrens, J.5
  • 127
    • 84901819506 scopus 로고    scopus 로고
    • CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis, and adhesion site turnover
    • Stehbens S. J., et al. CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis, and adhesion site turnover. Nat. Cell Biol. 16, 561-573 (2014
    • (2014) Nat. Cell Biol , vol.16 , pp. 561-573
    • Stehbens, S.J.1
  • 128
    • 84923806736 scopus 로고    scopus 로고
    • CLASP2 dependent microtubule capture at the neuromuscular junction membrane requires LL5β, and actin for focal delivery of acetylcholine receptor vesicles
    • Basu S., et al. CLASP2 dependent microtubule capture at the neuromuscular junction membrane requires LL5β, and actin for focal delivery of acetylcholine receptor vesicles. Mol. Biol. Cell 26, 938-951 (2015
    • (2015) Mol. Biol. Cell , vol.26 , pp. 938-951
    • Basu, S.1
  • 129
    • 84881159743 scopus 로고    scopus 로고
    • Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport
    • Moughamian A. J., Osborn G. E., Lazarus J. E., Maday S., & Holzbaur E. L. Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport. J. Neurosci. 33, 13190-13203 (2013
    • (2013) J. Neurosci , vol.33 , pp. 13190-13203
    • Moughamian, A.J.1    Osborn, G.E.2    Lazarus, J.E.3    Maday, S.4    Holzbaur, E.L.5
  • 130
    • 6944252346 scopus 로고    scopus 로고
    • Drosophila RhoGEF2 associates with microtubule plus ends in an EB1 dependent manner
    • Rogers S. L., Wiedemann U., Hacker U., Turck C., & Vale R. D. Drosophila RhoGEF2 associates with microtubule plus ends in an EB1 dependent manner. Curr. Biol. 14, 1827-1833 (2004
    • (2004) Curr. Biol , vol.14 , pp. 1827-1833
    • Rogers, S.L.1    Wiedemann, U.2    Hacker, U.3    Turck, C.4    Vale, R.D.5
  • 131
    • 84905646696 scopus 로고    scopus 로고
    • Dynamic microtubules catalyze formation of navigator-TRIO complexes to regulate neurite extension
    • Van Haren J., et al. Dynamic microtubules catalyze formation of navigator-TRIO complexes to regulate neurite extension. Curr. Biol. 24, 1778-1785 (2014
    • (2014) Curr. Biol , vol.24 , pp. 1778-1785
    • Van Haren, J.1
  • 132
    • 38949126881 scopus 로고    scopus 로고
    • STIM1 is a MT plus-end-tracking protein involved in remodeling of the ER
    • Grigoriev I., et al. STIM1 is a MT plus-end-tracking protein involved in remodeling of the ER. Curr. Biol. 18, 177-182 (2008
    • (2008) Curr. Biol , vol.18 , pp. 177-182
    • Grigoriev, I.1
  • 134
    • 0033771941 scopus 로고    scopus 로고
    • A new function for the γ-tubulin ring complex as a microtubule minus-end cap
    • Wiese C., & Zheng Y. A new function for the γ-tubulin ring complex as a microtubule minus-end cap. Nat. Cell Biol. 2, 358-364 (2000
    • (2000) Nat. Cell Biol , vol.2 , pp. 358-364
    • Wiese, C.1    Zheng, Y.2
  • 135
    • 84874077607 scopus 로고    scopus 로고
    • Branching microtubule nucleation in Xenopus egg extracts mediated by augmin, and TPX2
    • Petry S., Groen A. C., Ishihara K., Mitchison T. J., & Vale R. D. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin, and TPX2. Cell 152, 768-777 (2013
    • (2013) Cell , vol.152 , pp. 768-777
    • Petry, S.1    Groen, A.C.2    Ishihara, K.3    Mitchison, T.J.4    Vale, R.D.5
  • 136
    • 0033825277 scopus 로고    scopus 로고
    • Microtubule minus-end anchorage at centrosomal, and non-centrosomal sites: The role of ninein
    • Mogensen M. M., Malik A., Piel M., Bouckson-Castaing V., & Bornens M. Microtubule minus-end anchorage at centrosomal, and non-centrosomal sites: the role of ninein. J. Cell Sci. 113, 3013-3023 (2000
    • (2000) J. Cell Sci , vol.113 , pp. 3013-3023
    • Mogensen, M.M.1    Malik, A.2    Piel, M.3    Bouckson-Castaing, V.4    Bornens, M.5
  • 137
    • 18844427353 scopus 로고    scopus 로고
    • Microtubule nucleation, and anchoring at the centrosome are independent processes linked by ninein function
    • Delgehyr N., Sillibourne J., & Bornens M. Microtubule nucleation, and anchoring at the centrosome are independent processes linked by ninein function. J. Cell Sci. 118, 1565-1575 (2005
    • (2005) J. Cell Sci , vol.118 , pp. 1565-1575
    • Delgehyr, N.1    Sillibourne, J.2    Bornens, M.3
  • 138
    • 33846439062 scopus 로고    scopus 로고
    • Desmoplakin: An unexpected regulator of microtubule organization in the epidermis
    • Lechler T., & Fuchs E. Desmoplakin: an unexpected regulator of microtubule organization in the epidermis. J. Cell Biol. 176, 147-154 (2007
    • (2007) J. Cell Biol , vol.176 , pp. 147-154
    • Lechler, T.1    Fuchs, E.2
  • 139
    • 0037191046 scopus 로고    scopus 로고
    • Assembly of centrosomal proteins, and microtubule organization depends on PCM 1
    • Dammermann A., & Merdes A. Assembly of centrosomal proteins, and microtubule organization depends on PCM 1. J. Cell Biol. 159, 255-266 (2002
    • (2002) J. Cell Biol , vol.159 , pp. 255-266
    • Dammermann, A.1    Merdes, A.2
  • 140
    • 84934440511 scopus 로고    scopus 로고
    • Microtubule-associated proteins control the kinetics of microtubule nucleation
    • Wieczorek M., Bechstedt S., Chaaban S., & Brouhard G. J. Microtubule-associated proteins control the kinetics of microtubule nucleation. Nat. Cell Biol. 17, 907-916 (2015
    • (2015) Nat. Cell Biol , vol.17 , pp. 907-916
    • Wieczorek, M.1    Bechstedt, S.2    Chaaban, S.3    Brouhard, G.J.4
  • 141
    • 84899072470 scopus 로고    scopus 로고
    • Regulation of microtubule minus-end dynamics by CAMSAPs, and Patronin
    • Hendershott M. C., & Vale R. D. Regulation of microtubule minus-end dynamics by CAMSAPs, and Patronin. Proc. Natl Acad. Sci. USA 111, 5860-5865 (2014
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 5860-5865
    • Hendershott, M.C.1    Vale, R.D.2
  • 142
    • 84893542408 scopus 로고    scopus 로고
    • Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition
    • Jiang K., et al. Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. Dev. Cell 28, 295-309 (2014
    • (2014) Dev. Cell , vol.28 , pp. 295-309
    • Jiang, K.1
  • 143
    • 56349123945 scopus 로고    scopus 로고
    • Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts
    • Meng W., Mushika Y., Ichii T., & Takeichi M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell 135, 948-959 (2008
    • (2008) Cell , vol.135 , pp. 948-959
    • Meng, W.1    Mushika, Y.2    Ichii, T.3    Takeichi, M.4
  • 144
    • 77957817006 scopus 로고    scopus 로고
    • Patronin regulates the microtubule network by protecting microtubule minus ends
    • Goodwin S. S., & Vale R. D. Patronin regulates the microtubule network by protecting microtubule minus ends. Cell 143, 263-274 (2010
    • (2010) Cell , vol.143 , pp. 263-274
    • Goodwin, S.S.1    Vale, R.D.2
  • 145
    • 84870587308 scopus 로고    scopus 로고
    • Nezha/CAMSAP3, and CAMSAP2 cooperate in epithelial-specific organization of noncentrosomal microtubules
    • Tanaka N., Meng W., Nagae S., & Takeichi M. Nezha/CAMSAP3, and CAMSAP2 cooperate in epithelial-specific organization of noncentrosomal microtubules. Proc. Natl Acad. Sci. USA 109, 20029-20034 (2012
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 20029-20034
    • Tanaka, N.1    Meng, W.2    Nagae, S.3    Takeichi, M.4
  • 146
    • 84901805146 scopus 로고    scopus 로고
    • Microtubule minus-end binding protein CAMSAP2 controls axon specification, and dendrite development
    • Yau K. W., et al. Microtubule minus-end binding protein CAMSAP2 controls axon specification, and dendrite development. Neuron 82, 1058-1073 (2014
    • (2014) Neuron , vol.82 , pp. 1058-1073
    • Yau, K.W.1
  • 147
    • 84898723545 scopus 로고    scopus 로고
    • Ptrn 1 a microtubule minus end-binding camsap homolog promotes microtubule function in caenorhabditis elegans neurons
    • Richardson C. E., et al. PTRN 1, a microtubule minus end-binding CAMSAP homolog, promotes microtubule function in Caenorhabditis elegans neurons. eLife 3, e01498 (2014
    • (2014) ELife , vol.3 , pp. e01498
    • Richardson, C.E.1
  • 148
    • 84898754062 scopus 로고    scopus 로고
    • The Caenorhabditis elegans microtubule minus-end binding homolog PTRN 1 stabilizes synapses, and neurites
    • Marcette J. D., Chen J. J., & Nonet M. L. The Caenorhabditis elegans microtubule minus-end binding homolog PTRN 1 stabilizes synapses, and neurites. eLife 3, e01637 (2014
    • (2014) ELife , vol.3 , pp. e01637
    • Marcette, J.D.1    Chen, J.J.2    Nonet, M.L.3
  • 149
    • 84919724636 scopus 로고    scopus 로고
    • The microtubule minus-end-binding protein Patronin/PTRN 1 is required for axon regeneration in C elegans
    • Chuang M., et al. The microtubule minus-end-binding protein Patronin/PTRN 1 is required for axon regeneration in C. elegans. Cell Rep. 9, 874-883 (2014
    • (2014) Cell Rep , vol.9 , pp. 874-883
    • Chuang, M.1
  • 151
    • 84886894587 scopus 로고    scopus 로고
    • Patronin mediates a switch from kinesin 13 dependent poleward flux to anaphase B spindle elongation
    • Wang H., Brust-Mascher I., Civelekoglu-Scholey G., & Scholey J. M. Patronin mediates a switch from kinesin 13 dependent poleward flux to anaphase B spindle elongation. J. Cell Biol. 203, 35-46 (2013
    • (2013) J. Cell Biol , vol.203 , pp. 35-46
    • Wang, H.1    Brust-Mascher, I.2    Civelekoglu-Scholey, G.3    Scholey, J.M.4
  • 152
    • 79953298941 scopus 로고    scopus 로고
    • Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions, and cell migration
    • Zhang D., et al. Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions, and cell migration. Nat. Cell Biol. 13, 361-370 (2011
    • (2011) Nat. Cell Biol , vol.13 , pp. 361-370
    • Zhang, D.1
  • 153
    • 84887103499 scopus 로고    scopus 로고
    • Cell cycle regulation of microtubule interactomes: Multi-layered regulation is critical for the interphase/mitosis transition
    • Syred H. M., Welburn J., Rappsilber J., & Ohkura H. Cell cycle regulation of microtubule interactomes: multi-layered regulation is critical for the interphase/mitosis transition. Mol. Cell. Proteomics 12, 3135-3147 (2013
    • (2013) Mol. Cell. Proteomics , vol.12 , pp. 3135-3147
    • Syred, H.M.1    Welburn, J.2    Rappsilber, J.3    Ohkura, H.4
  • 154
    • 84856196744 scopus 로고    scopus 로고
    • K fibre minus ends are stabilized by a RanGTP-dependent mechanism essential for functional spindle assembly
    • Meunier S., & Vernos I. K fibre minus ends are stabilized by a RanGTP-dependent mechanism essential for functional spindle assembly. Nat. Cell Biol. 13, 1406-1414 (2011
    • (2011) Nat. Cell Biol , vol.13 , pp. 1406-1414
    • Meunier, S.1    Vernos, I.2
  • 155
    • 84907372923 scopus 로고    scopus 로고
    • Microtubule organization, and microtubule-associated proteins in plant cells
    • Hamada T. Microtubule organization, and microtubule-associated proteins in plant cells. Int. Rev. Cell Mol. Biol. 312, 1-52 (2014
    • (2014) Int. Rev. Cell Mol. Biol , vol.312 , pp. 1-52
    • Hamada, T.1
  • 156
    • 77957374075 scopus 로고    scopus 로고
    • Microtubule-binding agents: A dynamic field of cancer therapeutics
    • Dumontet C., & Jordan M. A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 9, 790-803 (2010
    • (2010) Nat. Rev. Drug Discov , vol.9 , pp. 790-803
    • Dumontet, C.1    Jordan, M.A.2
  • 157
    • 84937251924 scopus 로고    scopus 로고
    • Photoswitchable inhibitors of microtubule dynamics optically control mitosis, and cell death
    • Borowiak M., et al. Photoswitchable inhibitors of microtubule dynamics optically control mitosis, and cell death. Cell 162, 403-411 (2015
    • (2015) Cell , vol.162 , pp. 403-411
    • Borowiak, M.1
  • 158
    • 84878434586 scopus 로고    scopus 로고
    • End-binding proteins sensitize microtubules to the action of microtubule-targeting agents
    • Mohan R., et al. End-binding proteins sensitize microtubules to the action of microtubule-targeting agents. Proc. Natl Acad. Sci. USA 110, 8900-8905 (2013
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 8900-8905
    • Mohan, R.1
  • 159
    • 84921415603 scopus 로고    scopus 로고
    • End-binding 1 protein overexpression correlates with glioblastoma progression, and sensitizes to Vinca-alkaloids in vitro, and in vivo
    • Berges R., et al. End-binding 1 protein overexpression correlates with glioblastoma progression, and sensitizes to Vinca-alkaloids in vitro, and in vivo. Oncotarget 5, 12769-12787 (2014
    • (2014) Oncotarget , vol.5 , pp. 12769-12787
    • Berges, R.1
  • 160
    • 84917734762 scopus 로고    scopus 로고
    • TIP EB1 downregulates paclitaxel-induced proliferation inhibition, and apoptosis in breast cancer cells through inhibition of paclitaxel binding on microtubules
    • Thomas G. E., Sreeja J. S., Gireesh K. K., Gupta H., & Manna T. K. TIP EB1 downregulates paclitaxel-induced proliferation inhibition, and apoptosis in breast cancer cells through inhibition of paclitaxel binding on microtubules. Int. J. Oncol. 46, 133-146 (2015
    • (2015) Int. J. Oncol , vol.46 , pp. 133-146
    • Thomas, G.E.1    Sreeja, J.S.2    Gireesh, K.K.3    Gupta, H.4    Manna, T.K.5
  • 161
    • 84898751696 scopus 로고    scopus 로고
    • Peptide aptamers define distinct EB1-, and EB3 binding motifs, and interfere with microtubule dynamics
    • Lesniewska K., Warbrick E., & Ohkura H. Peptide aptamers define distinct EB1-, and EB3 binding motifs, and interfere with microtubule dynamics. Mol. Biol. Cell 25, 1025-1036 (2014
    • (2014) Mol. Biol. Cell , vol.25 , pp. 1025-1036
    • Lesniewska, K.1    Warbrick, E.2    Ohkura, H.3
  • 162
    • 84884533735 scopus 로고    scopus 로고
    • Pregnenolone activates CLIP 170 to promote microtubule growth, and cell migration
    • Weng J. H., et al. Pregnenolone activates CLIP 170 to promote microtubule growth, and cell migration. Nat. Chem. Biol. 9, 636-642 (2013
    • (2013) Nat. Chem. Biol , vol.9 , pp. 636-642
    • Weng, J.H.1
  • 163
    • 79960916482 scopus 로고    scopus 로고
    • Purification of tubulin from the fission yeast Schizosaccharomyces pombe
    • Drummond D. R., et al. Purification of tubulin from the fission yeast Schizosaccharomyces pombe. Methods Mol. Biol. 777, 29-55 (2011
    • (2011) Methods Mol. Biol , vol.777 , pp. 29-55
    • Drummond, D.R.1
  • 164
    • 84897536393 scopus 로고    scopus 로고
    • Regulation of microtubule motors by tubulin isotypes, and post-translational modifications
    • Sirajuddin M., Rice L. M., & Vale R. D. Regulation of microtubule motors by tubulin isotypes, and post-translational modifications. Nat. Cell Biol. 16, 335-344 (2014
    • (2014) Nat. Cell Biol , vol.16 , pp. 335-344
    • Sirajuddin, M.1    Rice, L.M.2    Vale, R.D.3
  • 165
    • 80053585281 scopus 로고    scopus 로고
    • Design overexpression, and purification of polymerization-blocked yeast αβ-tubulin mutants
    • Johnson V., Ayaz P., Huddleston P., & Rice L. M. Design, overexpression, and purification of polymerization-blocked yeast αβ-tubulin mutants. Biochemistry 50, 8636-8644 (2011
    • (2011) Biochemistry , vol.50 , pp. 8636-8644
    • Johnson, V.1    Ayaz, P.2    Huddleston, P.3    Rice, L.M.4
  • 166
    • 84886285756 scopus 로고    scopus 로고
    • Overexpression, purification, and functional analysis of recombinant human tubulin dimer
    • Minoura I., et al. Overexpression, purification, and functional analysis of recombinant human tubulin dimer. FEBS Lett. 587, 3450-3455 (2013
    • (2013) FEBS Lett , vol.587 , pp. 3450-3455
    • Minoura, I.1
  • 167
    • 84896347082 scopus 로고    scopus 로고
    • Micropattern-guided assembly of overlapping pairs of dynamic microtubules
    • Fourniol F. J., et al. Micropattern-guided assembly of overlapping pairs of dynamic microtubules. Methods Enzymol. 540, 339-360 (2014
    • (2014) Methods Enzymol , vol.540 , pp. 339-360
    • Fourniol, F.J.1
  • 168
    • 84873090491 scopus 로고    scopus 로고
    • Molecular mechanism of action of microtubule-stabilizing anticancer agents
    • Prota A. E., et al. Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science. 339, 587-590 (2013
    • (2013) Science , vol.339 , pp. 587-590
    • Prota, A.E.1
  • 169
    • 84893516156 scopus 로고    scopus 로고
    • Structural basis of microtubule stabilization by laulimalide, and peloruside A
    • Prota A. E., et al. Structural basis of microtubule stabilization by laulimalide, and peloruside A. Angew. Chem. Int. Ed. Engl. 53, 1621-1625 (2014
    • (2014) Angew. Chem. Int. Ed. Engl , vol.53 , pp. 1621-1625
    • Prota, A.E.1
  • 170
    • 1642401199 scopus 로고    scopus 로고
    • Insight into tubulin regulation from a complex with colchicine, and a stathmin-like domain
    • Ravelli R. B., et al. Insight into tubulin regulation from a complex with colchicine, and a stathmin-like domain. Nature 428, 198-202 (2004
    • (2004) Nature , vol.428 , pp. 198-202
    • Ravelli, R.B.1
  • 171
    • 0026558326 scopus 로고
    • Mechanism of inhibition of microtubule polymerization by colchicine: Inhibitory potencies of unliganded colchicine, and tubulin-colchicine complexes
    • Skoufias D. A., & Wilson L. Mechanism of inhibition of microtubule polymerization by colchicine: inhibitory potencies of unliganded colchicine, and tubulin-colchicine complexes. Biochemistry 31, 738-746 (1992
    • (1992) Biochemistry , vol.31 , pp. 738-746
    • Skoufias, D.A.1    Wilson, L.2
  • 172
    • 19544393159 scopus 로고    scopus 로고
    • Structural basis for the regulation of tubulin by vinblastine
    • Gigant B., et al. Structural basis for the regulation of tubulin by vinblastine. Nature 435, 519-522 (2005
    • (2005) Nature , vol.435 , pp. 519-522
    • Gigant, B.1
  • 173
    • 84907270556 scopus 로고    scopus 로고
    • A new tubulin-binding site, and pharmacophore for microtubule-destabilizing anticancer drugs
    • Prota A. E., et al. A new tubulin-binding site, and pharmacophore for microtubule-destabilizing anticancer drugs. Proc. Natl Acad. Sci. USA 111, 13817-13821 (2014
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 13817-13821
    • Prota, A.E.1
  • 174
    • 84860390007 scopus 로고    scopus 로고
    • The determinants that govern microtubule assembly from the atomic structure of GTP-tubulin
    • Nawrotek A., Knossow M., & Gigant B. The determinants that govern microtubule assembly from the atomic structure of GTP-tubulin. J. Mol. Biol. 412, 35-42 (2011
    • (2011) J. Mol. Biol , vol.412 , pp. 35-42
    • Nawrotek, A.1    Knossow, M.2    Gigant, B.3
  • 175
    • 0032495513 scopus 로고    scopus 로고
    • Structure of the αβ tubulin dimer by electron crystallography
    • Nogales E., Wolf S. G., & Downing K. H. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199-203 (1998
    • (1998) Nature , vol.391 , pp. 199-203
    • Nogales, E.1    Wolf, S.G.2    Downing, K.H.3
  • 178
    • 54249131103 scopus 로고    scopus 로고
    • Capturing protein tails by CAP-Gly domains
    • Steinmetz M. O., & Akhmanova A. Capturing protein tails by CAP-Gly domains. Trends Biochem. Sci. 33, 535-545 (2008
    • (2008) Trends Biochem. Sci , vol.33 , pp. 535-545
    • Steinmetz, M.O.1    Akhmanova, A.2
  • 179
    • 4644302721 scopus 로고    scopus 로고
    • Conformational changes in CLIP 170 regulate its binding to microtubules, and dynactin localisation
    • Lansbergen G., et al. Conformational changes in CLIP 170 regulate its binding to microtubules, and dynactin localisation. J. Cell Biol. 166, 1003-1014 (2004
    • (2004) J. Cell Biol , vol.166 , pp. 1003-1014
    • Lansbergen, G.1
  • 180
    • 33750949610 scopus 로고    scopus 로고
    • Role of CLASP2 in microtubule stabilization, and the regulation of persistent motility
    • Drabek K., et al. Role of CLASP2 in microtubule stabilization, and the regulation of persistent motility. Curr. Biol. 16, 2259-2264 (2006
    • (2006) Curr. Biol , vol.16 , pp. 2259-2264
    • Drabek, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.