-
2
-
-
0028887848
-
Structural changes accompanying GTP hydrolysis in microtubules: Information from a slowly hydrolyzable analogue guanylyl-(α, β)-methylene-diphosphonate
-
Hyman A. A., Chretien D., Arnal I., & Wade R. H. Structural changes accompanying GTP hydrolysis in microtubules: information from a slowly hydrolyzable analogue guanylyl-(α, β)-methylene-diphosphonate. J. Cell Biol. 128, 117-125 (1995
-
(1995)
J. Cell Biol
, vol.128
, pp. 117-125
-
-
Hyman, A.A.1
Chretien, D.2
Arnal, I.3
Wade, R.H.4
-
3
-
-
84901362834
-
High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis
-
Alushin G. M., et al. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Cell 157, 1117-1129 (2014
-
(2014)
Cell
, vol.157
, pp. 1117-1129
-
-
Alushin, G.M.1
-
4
-
-
84939265872
-
Mechanistic origin of microtubule dynamic instability, and its modulation by EB proteins
-
Zhang R., Alushin G. M., Brown A., & Nogales E. Mechanistic origin of microtubule dynamic instability, and its modulation by EB proteins. Cell 162, 849-859 (2015
-
(2015)
Cell
, vol.162
, pp. 849-859
-
-
Zhang, R.1
Alushin, G.M.2
Brown, A.3
Nogales, E.4
-
5
-
-
84866447226
-
Conformational changes in tubulin in GMPCPP, and GDP-taxol microtubules observed by cryoelectron microscopy
-
Yajima H., et al. Conformational changes in tubulin in GMPCPP, and GDP-taxol microtubules observed by cryoelectron microscopy. J. Cell Biol. 198, 315-322 (2012
-
(2012)
J. Cell Biol
, vol.198
, pp. 315-322
-
-
Yajima, H.1
-
6
-
-
0030748335
-
A metastable intermediate state of microtubule dynamic instability that differs significantly between plus, and minus ends
-
Tran P. T., Walker R. A., & Salmon E. D. A metastable intermediate state of microtubule dynamic instability that differs significantly between plus, and minus ends. J. Cell Biol. 138, 105-117 (1997
-
(1997)
J. Cell Biol
, vol.138
, pp. 105-117
-
-
Tran, P.T.1
Walker, R.A.2
Salmon, E.D.3
-
7
-
-
0024544706
-
Asymmetric behavior of severed microtubule ends after ultraviolet-microbeam irradiation of individual microtubules in vitro
-
Walker R. A., Inoue S., & Salmon E. D. Asymmetric behavior of severed microtubule ends after ultraviolet-microbeam irradiation of individual microtubules in vitro. J. Cell Biol. 108, 931-937 (1989
-
(1989)
J. Cell Biol
, vol.108
, pp. 931-937
-
-
Walker, R.A.1
Inoue, S.2
Salmon, E.D.3
-
8
-
-
0025868445
-
Microtubule dynamics, and microtubule caps: A time-resolved cryo-electron microscopy study
-
Mandelkow E. M., Mandelkow E., & Milligan R. A. Microtubule dynamics, and microtubule caps: a time-resolved cryo-electron microscopy study. J. Cell Biol. 114, 977-991 (1991
-
(1991)
J. Cell Biol
, vol.114
, pp. 977-991
-
-
Mandelkow, E.M.1
Mandelkow, E.2
Milligan, R.A.3
-
9
-
-
84918514058
-
The contribution of αβ-tubulin curvature to microtubule dynamics
-
Brouhard G. J., & Rice L. M. The contribution of αβ-tubulin curvature to microtubule dynamics. J. Cell Biol. 207, 323-334 (2014
-
(2014)
J. Cell Biol
, vol.207
, pp. 323-334
-
-
Brouhard, G.J.1
Rice, L.M.2
-
10
-
-
0029091976
-
Kinetics of microtubule catastrophe assessed by probabilistic analysis
-
Odde D. J., Cassimeris L., & Buettner H. M. Kinetics of microtubule catastrophe assessed by probabilistic analysis. Biophys. J. 69, 796-802 (1995
-
(1995)
Biophys. J.
, vol.69
, pp. 796-802
-
-
Odde, D.J.1
Cassimeris, L.2
Buettner, H.M.3
-
11
-
-
81855189480
-
The depolymerizing kinesins Kip3 (kinesin 8), and MCAK (kinesin 13) are catastrophe factors that destabilize microtubules by different mechanisms
-
Gardner M. K., Zanic M., Gell C., Bormuth V., & Howard J. The depolymerizing kinesins Kip3 (kinesin 8), and MCAK (kinesin 13) are catastrophe factors that destabilize microtubules by different mechanisms. Cell 147, 1092-1103 (2011
-
(2011)
Cell
, vol.147
, pp. 1092-1103
-
-
Gardner, M.K.1
Zanic, M.2
Gell, C.3
Bormuth, V.4
Howard, J.5
-
12
-
-
84880701139
-
Evolving tip structures can explain age-dependent microtubule catastrophe
-
Coombes C. E., Yamamoto A., Kenzie M. R., Odde D. J., & Gardner M. K. Evolving tip structures can explain age-dependent microtubule catastrophe. Curr. Biol. 23, 1342-1348 (2013
-
(2013)
Curr. Biol
, vol.23
, pp. 1342-1348
-
-
Coombes, C.E.1
Yamamoto, A.2
Kenzie, M.R.3
Odde, D.J.4
Gardner, M.K.5
-
13
-
-
0037477845
-
Dynamic instability of microtubules is regulated by force
-
Janson M. E., de Dood M. E., & Dogterom M. Dynamic instability of microtubules is regulated by force. J. Cell Biol. 161, 1029-1034 (2003
-
(2003)
J. Cell Biol
, vol.161
, pp. 1029-1034
-
-
Janson, M.E.1
De Dood, M.E.2
Dogterom, M.3
-
14
-
-
0024094432
-
Dynamic instability of individual microtubules analyzed by video light microscopy: Rate constants, and transition frequencies
-
Walker R. A., et al. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants, and transition frequencies. J. Cell Biol. 107, 1437-1448 (1988
-
(1988)
J. Cell Biol
, vol.107
, pp. 1437-1448
-
-
Walker, R.A.1
-
15
-
-
57149102485
-
Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues
-
Dimitrov A., et al. Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Science 322, 1353-1356 (2008
-
(2008)
Science
, vol.322
, pp. 1353-1356
-
-
Dimitrov, A.1
-
16
-
-
0035906940
-
Microtubule 'plus-end-tracking proteins': The end is just the beginning
-
Schuyler S. C., & Pellman D. Microtubule 'plus-end-tracking proteins': the end is just the beginning. Cell 105, 421-424 (2001
-
(2001)
Cell
, vol.105
, pp. 421-424
-
-
Schuyler, S.C.1
Pellman, D.2
-
17
-
-
41149156427
-
Tracking the ends: A dynamic protein network controls the fate of microtubule tips
-
Akhmanova A., & Steinmetz M. O. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat. Rev. Mol. Cell Biol. 9, 309-322 (2008
-
(2008)
Nat. Rev. Mol. Cell Biol
, vol.9
, pp. 309-322
-
-
Akhmanova, A.1
Steinmetz, M.O.2
-
18
-
-
37649004096
-
XMAP215 is a processive microtubule polymerase
-
Brouhard G. J., et al. XMAP215 is a processive microtubule polymerase. Cell 132, 79-88 (2008
-
(2008)
Cell
, vol.132
, pp. 79-88
-
-
Brouhard, G.J.1
-
19
-
-
84864759021
-
Fission yeast Alp14 is a dose-dependent plus end-tracking microtubule polymerase
-
Al Bassam J., et al. Fission yeast Alp14 is a dose-dependent plus end-tracking microtubule polymerase. Mol. Biol. Cell 23, 2878-2890 (2012
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 2878-2890
-
-
Al Bassam, J.1
-
20
-
-
22944457527
-
Identification and characterization of factors required for microtubule growth, and nucleation in the early C elegans embryo
-
Srayko M., Kaya A., Stamford J., & Hyman A. A. Identification, and characterization of factors required for microtubule growth, and nucleation in the early C. elegans embryo. Dev. Cell 9, 223-236 (2005
-
(2005)
Dev. Cell
, vol.9
, pp. 223-236
-
-
Srayko, M.1
Kaya, A.2
Stamford, J.3
Hyman, A.A.4
-
21
-
-
79959468196
-
Slain2 links microtubule plus end-tracking proteins, and controls microtubule growth in interphase
-
Van Der Vaart B., et al. SLAIN2 links microtubule plus end-tracking proteins, and controls microtubule growth in interphase. J. Cell Biol. 193, 1083-1099 (2011
-
(2011)
J. Cell Biol
, vol.193
, pp. 1083-1099
-
-
Van Der Vaart, B.1
-
22
-
-
81755184372
-
The microtubule lattice, and plus-end association of Drosophila Mini spindles is spatially regulated to fine-tune microtubule dynamics
-
Currie J. D., et al. The microtubule lattice, and plus-end association of Drosophila Mini spindles is spatially regulated to fine-tune microtubule dynamics. Mol. Biol. Cell 22, 4343-4361 (2011
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 4343-4361
-
-
Currie, J.D.1
-
23
-
-
64749115790
-
Mammalian end binding proteins control persistent microtubule growth
-
Komarova Y., et al. Mammalian end binding proteins control persistent microtubule growth. J. Cell Biol. 184, 691-706 (2009
-
(2009)
J. Cell Biol
, vol.184
, pp. 691-706
-
-
Komarova, Y.1
-
24
-
-
84878540115
-
Synergy between XMAP215, and EB1 increases microtubule growth rates to physiological levels
-
Zanic M., Widlund P. O., Hyman A. A., & Howard J. Synergy between XMAP215, and EB1 increases microtubule growth rates to physiological levels. Nat. Cell Biol. 15, 688-693 (2013
-
(2013)
Nat. Cell Biol
, vol.15
, pp. 688-693
-
-
Zanic, M.1
Widlund, P.O.2
Hyman, A.A.3
Howard, J.4
-
25
-
-
84894334053
-
EB1 accelerates two conformational transitions important for microtubule maturation, and dynamics
-
Maurer S. P., et al. EB1 accelerates two conformational transitions important for microtubule maturation, and dynamics. Curr. Biol. 24, 372-384 (2014
-
(2014)
Curr. Biol
, vol.24
, pp. 372-384
-
-
Maurer, S.P.1
-
26
-
-
0033534575
-
Kin i kinesins are microtubule-destabilizing enzymes
-
Desai A., Verma S., Mitchison T. J., & Walczak C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69-78 (1999
-
(1999)
Cell
, vol.96
, pp. 69-78
-
-
Desai, A.1
Verma, S.2
Mitchison, T.J.3
Walczak, C.E.4
-
27
-
-
0036242697
-
A mechanism for microtubule depolymerization by kini kinesins
-
Moores C. A., et al. A mechanism for microtubule depolymerization by KinI kinesins. Mol. Cell 9, 903-909 (2002
-
(2002)
Mol. Cell
, vol.9
, pp. 903-909
-
-
Moores, C.A.1
-
28
-
-
0037292454
-
The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends
-
Hunter A. W., et al. The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol. Cell 11, 445-457 (2003
-
(2003)
Mol. Cell
, vol.11
, pp. 445-457
-
-
Hunter, A.W.1
-
29
-
-
84875806836
-
Structural model for tubulin recognition, and deformation by kinesin 13 microtubule depolymerases
-
Asenjo A. B., et al. Structural model for tubulin recognition, and deformation by kinesin 13 microtubule depolymerases. Cell Rep. 3, 759-768 (2013
-
(2013)
Cell Rep
, vol.3
, pp. 759-768
-
-
Asenjo, A.B.1
-
30
-
-
84905721040
-
Nucleotide exchange in dimeric MCAK induces longitudinal, and lateral stress at microtubule ends to support depolymerization
-
Burns K. M., Wagenbach M., Wordeman L., & Schriemer D. C. Nucleotide exchange in dimeric MCAK induces longitudinal, and lateral stress at microtubule ends to support depolymerization. Structure 22, 1173-1183 (2014
-
(2014)
Structure
, vol.22
, pp. 1173-1183
-
-
Burns, K.M.1
Wagenbach, M.2
Wordeman, L.3
Schriemer, D.C.4
-
31
-
-
70149111601
-
Kinesin 8 motors act cooperatively to mediate length-dependent microtubule depolymerization
-
Varga V., Leduc C., Bormuth V., Diez S., & Howard J. Kinesin 8 motors act cooperatively to mediate length-dependent microtubule depolymerization. Cell 138, 1174-1183 (2009
-
(2009)
Cell
, vol.138
, pp. 1174-1183
-
-
Varga, V.1
Leduc, C.2
Bormuth, V.3
Diez, S.4
Howard, J.5
-
32
-
-
84867890758
-
Move in for the kill: Motile microtubule regulators
-
Su X., Ohi R., & Pellman D. Move in for the kill: motile microtubule regulators. Trends Cell Biol. 22, 567-575 (2012
-
(2012)
Trends Cell Biol
, vol.22
, pp. 567-575
-
-
Su, X.1
Ohi, R.2
Pellman, D.3
-
33
-
-
23244462047
-
Cik1 targets the minus-end kinesin depolymerase Kar3 to microtubule plus ends
-
Sproul L. R., Anderson D. J., Mackey A. T., Saunders W. S., & Gilbert S. P. Cik1 targets the minus-end kinesin depolymerase Kar3 to microtubule plus ends. Curr. Biol. 15, 1420-1427 (2005
-
(2005)
Curr. Biol
, vol.15
, pp. 1420-1427
-
-
Sproul, L.R.1
Anderson, D.J.2
Mackey, A.T.3
Saunders, W.S.4
Gilbert, S.P.5
-
34
-
-
79952760876
-
GTPγS microtubules mimic the growing microtubule end structure recognised by end-binding proteins (EBs
-
Maurer S. P., Bieling P., Cope J., Hoenger A., & Surrey T. GTPγS microtubules mimic the growing microtubule end structure recognised by end-binding proteins (EBs). Proc. Natl Acad. Sci. USA 109, 3988-3993 (2011
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 3988-3993
-
-
Maurer, S.P.1
Bieling, P.2
Cope, J.3
Hoenger, A.4
Surrey, T.5
-
35
-
-
0037009077
-
Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle
-
Rogers S. L., Rogers G. C., Sharp D. J., & Vale R. D. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 158, 873-884 (2002
-
(2002)
J. Cell Biol
, vol.158
, pp. 873-884
-
-
Rogers, S.L.1
Rogers, G.C.2
Sharp, D.J.3
Vale, R.D.4
-
36
-
-
1842665850
-
The microtubule plus end-tracking proteins mal3p, and tip1p cooperate for cell-end targeting of interphase microtubules
-
Busch K. E., & Brunner D. The microtubule plus end-tracking proteins mal3p, and tip1p cooperate for cell-end targeting of interphase microtubules. Curr. Biol. 14, 548-559 (2004
-
(2004)
Curr. Biol
, vol.14
, pp. 548-559
-
-
Busch, K.E.1
Brunner, D.2
-
37
-
-
77955339199
-
A minimal midzone protein module controls formation, and length of antiparallel microtubule overlaps
-
Bieling P., Telley I. A., & Surrey T. A minimal midzone protein module controls formation, and length of antiparallel microtubule overlaps. Cell 142, 420-432 (2010
-
(2010)
Cell
, vol.142
, pp. 420-432
-
-
Bieling, P.1
Telley, I.A.2
Surrey, T.3
-
38
-
-
84886639343
-
CFEOM1 associated kinesin KIF21A is a cortical microtubule growth inhibitor
-
Van Der Vaart B., et al. CFEOM1 associated kinesin KIF21A is a cortical microtubule growth inhibitor. Dev. Cell 27, 145-160 (2013
-
(2013)
Dev. Cell
, vol.27
, pp. 145-160
-
-
Van Der Vaart, B.1
-
39
-
-
84903701173
-
The kinesin 4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment
-
He M., et al. The kinesin 4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment. Nat. Cell Biol. 16, 663-672 (2014
-
(2014)
Nat. Cell Biol
, vol.16
, pp. 663-672
-
-
He, M.1
-
40
-
-
84918532363
-
Pre-anaphase chromosome oscillations are regulated by the antagonistic activities of Cdk1, and PP1 on Kif18A
-
Hafner J., Mayr M. I., Mockel M. M., & Mayer T. U. Pre-anaphase chromosome oscillations are regulated by the antagonistic activities of Cdk1, and PP1 on Kif18A. Nat. Commun. 5, 4397 (2014
-
(2014)
Nat. Commun
, vol.5
, pp. 4397
-
-
Hafner, J.1
Mayr, M.I.2
Mockel, M.M.3
Mayer, T.U.4
-
41
-
-
76749091008
-
The kinesin 8 Kif18A dampens microtubule plus-end dynamics
-
Du Y., English C. A., & Ohi R. The kinesin 8 Kif18A dampens microtubule plus-end dynamics. Curr. Biol. 20, 374-380 (2010
-
(2010)
Curr. Biol
, vol.20
, pp. 374-380
-
-
Du, Y.1
English, C.A.2
Ohi, R.3
-
42
-
-
38849201167
-
The kinesin 8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment
-
Stumpff J., von Dassow G., Wagenbach M., Asbury C., & Wordeman L. The kinesin 8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev. Cell 14, 252-262 (2008
-
(2008)
Dev. Cell
, vol.14
, pp. 252-262
-
-
Stumpff, J.1
Von Dassow, G.2
Wagenbach, M.3
Asbury, C.4
Wordeman, L.5
-
43
-
-
77955588492
-
CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule
-
Al Bassam J., et al. CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule. Dev. Cell 19, 245-258 (2010
-
(2010)
Dev. Cell
, vol.19
, pp. 245-258
-
-
Al Bassam, J.1
-
44
-
-
84905686589
-
CLASPs are required for proper microtubule localization of end-binding proteins
-
Grimaldi A. D., et al. CLASPs are required for proper microtubule localization of end-binding proteins. Dev. Cell 30, 343-352 (2014
-
(2014)
Dev. Cell
, vol.30
, pp. 343-352
-
-
Grimaldi, A.D.1
-
45
-
-
20344364415
-
CLIPs, and CLASPs, and cellular dynamics
-
Galjart N. CLIPs, and CLASPs, and cellular dynamics. Nat. Rev. Mol. Cell Biol. 6, 487-498 (2005
-
(2005)
Nat. Rev. Mol. Cell Biol
, vol.6
, pp. 487-498
-
-
Galjart, N.1
-
46
-
-
0037175398
-
Cytoplasmic linker proteins promote microtubule rescue in vivo
-
Komarova Y. A., Akhmanova A. S., Kojima S., Galjart N., & Borisy G. G. Cytoplasmic linker proteins promote microtubule rescue in vivo. J. Cell Biol. 159, 589-599 (2002
-
(2002)
J. Cell Biol
, vol.159
, pp. 589-599
-
-
Komarova, Y.A.1
Akhmanova, A.S.2
Kojima, S.3
Galjart, N.4
Borisy, G.G.5
-
47
-
-
84880944148
-
Dynactin subunit p150(Glued) is a neuron-specific anti-catastrophe factor
-
Lazarus J. E., Moughamian A. J., Tokito M. K., & Holzbaur E. L. Dynactin subunit p150(Glued) is a neuron-specific anti-catastrophe factor. PLoS Biol. 11, e1001611 (2013
-
(2013)
PLoS Biol
, vol.11
, pp. e1001611
-
-
Lazarus, J.E.1
Moughamian, A.J.2
Tokito, M.K.3
Holzbaur, E.L.4
-
48
-
-
84859594032
-
Dynein tethers, and stabilizes dynamic microtubule plus ends
-
Hendricks A. G., et al. Dynein tethers, and stabilizes dynamic microtubule plus ends. Curr. Biol. 22, 632-637 (2012
-
(2012)
Curr. Biol
, vol.22
, pp. 632-637
-
-
Hendricks, A.G.1
-
49
-
-
84856753159
-
Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters
-
Laan L., et al. Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 148, 502-514 (2012
-
(2012)
Cell
, vol.148
, pp. 502-514
-
-
Laan, L.1
-
50
-
-
77957930053
-
Membrane invaginations reveal cortical sites that pull on mitotic spindles in one-cell C elegans embryos
-
Redemann S., et al. Membrane invaginations reveal cortical sites that pull on mitotic spindles in one-cell C. elegans embryos. PLoS ONE 5, e12301 (2010
-
(2010)
Plos One
, vol.5
, pp. e12301
-
-
Redemann, S.1
-
51
-
-
0042845879
-
The distribution of active force generators controls mitotic spindle position
-
Grill S. W., Howard J., Schaffer E., Stelzer E. H., & Hyman A. A. The distribution of active force generators controls mitotic spindle position. Science 301, 518-521 (2003
-
(2003)
Science
, vol.301
, pp. 518-521
-
-
Grill, S.W.1
Howard, J.2
Schaffer, E.3
Stelzer, E.H.4
Hyman, A.A.5
-
52
-
-
84873044987
-
Mechanisms of spindle positioning
-
McNally F. J. Mechanisms of spindle positioning. J. Cell Biol. 200, 131-140 (2013
-
(2013)
J. Cell Biol
, vol.200
, pp. 131-140
-
-
McNally, F.J.1
-
53
-
-
80052495937
-
Map4, and clasp1 operate as a safety mechanism to maintain a stable spindle position in mitosis
-
Samora C. P., et al. MAP4, and CLASP1 operate as a safety mechanism to maintain a stable spindle position in mitosis. Nat. Cell Biol. 13, 1040-1050 (2011
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 1040-1050
-
-
Samora, C.P.1
-
54
-
-
0141480958
-
Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1
-
Hayashi I., & Ikura M. Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1). J. Biol. Chem. 278, 36430-36434 (2003
-
(2003)
J. Biol. Chem
, vol.278
, pp. 36430-36434
-
-
Hayashi, I.1
Ikura, M.2
-
55
-
-
77949324196
-
Molecular insights into mammalian end-binding protein heterodimerization
-
De Groot C. O., et al. Molecular insights into mammalian end-binding protein heterodimerization. J. Biol. Chem. 285, 5802-5814 (2010
-
(2010)
J. Biol. Chem
, vol.285
, pp. 5802-5814
-
-
De Groot, C.O.1
-
56
-
-
13944255721
-
Structural determinants for EB1 mediated recruitment of APC, and spectraplakins to the microtubule plus end
-
Slep K. C., et al. Structural determinants for EB1 mediated recruitment of APC, and spectraplakins to the microtubule plus end. J. Cell Biol. 168, 587-598 (2005
-
(2005)
J. Cell Biol
, vol.168
, pp. 587-598
-
-
Slep, K.C.1
-
57
-
-
84906879124
-
Microtubule +TIP protein EB1 binds to GTP, and undergoes dissociation from dimer to monomer on binding GTP
-
Gireesh K. K., et al. Microtubule +TIP protein EB1 binds to GTP, and undergoes dissociation from dimer to monomer on binding GTP. Biochemistry 53, 5551-5557 (2014
-
(2014)
Biochemistry
, vol.53
, pp. 5551-5557
-
-
Gireesh, K.K.1
-
58
-
-
34748862943
-
Structural basis of microtubule plus end tracking by XMAP215 CLIP 170, and EB1
-
Slep K. C., & Vale R. D. Structural basis of microtubule plus end tracking by XMAP215, CLIP 170, and EB1. Mol. Cell 27, 976-991 (2007
-
(2007)
Mol. Cell
, vol.27
, pp. 976-991
-
-
Slep, K.C.1
Vale, R.D.2
-
59
-
-
84912130653
-
Superresolution imaging reveals structural features of EB1 in microtubule plus-end tracking
-
Xia P., et al. Superresolution imaging reveals structural features of EB1 in microtubule plus-end tracking. Mol. Biol. Cell 25, 4166-4173 (2014
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 4166-4173
-
-
Xia, P.1
-
60
-
-
80051682552
-
Insights into EB structure, and the role of its C terminal domain in discriminating microtubule tips from lattice
-
Buey R. M., et al. Insights into EB structure, and the role of its C terminal domain in discriminating microtubule tips from lattice. Mol. Biol. Cell 22, 2912-2923 (2011
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 2912-2923
-
-
Buey, R.M.1
-
61
-
-
84855841218
-
A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation, and stabilizes microtubules
-
Iimori M., et al. A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation, and stabilizes microtubules. Exp. Cell Res. 318, 262-275 (2012
-
(2012)
Exp. Cell Res
, vol.318
, pp. 262-275
-
-
Iimori, M.1
-
62
-
-
84878560571
-
Aurora B spatially regulates EB3 phosphorylation to coordinate daughter cell adhesion with cytokinesis
-
Ferreira J. G., Pereira A. J., Akhmanova A., & Maiato H. Aurora B spatially regulates EB3 phosphorylation to coordinate daughter cell adhesion with cytokinesis. J. Cell Biol. 201, 709-724 (2013
-
(2013)
J. Cell Biol
, vol.201
, pp. 709-724
-
-
Ferreira, J.G.1
Pereira, A.J.2
Akhmanova, A.3
Maiato, H.4
-
63
-
-
68549121078
-
Phosphoregulation of the budding yeast eb1 homologue bim1p by aurora/ipl1p
-
Zimniak T., Stengl K., Mechtler K., & Westermann S. Phosphoregulation of the budding yeast EB1 homologue Bim1p by Aurora/Ipl1p. J. Cell Biol. 186, 379-391 (2009
-
(2009)
J. Cell Biol
, vol.186
, pp. 379-391
-
-
Zimniak, T.1
Stengl, K.2
Mechtler, K.3
Westermann, S.4
-
64
-
-
84867345012
-
EB1 acetylation by P300/CBP-associated factor (PCAF) ensures accurate kinetochore-microtubule interactions in mitosis
-
Xia P., et al. EB1 acetylation by P300/CBP-associated factor (PCAF) ensures accurate kinetochore-microtubule interactions in mitosis. Proc. Natl Acad. Sci. USA 109, 16564-16569 (2012
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 16564-16569
-
-
Xia, P.1
-
65
-
-
33947605240
-
Ubiquitin-dependent proteolysis of the microtubule end-binding protein 1, EB1, is controlled by the COP9 signalosome: Possible consequences for microtubule filament stability
-
Peth A., Boettcher J. P., & Dubiel W. Ubiquitin-dependent proteolysis of the microtubule end-binding protein 1, EB1, is controlled by the COP9 signalosome: possible consequences for microtubule filament stability. J. Mol. Biol. 368, 550-563 (2007
-
(2007)
J. Mol. Biol
, vol.368
, pp. 550-563
-
-
Peth, A.1
Boettcher, J.P.2
Dubiel, W.3
-
66
-
-
0034644119
-
The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules
-
Mimori-Kiyosue Y., Shiina N., & Tsukita S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol. 10, 865-868 (2000
-
(2000)
Curr. Biol
, vol.10
, pp. 865-868
-
-
Mimori-Kiyosue, Y.1
Shiina, N.2
Tsukita, S.3
-
67
-
-
37249075604
-
Reconstitution of a microtubule plus-end tracking system in vitro
-
Bieling P., et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450, 1100-1105 (2007
-
(2007)
Nature
, vol.450
, pp. 1100-1105
-
-
Bieling, P.1
-
68
-
-
84866739601
-
Estimating the microtubule GTP cap size in vivo
-
Seetapun D., Castle B. T., McIntyre A. J., Tran P. T., & Odde D. J. Estimating the microtubule GTP cap size in vivo. Curr. Biol. 22, 1681-1687 (2012
-
(2012)
Curr. Biol
, vol.22
, pp. 1681-1687
-
-
Seetapun, D.1
Castle, B.T.2
McIntyre, A.J.3
Tran, P.T.4
Odde, D.J.5
-
69
-
-
40849088165
-
Dynamic behavior of GFP-CLIP 170 reveals fast protein turnover on microtubule plus ends
-
Dragestein K. A., et al. Dynamic behavior of GFP-CLIP 170 reveals fast protein turnover on microtubule plus ends. J. Cell Biol. 180, 729-737 (2008
-
(2008)
J. Cell Biol
, vol.180
, pp. 729-737
-
-
Dragestein, K.A.1
-
70
-
-
70449574092
-
EB1 recognizes the nucleotide state of tubulin in the microtubule lattice
-
Zanic M., Stear J. H., Hyman A. A., & Howard J. EB1 recognizes the nucleotide state of tubulin in the microtubule lattice. PLoS ONE 4, e7585 (2009
-
(2009)
Plos One
, vol.4
, pp. e7585
-
-
Zanic, M.1
Stear, J.H.2
Hyman, A.A.3
Howard, J.4
-
71
-
-
84859736946
-
EBs recognize a nucleotide-dependent structural cap at growing microtubule ends
-
Maurer S. P., Fourniol F. J., Bohner G., Moores C. A., & Surrey T. EBs recognize a nucleotide-dependent structural cap at growing microtubule ends. Cell 149, 371-382 (2012
-
(2012)
Cell
, vol.149
, pp. 371-382
-
-
Maurer, S.P.1
Fourniol, F.J.2
Bohner, G.3
Moores, C.A.4
Surrey, T.5
-
72
-
-
84908338443
-
Doublecortin recognizes the longitudinal curvature of the microtubule end, and lattice
-
Bechstedt S., Lu K., & Brouhard G. J. Doublecortin recognizes the longitudinal curvature of the microtubule end, and lattice. Curr. Biol. 24, 2366-2375 (2014
-
(2014)
Curr. Biol
, vol.24
, pp. 2366-2375
-
-
Bechstedt, S.1
Lu, K.2
Brouhard, G.J.3
-
73
-
-
80053112323
-
Regulation of microtubule dynamics by tog-domain proteins xmap215/dis1, and clasp
-
Al Bassam J., & Chang F. Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1, and CLASP. Trends Cell Biol. 21, 604-614 (2011
-
(2011)
Trends Cell Biol
, vol.21
, pp. 604-614
-
-
Al Bassam, J.1
Chang, F.2
-
74
-
-
33847639293
-
Crystal structure of a TOG domain: Conserved features of XMAP215/Dis1 family TOG domains, and implications for tubulin binding
-
Al Bassam J., Larsen N. A., Hyman A. A., & Harrison S. C. Crystal structure of a TOG domain: conserved features of XMAP215/Dis1 family TOG domains, and implications for tubulin binding. Structure 15, 355-362 (2007
-
(2007)
Structure
, vol.15
, pp. 355-362
-
-
Al Bassam, J.1
Larsen, N.A.2
Hyman, A.A.3
Harrison, S.C.4
-
75
-
-
84905976506
-
The xmap215 family drives microtubule polymerization using a structurally diverse tog array
-
Fox J. C., Howard A. E., Currie J. D., Rogers S. L., & Slep K. C. The XMAP215 family drives microtubule polymerization using a structurally diverse TOG array. Mol. Biol. Cell 25, 2375-2392 (2014
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 2375-2392
-
-
Fox, J.C.1
Howard, A.E.2
Currie, J.D.3
Rogers, S.L.4
Slep, K.C.5
-
76
-
-
84865074275
-
TOG: αβ -tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase
-
Ayaz P., Ye X., Huddleston P., Brautigam C. A., & Rice L. M. A. TOG: αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase. Science 337, 857-860 (2012
-
(2012)
Science
, vol.337
, pp. 857-860
-
-
Ayaz, P.1
Ye, X.2
Huddleston, P.3
Brautigam, C.A.4
Rice, L.M.A.5
-
77
-
-
84908330392
-
A tethered delivery mechanism explains the catalytic action of a microtubule polymerase
-
Ayaz P., et al. A tethered delivery mechanism explains the catalytic action of a microtubule polymerase. eLife 3, e03069 (2014
-
(2014)
ELife
, vol.3
, pp. e03069
-
-
Ayaz, P.1
-
78
-
-
79952598938
-
XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains, and a basic lattice-binding region
-
Widlund P. O., et al. XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains, and a basic lattice-binding region. Proc. Natl Acad. Sci. USA 108, 2741-2746 (2011
-
(2011)
Proc. Natl Acad. Sci. USA
, vol.108
, pp. 2741-2746
-
-
Widlund, P.O.1
-
79
-
-
84871203317
-
Dissecting the nanoscale distributions, and functions of microtubule-end-binding proteins EB1, and ch TOG in interphase HeLa cells
-
Nakamura S., et al. Dissecting the nanoscale distributions, and functions of microtubule-end-binding proteins EB1, and ch TOG in interphase HeLa cells. PLoS ONE 7, e51442 (2012
-
(2012)
Plos One
, vol.7
, pp. e51442
-
-
Nakamura, S.1
-
80
-
-
84883660746
-
Kinetochore kinesin CENP e is a processive bi directional tracker of dynamic microtubule tips
-
Gudimchuk N., et al. Kinetochore kinesin CENP E is a processive bi directional tracker of dynamic microtubule tips. Nat. Cell Biol. 15, 1079-1088 (2013
-
(2013)
Nat. Cell Biol
, vol.15
, pp. 1079-1088
-
-
Gudimchuk, N.1
-
81
-
-
80052230972
-
A tethering mechanism controls the processivity, and kinetochore-microtubule plus-end enrichment of the kinesin 8 kif18a
-
Stumpff J., et al. A tethering mechanism controls the processivity, and kinetochore-microtubule plus-end enrichment of the kinesin 8 Kif18A. Mol. Cell 43, 764-775 (2011
-
(2011)
Mol. Cell
, vol.43
, pp. 764-775
-
-
Stumpff, J.1
-
82
-
-
80052209594
-
Kif18A uses a microtubule binding site in the tail for plus-end localization, and spindle length regulation
-
Weaver L. N., et al. Kif18A uses a microtubule binding site in the tail for plus-end localization, and spindle length regulation. Curr. Biol. 21, 1500-1506 (2011
-
(2011)
Curr. Biol
, vol.21
, pp. 1500-1506
-
-
Weaver, L.N.1
-
83
-
-
80052187303
-
Mechanisms underlying the dual-mode regulation of microtubule dynamics by Kip3/kinesin 8
-
Su X., et al. Mechanisms underlying the dual-mode regulation of microtubule dynamics by Kip3/kinesin 8. Mol. Cell 43, 751-763 (2011
-
(2011)
Mol. Cell
, vol.43
, pp. 751-763
-
-
Su, X.1
-
84
-
-
77449158973
-
Catalysis of the microtubule on rate is the major parameter regulating the depolymerase activity of MCAK
-
Cooper J. R., Wagenbach M., Asbury C. L., & Wordeman L. Catalysis of the microtubule on rate is the major parameter regulating the depolymerase activity of MCAK. Nat. Struct. Mol. Biol. 17, 77-82 (2009
-
(2009)
Nat. Struct. Mol. Biol
, vol.17
, pp. 77-82
-
-
Cooper, J.R.1
Wagenbach, M.2
Asbury, C.L.3
Wordeman, L.4
-
85
-
-
84929172163
-
The C terminal region of the motor protein MCAK controls its structure, and activity through a conformational switch
-
Talapatra S. K., Harker B., & Welburn J. P. The C terminal region of the motor protein MCAK controls its structure, and activity through a conformational switch. eLife 4, 06421 (2015
-
(2015)
ELife
, vol.4
, pp. 06421
-
-
Talapatra, S.K.1
Harker, B.2
Welburn, J.P.3
-
86
-
-
84890792731
-
Aurora B inhibits MCAK activity through a phosphoconformational switch that reduces microtubule association
-
Ems-McClung S. C., et al. Aurora B inhibits MCAK activity through a phosphoconformational switch that reduces microtubule association. Curr. Biol. 23, 2491-2499 (2013
-
(2013)
Curr. Biol
, vol.23
, pp. 2491-2499
-
-
Ems-McClung, S.C.1
-
87
-
-
33646950699
-
The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends
-
Helenius J., Brouhard G., Kalaidzidis Y., Diez S., & Howard J. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441, 115-119 (2006
-
(2006)
Nature
, vol.441
, pp. 115-119
-
-
Helenius, J.1
Brouhard, G.2
Kalaidzidis, Y.3
Diez, S.4
Howard, J.5
-
88
-
-
78049489092
-
Template-free 13 protofilament microtubule-map assembly visualized at 8 å resolution
-
Fourniol F. J., et al. Template-free 13 protofilament microtubule-MAP assembly visualized at 8 Å resolution. J. Cell Biol. 191, 463-470 (2010
-
(2010)
J. Cell Biol
, vol.191
, pp. 463-470
-
-
Fourniol, F.J.1
-
89
-
-
61349161067
-
The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion
-
Powers A. F., et al. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136, 865-875 (2009
-
(2009)
Cell
, vol.136
, pp. 865-875
-
-
Powers, A.F.1
-
90
-
-
77952377598
-
The dam1 complex confers microtubule plus end-racking activity to the ndc80 kinetochore complex
-
Lampert F., Hornung P., & Westermann S. The Dam1 complex confers microtubule plus end-racking activity to the Ndc80 kinetochore complex. J. Cell Biol. 189, 641-649 (2010
-
(2010)
J. Cell Biol
, vol.189
, pp. 641-649
-
-
Lampert, F.1
Hornung, P.2
Westermann, S.3
-
91
-
-
77957968002
-
The Ndc80 kinetochore complex forms oligomeric arrays along microtubules
-
Alushin G. M., et al. The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature 467, 805-810 (2010
-
(2010)
Nature
, vol.467
, pp. 805-810
-
-
Alushin, G.M.1
-
92
-
-
75749117934
-
Mechanisms of force generation by end on kinetochore-microtubule attachments
-
Joglekar A. P., Bloom K. S., & Salmon E. D. Mechanisms of force generation by end on kinetochore-microtubule attachments. Curr. Opin. Cell Biol. 22, 57-67 (2010
-
(2010)
Curr. Opin. Cell Biol
, vol.22
, pp. 57-67
-
-
Joglekar, A.P.1
Bloom, K.S.2
Salmon, E.D.3
-
93
-
-
34948911230
-
Structure-function relationship of CAP-Gly domains
-
Weisbrich A., et al. Structure-function relationship of CAP-Gly domains. Nat. Struct. Mol. Biol. 14, 959-967 (2007
-
(2007)
Nat. Struct. Mol. Biol
, vol.14
, pp. 959-967
-
-
Weisbrich, A.1
-
94
-
-
34547532472
-
Structural basis for tubulin recognition by cytoplasmic linker protein 170, and its autoinhibition
-
Mishima M., et al. Structural basis for tubulin recognition by cytoplasmic linker protein 170, and its autoinhibition. Proc. Natl Acad. Sci. USA 104, 10346-10351 (2007
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 10346-10351
-
-
Mishima, M.1
-
95
-
-
33747891739
-
Key interaction modes of dynamic +TIP networks
-
Honnappa S., et al. Key interaction modes of dynamic +TIP networks. Mol. Cell 23, 663-671 (2006
-
(2006)
Mol. Cell
, vol.23
, pp. 663-671
-
-
Honnappa, S.1
-
96
-
-
67650627616
-
An EB1 binding motif acts as a microtubule tip localization signal
-
Honnappa S., et al. An EB1 binding motif acts as a microtubule tip localization signal. Cell 138, 366-376 (2009
-
(2009)
Cell
, vol.138
, pp. 366-376
-
-
Honnappa, S.1
-
97
-
-
84864319735
-
TIPs: SxIPping along microtubule ends
-
Kumar P., & Wittmann T. TIPs: SxIPping along microtubule ends. Trends Cell Biol. 22, 418-428 (2012
-
(2012)
Trends Cell Biol
, vol.22
, pp. 418-428
-
-
Kumar, P.1
Wittmann, T.2
-
98
-
-
84867402137
-
A proteome-wide screen for mammalian SxIP motif-containing microtubule plus-end tracking proteins
-
Jiang K., et al. A proteome-wide screen for mammalian SxIP motif-containing microtubule plus-end tracking proteins. Curr. Biol. 22, 1800-1807 (2012
-
(2012)
Curr. Biol
, vol.22
, pp. 1800-1807
-
-
Jiang, K.1
-
99
-
-
84979935495
-
A proteomic study of mitotic phase-specific interactors of EB1 reveals a role for SXIP-mediated protein interactions in anaphase onset
-
Tamura N., et al. A proteomic study of mitotic phase-specific interactors of EB1 reveals a role for SXIP-mediated protein interactions in anaphase onset. Biol. Open 4, 155-169 (2015
-
(2015)
Biol. Open
, vol.4
, pp. 155-169
-
-
Tamura, N.1
-
100
-
-
84861210634
-
Multisite phosphorylation disrupts arginine-glutamate salt bridge networks required for binding of cytoplasmic linker-associated protein 2 (CLASP2) to end-binding protein 1 (EB1
-
Kumar P., et al. Multisite phosphorylation disrupts arginine-glutamate salt bridge networks required for binding of cytoplasmic linker-associated protein 2 (CLASP2) to end-binding protein 1 (EB1). J. Biol. Chem. 287, 17050-17064 (2012
-
(2012)
J. Biol. Chem
, vol.287
, pp. 17050-17064
-
-
Kumar, P.1
-
101
-
-
84872002781
-
Reconstitution of dynamic microtubules with Drosophila XMAP215 EB1 and Sentin
-
Li W., et al. Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and Sentin. J. Cell Biol. 199, 849-862 (2012
-
(2012)
J. Cell Biol
, vol.199
, pp. 849-862
-
-
Li, W.1
-
102
-
-
84905961940
-
Reconstitution of a hierarchical +TIP interaction network controlling microtubule end tracking of dynein
-
Duellberg C., et al. Reconstitution of a hierarchical +TIP interaction network controlling microtubule end tracking of dynein. Nat. Cell Biol. 16, 804-811 (2014
-
(2014)
Nat. Cell Biol
, vol.16
, pp. 804-811
-
-
Duellberg, C.1
-
103
-
-
84902675050
-
Reconstitution of dynein transport to the microtubule plus end by kinesin
-
Roberts A. J., Goodman B. S., & Reck-Peterson S. L. Reconstitution of dynein transport to the microtubule plus end by kinesin. eLife 3, e02641 (2014
-
(2014)
ELife
, vol.3
, pp. e02641
-
-
Roberts, A.J.1
Goodman, B.S.2
Reck-Peterson, S.L.3
-
104
-
-
80052033722
-
A complex of Kif18b, and MCAK promotes microtubule depolymerization, and is negatively regulated by Aurora kinases
-
Tanenbaum M. E., et al. A complex of Kif18b, and MCAK promotes microtubule depolymerization, and is negatively regulated by Aurora kinases. Curr. Biol. 21, 1356-1365 (2011
-
(2011)
Curr. Biol
, vol.21
, pp. 1356-1365
-
-
Tanenbaum, M.E.1
-
105
-
-
84905923153
-
Promoting microtubule assembly: A hypothesis for the functional significance of the +TIP network
-
Gupta K. K., Alberico E. O., Nathke I. S., & Goodson H. V. Promoting microtubule assembly: a hypothesis for the functional significance of the +TIP network. Bioessays 36, 818-826 (2014
-
(2014)
Bioessays
, vol.36
, pp. 818-826
-
-
Gupta, K.K.1
Alberico, E.O.2
Nathke, I.S.3
Goodson, H.V.4
-
106
-
-
0000497321
-
Equilibrium and kinetic theory of polymerization, and the sol-gel transition
-
Cohen R. J., & Benedek G. B. Equilibrium, and kinetic theory of polymerization, and the sol-gel transition. J. Phys. Chem. 86, 3696-3714 (1982
-
(1982)
J. Phys. Chem
, vol.86
, pp. 3696-3714
-
-
Cohen, R.J.1
Benedek, G.B.2
-
107
-
-
84862776582
-
Phase transitions in the assembly of multivalent signalling proteins
-
Li P., et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336-340 (2012
-
(2012)
Nature
, vol.483
, pp. 336-340
-
-
Li, P.1
-
108
-
-
0344845405
-
ACF7: An essential integrator of microtubule dynamics
-
Kodama A., Karakesisoglou I., Wong E., Vaezi A., & Fuchs E. ACF7: an essential integrator of microtubule dynamics. Cell 115, 343-354 (2003
-
(2003)
Cell
, vol.115
, pp. 343-354
-
-
Kodama, A.1
Karakesisoglou, I.2
Wong, E.3
Vaezi, A.4
Fuchs, E.5
-
110
-
-
84863452328
-
Spectraplakins promote microtubule-mediated axonal growth by functioning as structural microtubule-associated proteins, and EB1 dependent +TIPs (tip interacting proteins
-
Alves-Silva J., et al. Spectraplakins promote microtubule-mediated axonal growth by functioning as structural microtubule-associated proteins, and EB1 dependent +TIPs (tip interacting proteins). J. Neurosci. 32, 9143-9158 (2012
-
(2012)
J. Neurosci
, vol.32
, pp. 9143-9158
-
-
Alves-Silva, J.1
-
111
-
-
84910020299
-
Actin-microtubule coordination at growing microtubule ends
-
Preciado López M., et al. Actin-microtubule coordination at growing microtubule ends. Nat. Commun. 5, 4778 (2014
-
(2014)
Nat. Commun
, vol.5
, pp. 4778
-
-
Preciado López, M.1
-
112
-
-
3142673447
-
Cdk1-Clb4 controls the interaction of astral microtubule plus ends with subdomains of the daughter cell cortex
-
Maekawa H., & Schiebel E. Cdk1-Clb4 controls the interaction of astral microtubule plus ends with subdomains of the daughter cell cortex. Genes Dev. 18, 1709-1724 (2004
-
(2004)
Genes Dev
, vol.18
, pp. 1709-1724
-
-
Maekawa, H.1
Schiebel, E.2
-
113
-
-
0037459058
-
Asymmetric loading of Kar9 onto spindle poles, and microtubules ensures proper spindle alignment
-
Liakopoulos D., Kusch J., Grava S., Vogel J., & Barral Y. Asymmetric loading of Kar9 onto spindle poles, and microtubules ensures proper spindle alignment. Cell 112, 561-574 (2003
-
(2003)
Cell
, vol.112
, pp. 561-574
-
-
Liakopoulos, D.1
Kusch, J.2
Grava, S.3
Vogel, J.4
Barral, Y.5
-
114
-
-
78650515566
-
Directed microtubule growth, + TIPs, and kinesin 2 are required for uniform microtubule polarity in dendrites
-
Mattie F. J., et al. Directed microtubule growth, +TIPs, and kinesin 2 are required for uniform microtubule polarity in dendrites. Curr. Biol. 20, 2169-2177 (2010
-
(2010)
Curr. Biol
, vol.20
, pp. 2169-2177
-
-
Mattie, F.J.1
-
115
-
-
84895072689
-
Mechanical, and geometrical constraints control kinesin-based microtubule guidance
-
Doodhi H., Katrukha E. A., Kapitein L. C., & Akhmanova A. Mechanical, and geometrical constraints control kinesin-based microtubule guidance. Curr. Biol. 24, 322-328 (2014
-
(2014)
Curr. Biol
, vol.24
, pp. 322-328
-
-
Doodhi, H.1
Katrukha, E.A.2
Kapitein, L.C.3
Akhmanova, A.4
-
116
-
-
84895071313
-
An EB1-kinesin complex is sufficient to steer microtubule growth in vitro
-
Chen Y., Rolls M. M., & Hancock W. O. An EB1-kinesin complex is sufficient to steer microtubule growth in vitro. Curr. Biol. 24, 316-321 (2014
-
(2014)
Curr. Biol
, vol.24
, pp. 316-321
-
-
Chen, Y.1
Rolls, M.M.2
Hancock, W.O.3
-
117
-
-
84870512478
-
The kinesin 14 Klp2 is negatively regulated by the SIN for proper spindle elongation, and telophase nuclear positioning
-
Mana-Capelli S., McLean J. R., Chen C. T., Gould K. L., & McCollum D. The kinesin 14 Klp2 is negatively regulated by the SIN for proper spindle elongation, and telophase nuclear positioning. Mol. Biol. Cell 23, 4592-4600 (2012
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 4592-4600
-
-
Mana-Capelli, S.1
McLean, J.R.2
Chen, C.T.3
Gould, K.L.4
McCollum, D.5
-
118
-
-
84885852166
-
The human kinesin 14 HSET tracks the tips of growing microtubules in vitro
-
Braun M., et al. The human kinesin 14 HSET tracks the tips of growing microtubules in vitro. Cytoskeleton (Hoboken) 70, 515-521 (2013
-
(2013)
Cytoskeleton (Hoboken
, vol.70
, pp. 515-521
-
-
Braun, M.1
-
119
-
-
27544447708
-
Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins
-
Goshima G., Nedelec F., & Vale R. D. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J. Cell Biol. 171, 229-240 (2005
-
(2005)
J. Cell Biol
, vol.171
, pp. 229-240
-
-
Goshima, G.1
Nedelec, F.2
Vale, R.D.3
-
120
-
-
33846280179
-
Crosslinkers, and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast
-
Janson M. E., et al. Crosslinkers, and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell 128, 357-368 (2007
-
(2007)
Cell
, vol.128
, pp. 357-368
-
-
Janson, M.E.1
-
121
-
-
16344378770
-
A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis
-
Ambrose J. C., Li W., Marcus A., Ma H., & Cyr R. A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol. Biol. Cell 16, 1584-1592 (2005
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 1584-1592
-
-
Ambrose, J.C.1
Li, W.2
Marcus, A.3
Ma, H.4
Cyr, R.5
-
122
-
-
84907987540
-
Minus-end-directed Kinesin 14 motors align antiparallel microtubules to control metaphase spindle length
-
Hepperla A. J., et al. Minus-end-directed Kinesin 14 motors align antiparallel microtubules to control metaphase spindle length. Dev. Cell 31, 61-72 (2014
-
(2014)
Dev. Cell
, vol.31
, pp. 61-72
-
-
Hepperla, A.J.1
-
123
-
-
84871530214
-
Microtubule attachment, and spindle assembly checkpoint signalling at the kinetochore
-
Foley E. A., & Kapoor T. M. Microtubule attachment, and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 14, 25-37 (2013
-
(2013)
Nat. Rev. Mol. Cell Biol
, vol.14
, pp. 25-37
-
-
Foley, E.A.1
Kapoor, T.M.2
-
124
-
-
0043199576
-
Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension
-
Homma N., et al. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114, 229-239 (2003
-
(2003)
Cell
, vol.114
, pp. 229-239
-
-
Homma, N.1
-
125
-
-
1642265093
-
Cortical control of microtubule stability, and polarization
-
Gundersen G. G., Gomes E. R., & Wen Y. Cortical control of microtubule stability, and polarization. Curr. Opin. Cell Biol. 16, 106-112 (2004
-
(2004)
Curr. Opin. Cell Biol
, vol.16
, pp. 106-112
-
-
Gundersen, G.G.1
Gomes, E.R.2
Wen, Y.3
-
126
-
-
84867433071
-
Amer2 protein interacts with EB1 protein, and adenomatous polyposis coli (APC), and controls microtubule stability, and cell migration
-
Pfister A. S., Hadjihannas M. V., Rohrig W., Schambony A., & Behrens J. Amer2 protein interacts with EB1 protein, and adenomatous polyposis coli (APC), and controls microtubule stability, and cell migration. J. Biol. Chem. 287, 35333-35340 (2012
-
(2012)
J. Biol. Chem
, vol.287
, pp. 35333-35340
-
-
Pfister, A.S.1
Hadjihannas, M.V.2
Rohrig, W.3
Schambony, A.4
Behrens, J.5
-
127
-
-
84901819506
-
CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis, and adhesion site turnover
-
Stehbens S. J., et al. CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis, and adhesion site turnover. Nat. Cell Biol. 16, 561-573 (2014
-
(2014)
Nat. Cell Biol
, vol.16
, pp. 561-573
-
-
Stehbens, S.J.1
-
128
-
-
84923806736
-
CLASP2 dependent microtubule capture at the neuromuscular junction membrane requires LL5β, and actin for focal delivery of acetylcholine receptor vesicles
-
Basu S., et al. CLASP2 dependent microtubule capture at the neuromuscular junction membrane requires LL5β, and actin for focal delivery of acetylcholine receptor vesicles. Mol. Biol. Cell 26, 938-951 (2015
-
(2015)
Mol. Biol. Cell
, vol.26
, pp. 938-951
-
-
Basu, S.1
-
129
-
-
84881159743
-
Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport
-
Moughamian A. J., Osborn G. E., Lazarus J. E., Maday S., & Holzbaur E. L. Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport. J. Neurosci. 33, 13190-13203 (2013
-
(2013)
J. Neurosci
, vol.33
, pp. 13190-13203
-
-
Moughamian, A.J.1
Osborn, G.E.2
Lazarus, J.E.3
Maday, S.4
Holzbaur, E.L.5
-
130
-
-
6944252346
-
Drosophila RhoGEF2 associates with microtubule plus ends in an EB1 dependent manner
-
Rogers S. L., Wiedemann U., Hacker U., Turck C., & Vale R. D. Drosophila RhoGEF2 associates with microtubule plus ends in an EB1 dependent manner. Curr. Biol. 14, 1827-1833 (2004
-
(2004)
Curr. Biol
, vol.14
, pp. 1827-1833
-
-
Rogers, S.L.1
Wiedemann, U.2
Hacker, U.3
Turck, C.4
Vale, R.D.5
-
131
-
-
84905646696
-
Dynamic microtubules catalyze formation of navigator-TRIO complexes to regulate neurite extension
-
Van Haren J., et al. Dynamic microtubules catalyze formation of navigator-TRIO complexes to regulate neurite extension. Curr. Biol. 24, 1778-1785 (2014
-
(2014)
Curr. Biol
, vol.24
, pp. 1778-1785
-
-
Van Haren, J.1
-
132
-
-
38949126881
-
STIM1 is a MT plus-end-tracking protein involved in remodeling of the ER
-
Grigoriev I., et al. STIM1 is a MT plus-end-tracking protein involved in remodeling of the ER. Curr. Biol. 18, 177-182 (2008
-
(2008)
Curr. Biol
, vol.18
, pp. 177-182
-
-
Grigoriev, I.1
-
133
-
-
80054901400
-
Microtubule nucleation by γ-tubulin complexes
-
Kollman J. M., Merdes A., Mourey L., & Agard D. A. Microtubule nucleation by γ-tubulin complexes. Nat. Rev. Mol. Cell Biol. 12, 709-721 (2011
-
(2011)
Nat. Rev. Mol. Cell Biol
, vol.12
, pp. 709-721
-
-
Kollman, J.M.1
Merdes, A.2
Mourey, L.3
Agard, D.A.4
-
134
-
-
0033771941
-
A new function for the γ-tubulin ring complex as a microtubule minus-end cap
-
Wiese C., & Zheng Y. A new function for the γ-tubulin ring complex as a microtubule minus-end cap. Nat. Cell Biol. 2, 358-364 (2000
-
(2000)
Nat. Cell Biol
, vol.2
, pp. 358-364
-
-
Wiese, C.1
Zheng, Y.2
-
135
-
-
84874077607
-
Branching microtubule nucleation in Xenopus egg extracts mediated by augmin, and TPX2
-
Petry S., Groen A. C., Ishihara K., Mitchison T. J., & Vale R. D. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin, and TPX2. Cell 152, 768-777 (2013
-
(2013)
Cell
, vol.152
, pp. 768-777
-
-
Petry, S.1
Groen, A.C.2
Ishihara, K.3
Mitchison, T.J.4
Vale, R.D.5
-
136
-
-
0033825277
-
Microtubule minus-end anchorage at centrosomal, and non-centrosomal sites: The role of ninein
-
Mogensen M. M., Malik A., Piel M., Bouckson-Castaing V., & Bornens M. Microtubule minus-end anchorage at centrosomal, and non-centrosomal sites: the role of ninein. J. Cell Sci. 113, 3013-3023 (2000
-
(2000)
J. Cell Sci
, vol.113
, pp. 3013-3023
-
-
Mogensen, M.M.1
Malik, A.2
Piel, M.3
Bouckson-Castaing, V.4
Bornens, M.5
-
137
-
-
18844427353
-
Microtubule nucleation, and anchoring at the centrosome are independent processes linked by ninein function
-
Delgehyr N., Sillibourne J., & Bornens M. Microtubule nucleation, and anchoring at the centrosome are independent processes linked by ninein function. J. Cell Sci. 118, 1565-1575 (2005
-
(2005)
J. Cell Sci
, vol.118
, pp. 1565-1575
-
-
Delgehyr, N.1
Sillibourne, J.2
Bornens, M.3
-
138
-
-
33846439062
-
Desmoplakin: An unexpected regulator of microtubule organization in the epidermis
-
Lechler T., & Fuchs E. Desmoplakin: an unexpected regulator of microtubule organization in the epidermis. J. Cell Biol. 176, 147-154 (2007
-
(2007)
J. Cell Biol
, vol.176
, pp. 147-154
-
-
Lechler, T.1
Fuchs, E.2
-
139
-
-
0037191046
-
Assembly of centrosomal proteins, and microtubule organization depends on PCM 1
-
Dammermann A., & Merdes A. Assembly of centrosomal proteins, and microtubule organization depends on PCM 1. J. Cell Biol. 159, 255-266 (2002
-
(2002)
J. Cell Biol
, vol.159
, pp. 255-266
-
-
Dammermann, A.1
Merdes, A.2
-
140
-
-
84934440511
-
Microtubule-associated proteins control the kinetics of microtubule nucleation
-
Wieczorek M., Bechstedt S., Chaaban S., & Brouhard G. J. Microtubule-associated proteins control the kinetics of microtubule nucleation. Nat. Cell Biol. 17, 907-916 (2015
-
(2015)
Nat. Cell Biol
, vol.17
, pp. 907-916
-
-
Wieczorek, M.1
Bechstedt, S.2
Chaaban, S.3
Brouhard, G.J.4
-
141
-
-
84899072470
-
Regulation of microtubule minus-end dynamics by CAMSAPs, and Patronin
-
Hendershott M. C., & Vale R. D. Regulation of microtubule minus-end dynamics by CAMSAPs, and Patronin. Proc. Natl Acad. Sci. USA 111, 5860-5865 (2014
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 5860-5865
-
-
Hendershott, M.C.1
Vale, R.D.2
-
142
-
-
84893542408
-
Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition
-
Jiang K., et al. Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. Dev. Cell 28, 295-309 (2014
-
(2014)
Dev. Cell
, vol.28
, pp. 295-309
-
-
Jiang, K.1
-
143
-
-
56349123945
-
Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts
-
Meng W., Mushika Y., Ichii T., & Takeichi M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell 135, 948-959 (2008
-
(2008)
Cell
, vol.135
, pp. 948-959
-
-
Meng, W.1
Mushika, Y.2
Ichii, T.3
Takeichi, M.4
-
144
-
-
77957817006
-
Patronin regulates the microtubule network by protecting microtubule minus ends
-
Goodwin S. S., & Vale R. D. Patronin regulates the microtubule network by protecting microtubule minus ends. Cell 143, 263-274 (2010
-
(2010)
Cell
, vol.143
, pp. 263-274
-
-
Goodwin, S.S.1
Vale, R.D.2
-
145
-
-
84870587308
-
Nezha/CAMSAP3, and CAMSAP2 cooperate in epithelial-specific organization of noncentrosomal microtubules
-
Tanaka N., Meng W., Nagae S., & Takeichi M. Nezha/CAMSAP3, and CAMSAP2 cooperate in epithelial-specific organization of noncentrosomal microtubules. Proc. Natl Acad. Sci. USA 109, 20029-20034 (2012
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 20029-20034
-
-
Tanaka, N.1
Meng, W.2
Nagae, S.3
Takeichi, M.4
-
146
-
-
84901805146
-
Microtubule minus-end binding protein CAMSAP2 controls axon specification, and dendrite development
-
Yau K. W., et al. Microtubule minus-end binding protein CAMSAP2 controls axon specification, and dendrite development. Neuron 82, 1058-1073 (2014
-
(2014)
Neuron
, vol.82
, pp. 1058-1073
-
-
Yau, K.W.1
-
147
-
-
84898723545
-
Ptrn 1 a microtubule minus end-binding camsap homolog promotes microtubule function in caenorhabditis elegans neurons
-
Richardson C. E., et al. PTRN 1, a microtubule minus end-binding CAMSAP homolog, promotes microtubule function in Caenorhabditis elegans neurons. eLife 3, e01498 (2014
-
(2014)
ELife
, vol.3
, pp. e01498
-
-
Richardson, C.E.1
-
148
-
-
84898754062
-
The Caenorhabditis elegans microtubule minus-end binding homolog PTRN 1 stabilizes synapses, and neurites
-
Marcette J. D., Chen J. J., & Nonet M. L. The Caenorhabditis elegans microtubule minus-end binding homolog PTRN 1 stabilizes synapses, and neurites. eLife 3, e01637 (2014
-
(2014)
ELife
, vol.3
, pp. e01637
-
-
Marcette, J.D.1
Chen, J.J.2
Nonet, M.L.3
-
149
-
-
84919724636
-
The microtubule minus-end-binding protein Patronin/PTRN 1 is required for axon regeneration in C elegans
-
Chuang M., et al. The microtubule minus-end-binding protein Patronin/PTRN 1 is required for axon regeneration in C. elegans. Cell Rep. 9, 874-883 (2014
-
(2014)
Cell Rep
, vol.9
, pp. 874-883
-
-
Chuang, M.1
-
151
-
-
84886894587
-
Patronin mediates a switch from kinesin 13 dependent poleward flux to anaphase B spindle elongation
-
Wang H., Brust-Mascher I., Civelekoglu-Scholey G., & Scholey J. M. Patronin mediates a switch from kinesin 13 dependent poleward flux to anaphase B spindle elongation. J. Cell Biol. 203, 35-46 (2013
-
(2013)
J. Cell Biol
, vol.203
, pp. 35-46
-
-
Wang, H.1
Brust-Mascher, I.2
Civelekoglu-Scholey, G.3
Scholey, J.M.4
-
152
-
-
79953298941
-
Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions, and cell migration
-
Zhang D., et al. Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions, and cell migration. Nat. Cell Biol. 13, 361-370 (2011
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 361-370
-
-
Zhang, D.1
-
153
-
-
84887103499
-
Cell cycle regulation of microtubule interactomes: Multi-layered regulation is critical for the interphase/mitosis transition
-
Syred H. M., Welburn J., Rappsilber J., & Ohkura H. Cell cycle regulation of microtubule interactomes: multi-layered regulation is critical for the interphase/mitosis transition. Mol. Cell. Proteomics 12, 3135-3147 (2013
-
(2013)
Mol. Cell. Proteomics
, vol.12
, pp. 3135-3147
-
-
Syred, H.M.1
Welburn, J.2
Rappsilber, J.3
Ohkura, H.4
-
154
-
-
84856196744
-
K fibre minus ends are stabilized by a RanGTP-dependent mechanism essential for functional spindle assembly
-
Meunier S., & Vernos I. K fibre minus ends are stabilized by a RanGTP-dependent mechanism essential for functional spindle assembly. Nat. Cell Biol. 13, 1406-1414 (2011
-
(2011)
Nat. Cell Biol
, vol.13
, pp. 1406-1414
-
-
Meunier, S.1
Vernos, I.2
-
155
-
-
84907372923
-
Microtubule organization, and microtubule-associated proteins in plant cells
-
Hamada T. Microtubule organization, and microtubule-associated proteins in plant cells. Int. Rev. Cell Mol. Biol. 312, 1-52 (2014
-
(2014)
Int. Rev. Cell Mol. Biol
, vol.312
, pp. 1-52
-
-
Hamada, T.1
-
156
-
-
77957374075
-
Microtubule-binding agents: A dynamic field of cancer therapeutics
-
Dumontet C., & Jordan M. A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 9, 790-803 (2010
-
(2010)
Nat. Rev. Drug Discov
, vol.9
, pp. 790-803
-
-
Dumontet, C.1
Jordan, M.A.2
-
157
-
-
84937251924
-
Photoswitchable inhibitors of microtubule dynamics optically control mitosis, and cell death
-
Borowiak M., et al. Photoswitchable inhibitors of microtubule dynamics optically control mitosis, and cell death. Cell 162, 403-411 (2015
-
(2015)
Cell
, vol.162
, pp. 403-411
-
-
Borowiak, M.1
-
158
-
-
84878434586
-
End-binding proteins sensitize microtubules to the action of microtubule-targeting agents
-
Mohan R., et al. End-binding proteins sensitize microtubules to the action of microtubule-targeting agents. Proc. Natl Acad. Sci. USA 110, 8900-8905 (2013
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 8900-8905
-
-
Mohan, R.1
-
159
-
-
84921415603
-
End-binding 1 protein overexpression correlates with glioblastoma progression, and sensitizes to Vinca-alkaloids in vitro, and in vivo
-
Berges R., et al. End-binding 1 protein overexpression correlates with glioblastoma progression, and sensitizes to Vinca-alkaloids in vitro, and in vivo. Oncotarget 5, 12769-12787 (2014
-
(2014)
Oncotarget
, vol.5
, pp. 12769-12787
-
-
Berges, R.1
-
160
-
-
84917734762
-
TIP EB1 downregulates paclitaxel-induced proliferation inhibition, and apoptosis in breast cancer cells through inhibition of paclitaxel binding on microtubules
-
Thomas G. E., Sreeja J. S., Gireesh K. K., Gupta H., & Manna T. K. TIP EB1 downregulates paclitaxel-induced proliferation inhibition, and apoptosis in breast cancer cells through inhibition of paclitaxel binding on microtubules. Int. J. Oncol. 46, 133-146 (2015
-
(2015)
Int. J. Oncol
, vol.46
, pp. 133-146
-
-
Thomas, G.E.1
Sreeja, J.S.2
Gireesh, K.K.3
Gupta, H.4
Manna, T.K.5
-
161
-
-
84898751696
-
Peptide aptamers define distinct EB1-, and EB3 binding motifs, and interfere with microtubule dynamics
-
Lesniewska K., Warbrick E., & Ohkura H. Peptide aptamers define distinct EB1-, and EB3 binding motifs, and interfere with microtubule dynamics. Mol. Biol. Cell 25, 1025-1036 (2014
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 1025-1036
-
-
Lesniewska, K.1
Warbrick, E.2
Ohkura, H.3
-
162
-
-
84884533735
-
Pregnenolone activates CLIP 170 to promote microtubule growth, and cell migration
-
Weng J. H., et al. Pregnenolone activates CLIP 170 to promote microtubule growth, and cell migration. Nat. Chem. Biol. 9, 636-642 (2013
-
(2013)
Nat. Chem. Biol
, vol.9
, pp. 636-642
-
-
Weng, J.H.1
-
163
-
-
79960916482
-
Purification of tubulin from the fission yeast Schizosaccharomyces pombe
-
Drummond D. R., et al. Purification of tubulin from the fission yeast Schizosaccharomyces pombe. Methods Mol. Biol. 777, 29-55 (2011
-
(2011)
Methods Mol. Biol
, vol.777
, pp. 29-55
-
-
Drummond, D.R.1
-
164
-
-
84897536393
-
Regulation of microtubule motors by tubulin isotypes, and post-translational modifications
-
Sirajuddin M., Rice L. M., & Vale R. D. Regulation of microtubule motors by tubulin isotypes, and post-translational modifications. Nat. Cell Biol. 16, 335-344 (2014
-
(2014)
Nat. Cell Biol
, vol.16
, pp. 335-344
-
-
Sirajuddin, M.1
Rice, L.M.2
Vale, R.D.3
-
165
-
-
80053585281
-
Design overexpression, and purification of polymerization-blocked yeast αβ-tubulin mutants
-
Johnson V., Ayaz P., Huddleston P., & Rice L. M. Design, overexpression, and purification of polymerization-blocked yeast αβ-tubulin mutants. Biochemistry 50, 8636-8644 (2011
-
(2011)
Biochemistry
, vol.50
, pp. 8636-8644
-
-
Johnson, V.1
Ayaz, P.2
Huddleston, P.3
Rice, L.M.4
-
166
-
-
84886285756
-
Overexpression, purification, and functional analysis of recombinant human tubulin dimer
-
Minoura I., et al. Overexpression, purification, and functional analysis of recombinant human tubulin dimer. FEBS Lett. 587, 3450-3455 (2013
-
(2013)
FEBS Lett
, vol.587
, pp. 3450-3455
-
-
Minoura, I.1
-
167
-
-
84896347082
-
Micropattern-guided assembly of overlapping pairs of dynamic microtubules
-
Fourniol F. J., et al. Micropattern-guided assembly of overlapping pairs of dynamic microtubules. Methods Enzymol. 540, 339-360 (2014
-
(2014)
Methods Enzymol
, vol.540
, pp. 339-360
-
-
Fourniol, F.J.1
-
168
-
-
84873090491
-
Molecular mechanism of action of microtubule-stabilizing anticancer agents
-
Prota A. E., et al. Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science. 339, 587-590 (2013
-
(2013)
Science
, vol.339
, pp. 587-590
-
-
Prota, A.E.1
-
169
-
-
84893516156
-
Structural basis of microtubule stabilization by laulimalide, and peloruside A
-
Prota A. E., et al. Structural basis of microtubule stabilization by laulimalide, and peloruside A. Angew. Chem. Int. Ed. Engl. 53, 1621-1625 (2014
-
(2014)
Angew. Chem. Int. Ed. Engl
, vol.53
, pp. 1621-1625
-
-
Prota, A.E.1
-
170
-
-
1642401199
-
Insight into tubulin regulation from a complex with colchicine, and a stathmin-like domain
-
Ravelli R. B., et al. Insight into tubulin regulation from a complex with colchicine, and a stathmin-like domain. Nature 428, 198-202 (2004
-
(2004)
Nature
, vol.428
, pp. 198-202
-
-
Ravelli, R.B.1
-
171
-
-
0026558326
-
Mechanism of inhibition of microtubule polymerization by colchicine: Inhibitory potencies of unliganded colchicine, and tubulin-colchicine complexes
-
Skoufias D. A., & Wilson L. Mechanism of inhibition of microtubule polymerization by colchicine: inhibitory potencies of unliganded colchicine, and tubulin-colchicine complexes. Biochemistry 31, 738-746 (1992
-
(1992)
Biochemistry
, vol.31
, pp. 738-746
-
-
Skoufias, D.A.1
Wilson, L.2
-
172
-
-
19544393159
-
Structural basis for the regulation of tubulin by vinblastine
-
Gigant B., et al. Structural basis for the regulation of tubulin by vinblastine. Nature 435, 519-522 (2005
-
(2005)
Nature
, vol.435
, pp. 519-522
-
-
Gigant, B.1
-
173
-
-
84907270556
-
A new tubulin-binding site, and pharmacophore for microtubule-destabilizing anticancer drugs
-
Prota A. E., et al. A new tubulin-binding site, and pharmacophore for microtubule-destabilizing anticancer drugs. Proc. Natl Acad. Sci. USA 111, 13817-13821 (2014
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 13817-13821
-
-
Prota, A.E.1
-
174
-
-
84860390007
-
The determinants that govern microtubule assembly from the atomic structure of GTP-tubulin
-
Nawrotek A., Knossow M., & Gigant B. The determinants that govern microtubule assembly from the atomic structure of GTP-tubulin. J. Mol. Biol. 412, 35-42 (2011
-
(2011)
J. Mol. Biol
, vol.412
, pp. 35-42
-
-
Nawrotek, A.1
Knossow, M.2
Gigant, B.3
-
175
-
-
0032495513
-
Structure of the αβ tubulin dimer by electron crystallography
-
Nogales E., Wolf S. G., & Downing K. H. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199-203 (1998
-
(1998)
Nature
, vol.391
, pp. 199-203
-
-
Nogales, E.1
Wolf, S.G.2
Downing, K.H.3
-
176
-
-
0031780061
-
Tubulin, and FtsZ form a distinct family of GTPases
-
Nogales E., Downing K. H., Amos L. A., & Lowe J. Tubulin, and FtsZ form a distinct family of GTPases. Nat. Struct. Biol. 5, 451-458 (1998
-
(1998)
Nat. Struct. Biol
, vol.5
, pp. 451-458
-
-
Nogales, E.1
Downing, K.H.2
Amos, L.A.3
Lowe, J.4
-
177
-
-
13444267357
-
Structural insights into the EB1-APC interaction
-
Honnappa S., John C. M., Kostrewa D., Winkler F. K., & Steinmetz M. O. Structural insights into the EB1-APC interaction. EMBO J. 24, 261-269 (2005
-
(2005)
EMBO J.
, vol.24
, pp. 261-269
-
-
Honnappa, S.1
John, C.M.2
Kostrewa, D.3
Winkler, F.K.4
Steinmetz, M.O.5
-
178
-
-
54249131103
-
Capturing protein tails by CAP-Gly domains
-
Steinmetz M. O., & Akhmanova A. Capturing protein tails by CAP-Gly domains. Trends Biochem. Sci. 33, 535-545 (2008
-
(2008)
Trends Biochem. Sci
, vol.33
, pp. 535-545
-
-
Steinmetz, M.O.1
Akhmanova, A.2
-
179
-
-
4644302721
-
Conformational changes in CLIP 170 regulate its binding to microtubules, and dynactin localisation
-
Lansbergen G., et al. Conformational changes in CLIP 170 regulate its binding to microtubules, and dynactin localisation. J. Cell Biol. 166, 1003-1014 (2004
-
(2004)
J. Cell Biol
, vol.166
, pp. 1003-1014
-
-
Lansbergen, G.1
-
180
-
-
33750949610
-
Role of CLASP2 in microtubule stabilization, and the regulation of persistent motility
-
Drabek K., et al. Role of CLASP2 in microtubule stabilization, and the regulation of persistent motility. Curr. Biol. 16, 2259-2264 (2006
-
(2006)
Curr. Biol
, vol.16
, pp. 2259-2264
-
-
Drabek, K.1
|