-
1
-
-
33745307617
-
Ras, PI(3)K and mTOR signaling controls tumour cell growth
-
Shaw, R.J., and Cantley, L. (2006) Ras, PI(3)K and mTOR signaling controls tumour cell growth. Nature 441, 424-430
-
(2006)
Nature
, vol.441
, pp. 424-430
-
-
Shaw, R.J.1
Cantley, L.2
-
2
-
-
0035793086
-
A role of the kinase mTOR in cellular transformation induced by the oncoproteins PI3k and akt
-
Aoki M., Blazek, E., and Vogt, P.K. (2001) A role of the kinase mTOR in cellular transformation induced by the oncoproteins PI3k and Akt. Proc. Natl. Acad. Sci. U.S.A. 98, 136-141
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 136-141
-
-
Aoki, M.1
Blazek, E.2
Vogt, P.K.3
-
3
-
-
0036632368
-
The phosphatidylinositol 3-kinase AKT pathway in human cancer
-
Vivanco, I., and Sawyers, C.L. (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat. Rev. Cancer 2, 489-501
-
(2002)
Nat. Rev. Cancer
, vol.2
, pp. 489-501
-
-
Vivanco, I.1
Sawyers, C.L.2
-
4
-
-
4344602002
-
The biology and clinical relevance of the PTEN tumor suppressor pathway
-
Sansal, I., and Sellers, W.R. (2004) The biology and clinical relevance of the PTEN tumor suppressor pathway. J. Clin. Oncol. 22, 2954-2963
-
(2004)
J. Clin. Oncol.
, vol.22
, pp. 2954-2963
-
-
Sansal, I.1
Sellers, W.R.2
-
5
-
-
0037718389
-
TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function
-
Schalm, S.S., Fingar, D.C., Sabatini, D.M., Blenis, J. (2003) TOS motif-mediated Raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr. Biol. 13, 797-806
-
(2003)
Curr. Biol.
, vol.13
, pp. 797-806
-
-
Schalm, S.S.1
Fingar, D.C.2
Sabatini, D.M.3
Blenis, J.4
-
6
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
Hara, K., Maruki, Y., Long, X., Yoshino, K., Oshiro, N., Hidayat, S., Tokunaga, C., Avruch, J., and Yonezawa, K. (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177-189
-
(2002)
Cell
, vol.110
, pp. 177-189
-
-
Hara, K.1
Maruki, Y.2
Long, X.3
Yoshino, K.4
Oshiro, N.5
Hidayat, S.6
Tokunaga, C.7
Avruch, J.8
Yonezawa, K.9
-
7
-
-
0037507252
-
The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif
-
Nojima, H., Tokunaga, C., Eguchi, S., Oshiro, N., Hidayat, S., Yoshino, K., Hara, K., Tanaka, N., Avruch, J., and Yonezawa, K. (2003) The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J. Biol. Chem. 278, 15461-15464
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 15461-15464
-
-
Nojima, H.1
Tokunaga, C.2
Eguchi, S.3
Oshiro, N.4
Hidayat, S.5
Yoshino, K.6
Hara, K.7
Tanaka, N.8
Avruch, J.9
Yonezawa, K.10
-
8
-
-
77949881462
-
The PI3K pathway as a drug target in human cancer
-
Courtney, K. D., and Corcoran, R. B., and Engelman, J. A. (2010) The PI3K pathway as a drug target in human cancer. J. Clin. Oncol. 28, 1075-1083
-
(2010)
J. Clin. Oncol.
, vol.28
, pp. 1075-1083
-
-
Courtney, K.D.1
Corcoran, R.B.2
Engelman, J.A.3
-
9
-
-
77950243447
-
Drugging the PI3 kinome: From chemical tools to drugs in the clinic
-
Workman, P., and Clarke, P. A., Raynaud, F. I., and van Montfort R. L. (2010) Drugging the PI3 kinome: from chemical tools to drugs in the clinic. CancerRes. 70, 2146-2157
-
(2010)
CancerRes.
, vol.70
, pp. 2146-2157
-
-
Workman, P.1
Clarke, P.A.2
Raynaud, F.I.3
Van Montfort, R.L.4
-
10
-
-
77649286736
-
Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E
-
Hsieh, A. C., Costa, M., Zollo, O., Davis, C., Feldman, M. E., Testa, J. R., Meyuhas, O., Shokat, K. M., and Ruggero, D. (2010) Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell 17, 249-261
-
(2010)
Cancer Cell
, vol.17
, pp. 249-261
-
-
Hsieh, A.C.1
Costa, M.2
Zollo, O.3
Davis, C.4
Feldman, M.E.5
Testa, J.R.6
Meyuhas, O.7
Shokat, K.M.8
Ruggero, D.9
-
11
-
-
33845292259
-
A negative feedback signaling network underlies oncogene-induced senescence
-
Courtois-Cox, S., Genther Williams, S. M., Reczek, E. E., Johnson, B. W., McGillicuddy, L. T., Johannessen, C. M., Hollstein, P. E., MacCollin, M., and Cichowski, K. (2006) A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10, 459-472
-
(2006)
Cancer Cell
, vol.10
, pp. 459-472
-
-
Courtois-Cox, S.1
Genther Williams, S.M.2
Reczek, E.E.3
Johnson, B.W.4
McGillicuddy, L.T.5
Johannessen, C.M.6
Hollstein, P.E.7
MacCollin, M.8
Cichowski, K.9
-
12
-
-
32944457518
-
mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates akt
-
O'Reilly, K. E., Rojo, F., She, Q. B, Solit, D., Mills, G.B., Smith, D., Lane, H., Hofmann, F., Hicklin, D. J., Ludwig, D. L., Baselga, J., and Rosen, N. (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66, 1500-1508
-
(2006)
Cancer Res.
, vol.66
, pp. 1500-1508
-
-
O'Reilly, K.E.1
Rojo, F.2
She, Q.B.3
Solit, D.4
Mills, G.B.5
Smith, D.6
Lane, H.7
Hofmann, F.8
Hicklin, D.J.9
Ludwig, D.L.10
Baselga, J.11
Rosen, N.12
-
13
-
-
51349164790
-
Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer
-
Carracedo, A., Ma, L., Teruya-Feldstein, J., Rojo, F., Salmena, L., Alimonti, A., Egia, A., and Sasaki, A. T., Thomas, G., Kozma, S. C., Papa, A., Nardella, C., Cantley, L. C., Baselga, J., and Pandolfi, P. P. (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J. Clin. Invest. 118, 3065-3074
-
(2008)
J. Clin. Invest.
, vol.118
, pp. 3065-3074
-
-
Carracedo, A.1
Ma, L.2
Teruya-Feldstein, J.3
Rojo, F.4
Salmena, L.5
Alimonti, A.6
Egia, A.7
Sasaki, A.T.8
Thomas, G.9
Kozma, S.C.10
Papa, A.11
Nardella, C.12
Cantley, L.C.13
Baselga, J.14
Pandolfi, P.P.15
-
14
-
-
78651458656
-
PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer
-
Chandarlapaty, S., Sawai, A., Scaltriti, M., Rodrik-Outmezguine, V., Grbovic-Huezo, O., Serra, V., and Majumder, P. K., Baselga, J., and Rosen, N. (2011) PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Cancer Cell 19, 58-71
-
(2011)
Cancer Cell
, vol.19
, pp. 58-71
-
-
Chandarlapaty, S.1
Sawai, A.2
Scaltriti, M.3
Rodrik-Outmezguine, V.4
Grbovic-Huezo, O.5
Serra, V.6
Majumder, P.K.7
Baselga, J.8
Rosen, N.9
-
15
-
-
44449161481
-
The TSC1-TSC2 complex: A molecular switchboard controlling cell growth
-
Huang, J., and Manning, B.D. (2008) The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412, 179-190
-
(2008)
Biochem. J.
, vol.412
, pp. 179-190
-
-
Huang, J.1
Manning, B.D.2
-
16
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
Sancak, Y., Thoreen, C. C., Peterson, T. R., Lindquist, R. A., Kang, S. A., Spooner, E., Carr, S. A., and Sabatini, D. M. (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25, 903-915
-
(2007)
Mol. Cell
, vol.25
, pp. 903-915
-
-
Sancak, Y.1
Thoreen, C.C.2
Peterson, T.R.3
Lindquist, R.A.4
Kang, S.A.5
Spooner, E.6
Carr, S.A.7
Sabatini, D.M.8
-
17
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by akt and suppresses mTOR signaling
-
Inoki, K., Li, Y., Zhu, T., Wu, J., and Guan, K. L. (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signaling. Nat. Cell Biol. 4, 648-657
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.3
Wu, J.4
Guan, K.L.5
-
18
-
-
0036342294
-
Identification of the tuberous sclerosis complex-2 tumour suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway
-
Manning, B. D., and Tee, A. R., Logsdon, M. N., Blenis, J., and Cantley, L. C. (2002) Identification of the tuberous sclerosis complex-2 tumour suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol. Cell 10, 151-162
-
(2002)
Mol. Cell
, vol.10
, pp. 151-162
-
-
Manning, B.D.1
Tee, A.R.2
Logsdon, M.N.3
Blenis, J.4
Cantley, L.C.5
-
19
-
-
0043127125
-
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
Inoki, K., Li, Y., Xu, T., and Guan, K. L. (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17, 1829-1834
-
(2003)
Genes Dev.
, vol.17
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
Guan, K.L.4
-
20
-
-
27744588780
-
Tuberous sclerosis: A GAP at the crossroads of multiple signaling pathways
-
Kwiatkowski, D.J., and Manning B.D. (2005) Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum. Mol. Genet. 15, R251-R258
-
(2005)
Hum. Mol. Genet.
, vol.15
, pp. R251-R258
-
-
Kwiatkowski, D.J.1
Manning, B.D.2
-
21
-
-
80052511813
-
The AMPK signaling pathway coordinates cell growth, autophagy and metabolism
-
Mihaylova, M. M., and Shaw, R. J. (2011) The AMPK signaling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016-1023
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1016-1023
-
-
Mihaylova, M.M.1
Shaw, R.J.2
-
22
-
-
84858782079
-
AMPK: A nutrient and energy sensor that maintains energy homeostasis
-
Hardie, D. G., and Ross, F. A., and Hawley, S. A. (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251-262
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
23
-
-
0029910018
-
Characterization of the AMP-activated protein kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase
-
Hawley, S. A., Davison, M., Woods, A., Davies, S. P., and Beri, R. K., Carling, D., and Hardie, D. G. (1996) Characterization of the AMP-activated protein kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J. Biol. Chem. 271, 27879-27887
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 27879-27887
-
-
Hawley, S.A.1
Davison, M.2
Woods, A.3
Davies, S.P.4
Beri, R.K.5
Carling, D.6
Hardie, D.G.7
-
24
-
-
0031717105
-
The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell?
-
Hardie, D. G., Carling, D., and Carlson, M. (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67, 821-855
-
(1998)
Annu. Rev. Biochem.
, vol.67
, pp. 821-855
-
-
Hardie, D.G.1
Carling, D.2
Carlson, M.3
-
25
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki, K., Zhu, T., and Guan, K. L. (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577-590
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
26
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn, D. M., and Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., and Vasquez, D. S., Turk, B. E., and Shaw, R. J. (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214-226
-
(2008)
Mol. Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
Turk, B.E.7
Shaw, R.J.8
-
27
-
-
48449101433
-
p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling
-
Budanov, A.V., and Karin, M. (2008) p53 target genes Sestrin1 and Sestrin2 connect genotoxic stress and mTOR signaling. Cell 134, 451-460
-
(2008)
Cell
, vol.134
, pp. 451-460
-
-
Budanov, A.V.1
Karin, M.2
-
28
-
-
77951768486
-
Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak, Y., Bar-Peled, L., Zoncu, R., and Markhard, A. L., Nada, S., and Sabatini, D. M. (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290-303
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
29
-
-
84894114029
-
Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
-
Menon, S., Dibble, C. C., Talbott, G., Hoxhaj, G., Valvezan, A. J., Takahashi, H., Cantley, L. C., and Manning, B. D. (2014) Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771-785
-
(2014)
Cell
, vol.156
, pp. 771-785
-
-
Menon, S.1
Dibble, C.C.2
Talbott, G.3
Hoxhaj, G.4
Valvezan, A.J.5
Takahashi, H.6
Cantley, L.C.7
Manning, B.D.8
-
30
-
-
84907991157
-
The sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1
-
Chantranupong, L., and Wolfson, R. L., Orozco, J. M., Saxton, RA., Scaria, S. M., Bar-Peled, L., Spooner, E., Isasa, M., Gygi, S. P., and Sabatini, D. M. (2014) The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep. 9, 1-8
-
(2014)
Cell Rep.
, vol.9
, pp. 1-8
-
-
Chantranupong, L.1
Wolfson, R.L.2
Orozco, J.M.3
Saxton, R.A.4
Scaria, S.M.5
Bar-Peled, L.6
Spooner, E.7
Isasa, M.8
Gygi, S.P.9
Sabatini, D.M.10
-
31
-
-
34248194200
-
The regulation of AMPKβ1, TSC2, and PTEN expression by p53: Stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways
-
Feng, Z., Hu, W., de Stanchina, E., Teresky, A. K., Jin, S., Lowe, S., and Levine, A. J. (2007) The regulation of AMPKβ1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 67, 3043-3053
-
(2007)
Cancer Res.
, vol.67
, pp. 3043-3053
-
-
Feng, Z.1
Hu, W.2
De Stanchina, E.3
Teresky, A.K.4
Jin, S.5
Lowe, S.6
Levine, A.J.7
-
32
-
-
84946931132
-
Deletion or hot-spot mutations of p53 enhance mTORC1 activity by changing the lysosomal partitioning of TSC2 and rheb
-
Agarwal, S., Bell, C., and Taylor, S. M., and Moran, R. G. (2015) Deletion or hot-spot mutations of p53 enhance mTORC1 activity by changing the lysosomal partitioning of TSC2 and Rheb. Mol. Cancer Res. pii: molcanres.0159.2015
-
(2015)
Mol. Cancer Res.
-
-
Agarwal, S.1
Bell, C.2
Taylor, S.M.3
Moran, R.G.4
-
33
-
-
54549094903
-
Somatic mutations affect key pathways in lung adenocarcinoma
-
Ding, L., Getz, G., Wheeler, D. A., and Mardis, E. R., McLellan, M. D., Cibulskis, K., Sougnez, C., Greulich, H., and Muzny, D. M., Morgan, M. B., Fulton, L., Fulton, R. S., Zhang, Q., Wendl, M. C., Lawrence, M. S., Larson, D. E., Chen, K., Dooling, D. J., Sabo, A., Hawes, A. C., Shen, H., Jhangiani, S. N., Lewis, L. R., Hall, O., Zhu, Y., Mathew, T., Ren, Y., Yao, J., Scherer, S. E., Clerc, K., Metcalf, G. A., Ng, B., Milosavljevic, A., Gonzalez-Garay, M. L., Osborne, J. R., Meyer, R., Shi, X., Tang, Y., Koboldt, D. C., Lin, L., Abbott, R., Miner, T. L., Pohl, C., Fewell, G., Haipek, C., Schmidt, H., Dunford-Shore, B. H., Kraja, A., Crosby, S. D., Sawyer, C. S., Vickery, T., et al. (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069-1075
-
(2008)
Nature
, vol.455
, pp. 1069-1075
-
-
Ding, L.1
Getz, G.2
Wheeler, D.A.3
Mardis, E.R.4
McLellan, M.D.5
Cibulskis, K.6
Sougnez, C.7
Greulich, H.8
Muzny, D.M.9
Morgan, M.B.10
Fulton, L.11
Fulton, R.S.12
Zhang, Q.13
Wendl, M.C.14
Lawrence, M.S.15
Larson, D.E.16
Chen, K.17
Dooling, D.J.18
Sabo, A.19
Hawes, A.C.20
Shen, H.21
Jhangiani, S.N.22
Lewis, L.R.23
Hall, O.24
Zhu, Y.25
Mathew, T.26
Ren, Y.27
Yao, J.28
Scherer, S.E.29
Clerc, K.30
Metcalf, G.A.31
Ng, B.32
Milosavljevic, A.33
Gonzalez-Garay, M.L.34
Osborne, J.R.35
Meyer, R.36
Shi, X.37
Tang, Y.38
Koboldt, D.C.39
Lin, L.40
Abbott, R.41
Miner, T.L.42
Pohl, C.43
Fewell, G.44
Haipek, C.45
Schmidt, H.46
Dunford-Shore, B.H.47
Kraja, A.48
Crosby, S.D.49
Sawyer, C.S.50
Vickery, T.51
more..
-
34
-
-
10744230065
-
LKB1 is the upstream kinase in the AMP-activated protein kinase cascade
-
Woods, A., and Johnstone, S. R., Dickerson, K., Leiper, F. C., Fryer, L. G., Neumann, D., Schlattner, U., Wallimann, T., Carlson, M., and Carling, D. (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004-2008
-
(2003)
Curr. Biol.
, vol.13
, pp. 2004-2008
-
-
Woods, A.1
Johnstone, S.R.2
Dickerson, K.3
Leiper, F.C.4
Fryer, L.G.5
Neumann, D.6
Schlattner, U.7
Wallimann, T.8
Carlson, M.9
Carling, D.10
-
35
-
-
0036645286
-
Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung
-
Sanchez-Cespedes, M., Parrella, P., Esteller, M., Nomoto, S., Trink, B., and Engles, J. M., Westra, W. H., Herman, J. G., and Sidransky, D. (2002) Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res. 62, 3659-3662
-
(2002)
Cancer Res.
, vol.62
, pp. 3659-3662
-
-
Sanchez-Cespedes, M.1
Parrella, P.2
Esteller, M.3
Nomoto, S.4
Trink, B.5
Engles, J.M.6
Westra, W.H.7
Herman, J.G.8
Sidransky, D.9
-
36
-
-
85047689953
-
5-aminoimidazole-4-carboxamide ribonucleoside: A specific method for activating AMP-activated protein kinase in intact cells
-
Corton, J. M., and Gillespie, J. G., Hawley, S. A., and Hardie, D. G. (1995) 5-Aminoimidazole-4-carboxamide ribonucleoside: a specific method for activating AMP-activated protein kinase in intact cells. Eur. J. Biochem. 229, 558-565
-
(1995)
Eur. J. Biochem.
, vol.229
, pp. 558-565
-
-
Corton, J.M.1
Gillespie, J.G.2
Hawley, S.A.3
Hardie, D.G.4
-
37
-
-
77956410464
-
Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation
-
Hawley, S. A., and Ross, F. A., Chevtzoff, C., and Green, K. A., Evans, A., Fogarty, S., Towler, M. C., Brown, L. J., Ogunbayo, O. A., Evans, A. M., and Hardie, D. G. (2010) Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation. CellMetab. 11, 554-565
-
(2010)
CellMetab.
, vol.11
, pp. 554-565
-
-
Hawley, S.A.1
Ross, F.A.2
Chevtzoff, C.3
Green, K.A.4
Evans, A.5
Fogarty, S.6
Towler, M.C.7
Brown, L.J.8
Ogunbayo, O.A.9
Evans, A.M.10
Hardie, D.G.11
-
38
-
-
67650456927
-
Therapeutics by cytotoxic metabolite accumulation: Pemetrexed causes ZMP accumulation, AMPK activation, and mammalian target of rapamycin inhibition
-
Racanelli, A. C., Rothbart, S. B., Heyer, C. L., and Moran, R. G. (2009) Therapeutics by cytotoxic metabolite accumulation: pemetrexed causes ZMP accumulation, AMPK activation, and mammalian target of rapamycin inhibition. Cancer Res. 69, 5467-5474
-
(2009)
Cancer Res.
, vol.69
, pp. 5467-5474
-
-
Racanelli, A.C.1
Rothbart, S.B.2
Heyer, C.L.3
Moran, R.G.4
-
39
-
-
78650362440
-
Pemetrexed indirectly activates the metabolic kinase AMPK in human carcinomas
-
Rothbart, S. B., Racanelli, A. C., and Moran, R. G. (2010) Pemetrexed indirectly activates the metabolic kinase AMPK in human carcinomas. Cancer Res. 70, 10299-10309
-
(2010)
Cancer Res.
, vol.70
, pp. 10299-10309
-
-
Rothbart, S.B.1
Racanelli, A.C.2
Moran, R.G.3
-
40
-
-
0026494947
-
A dideazatetrahydrofolate analogue lacking a chiral center at C-6, N-[4-[2-(2-amino-3, 4-dihydro-4-oxo-7H-pyrrolo[2, 3-d]pyrimidin-5-yl)ethyl]benzoyl]-L-glutamic acid is an inhibitor of thymidylate synthase
-
Taylor, E. C., Kuhnt, D., Shih, C., Rinzel, S. M., Grindey, G. B., Barredo, J., Jannatipour, M., and Moran, R. G. (1992) A dideazatetrahydrofolate analogue lacking a chiral center at C-6, N-[4-[2-(2-amino-3, 4-dihydro-4-oxo-7H-pyrrolo[2, 3-d]pyrimidin-5-yl)ethyl]benzoyl]-L-glutamic acid is an inhibitor of thymidylate synthase. J. Med. Chem. 35, 4450-4454
-
(1992)
J. Med. Chem.
, vol.35
, pp. 4450-4454
-
-
Taylor, E.C.1
Kuhnt, D.2
Shih, C.3
Rinzel, S.M.4
Grindey, G.B.5
Barredo, J.6
Jannatipour, M.7
Moran, R.G.8
-
41
-
-
0030891198
-
LY231514, apyrrolo[2, 3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes
-
Shih, C., and Chen, V. J., Gossett, L. S., Gates, S. B., MacKellar, W. C., Habeck, L. L., Shackelford, K. A., Mendelsohn, L. G., Soose, D. J., Patel, V. F., Andis, S. L., Bewley, J. R., Rayl, E. A., Moroson, B. A., Beardsley, G. P., Kohler, W., Ratnam, M., and Schultz, R.M. (1997) LY231514, apyrrolo[2, 3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res. 57, 1116-1123
-
(1997)
Cancer Res.
, vol.57
, pp. 1116-1123
-
-
Shih, C.1
Chen, V.J.2
Gossett, L.S.3
Gates, S.B.4
MacKellar, W.C.5
Habeck, L.L.6
Shackelford, K.A.7
Mendelsohn, L.G.8
Soose, D.J.9
Patel, V.F.10
Andis, S.L.11
Bewley, J.R.12
Rayl, E.A.13
Moroson, B.A.14
Beardsley, G.P.15
Kohler, W.16
Ratnam, M.17
Schultz, R.M.18
-
42
-
-
34547981921
-
Cytotoxic effect of 5-aminoimidaz-ole-4-carboxamide-1-β-4-ribofuranoside (AICAR) on childhood acute lymphoblastic leukemia (ALL) cells: Implication for targeted therapy
-
Sengupta, T. K., and Leclerc, G. M., Hsieh-Kinser, T. T., Leclerc, G. J., Singh, I., and Barredo, J. C. (2007) Cytotoxic effect of 5-aminoimidaz-ole-4-carboxamide-1-β-4-ribofuranoside (AICAR) on childhood acute lymphoblastic leukemia (ALL) cells: implication for targeted therapy. Mol. Cancer 6, 46-60
-
(2007)
Mol. Cancer
, vol.6
, pp. 46-60
-
-
Sengupta, T.K.1
Leclerc, G.M.2
Hsieh-Kinser, T.T.3
Leclerc, G.J.4
Singh, I.5
Barredo, J.C.6
-
43
-
-
28244466264
-
5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase
-
Rattan, R., Giri, S., Singh, A. K., and Singh, I. (2005) 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside inhibits cancer cell proliferation in vitro and In vivo via AMP-activated protein kinase. J. Biol. Chem. 280, 39582-39593
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 39582-39593
-
-
Rattan, R.1
Giri, S.2
Singh, A.K.3
Singh, I.4
-
44
-
-
42449114966
-
Transcriptional control of human p53-regulated genes
-
Riley, T., Sontag, E., Chen, P., and Levine, A. (2008) Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol. 9, 402-412
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 402-412
-
-
Riley, T.1
Sontag, E.2
Chen, P.3
Levine, A.4
-
45
-
-
0031435944
-
DNA damage induces phosphorylation of the amino terminus of p53
-
Siliciano, J. D., and Canman, C. E., Taya, Y., Sakaguchi, K., Appella, E., and Kastan, M. B. (1997) DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 11, 3471-3481
-
(1997)
Genes Dev.
, vol.11
, pp. 3471-3481
-
-
Siliciano, J.D.1
Canman, C.E.2
Taya, Y.3
Sakaguchi, K.4
Appella, E.5
Kastan, M.B.6
-
46
-
-
0034818446
-
Post-translational modifications and activation of p53 by genotoxic stresses
-
Appella, E., and Anderson, C. W. (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur. J. Biochem. 268, 2764-2772
-
(2001)
Eur. J. Biochem.
, vol.268
, pp. 2764-2772
-
-
Appella, E.1
Anderson, C.W.2
-
47
-
-
0034142034
-
The human homologs of checkpoint kinases chk1 and cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites
-
Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y., and Prives, C. (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14, 289-300
-
(2000)
Genes Dev.
, vol.14
, pp. 289-300
-
-
Shieh, S.Y.1
Ahn, J.2
Tamai, K.3
Taya, Y.4
Prives, C.5
-
48
-
-
84900000610
-
Predictability, efficacy and safety of radiosensitization of glioblastoma-initiating cells by the ATM inhibitor KU-60019
-
Vecchio, D., Daga, A., Carra, E., Marubbi, D., Baio, G., Neumaier, C. E., Vagge, S., Corvò, R., Pia Brisigotti, M., Louis Ravetti, J., Zunino, A., Poggi, A., Mascelli, S., Raso, A., and Frosina, G. (2014) Predictability, efficacy and safety of radiosensitization of glioblastoma-initiating cells by the ATM inhibitor KU-60019. Int. J. Cancer 135, 479-491
-
(2014)
Int. J. Cancer
, vol.135
, pp. 479-491
-
-
Vecchio, D.1
Daga, A.2
Carra, E.3
Marubbi, D.4
Baio, G.5
Neumaier, C.E.6
Vagge, S.7
Corvò, R.8
Pia Brisigotti, M.9
Louis Ravetti, J.10
Zunino, A.11
Poggi, A.12
Mascelli, S.13
Raso, A.14
Frosina, G.15
-
49
-
-
20844449238
-
AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
-
Jones, R. G., and Plas, D. R., Kubek, S., Buzzai, M., Mu, J., Xu, Y., Birnbaum, M. J., and Thompson, C. B. (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18, 283-293
-
(2005)
Mol. Cell
, vol.18
, pp. 283-293
-
-
Jones, R.G.1
Plas, D.R.2
Kubek, S.3
Buzzai, M.4
Mu, J.5
Xu, Y.6
Birnbaum, M.J.7
Thompson, C.B.8
-
50
-
-
84896791375
-
Uracil DNA glycosylase (UNG) loss enhances DNA double strand break formation in human cancer cells exposed to pemetrexed
-
Weeks, L.D., Zentner, G. E., and Scacheri, P. C., and Gerson, S. L. (2014) Uracil DNA glycosylase (UNG) loss enhances DNA double strand break formation in human cancer cells exposed to pemetrexed. Cell Death Dis. 5, e1045
-
(2014)
Cell Death Dis.
, vol.5
-
-
Weeks, L.D.1
Zentner, G.E.2
Scacheri, P.C.3
Gerson, S.L.4
-
52
-
-
27744569843
-
mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events
-
Holz, M. K., and Ballif, B. A., Gygi, S. P., and Blenis, J. (2005) mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123, 569-580
-
(2005)
Cell
, vol.123
, pp. 569-580
-
-
Holz, M.K.1
Ballif, B.A.2
Gygi, S.P.3
Blenis, J.4
-
53
-
-
0035312747
-
Regulation of translation initiation by FRAP/mTOR
-
Gingras, A. C., Raught, B., and Sonenberg, N. (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev. 15, 807-826
-
(2001)
Genes Dev.
, vol.15
, pp. 807-826
-
-
Gingras, A.C.1
Raught, B.2
Sonenberg, N.3
-
54
-
-
84907525131
-
Sestrins function as guanine nucleotide dissociation inhibitors for rag GTPases to control mTORC1 signaling
-
Peng, M., Yin, N., and Li, M. O. (2014) Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell 159, 122-133
-
(2014)
Cell
, vol.159
, pp. 122-133
-
-
Peng, M.1
Yin, N.2
Li, M.O.3
-
55
-
-
73349093106
-
Cellular inhibition of checkpoint kinase 2 (Chk2) and potentiation of camptothecins and radiation by the novel chk2 inhibitor PV1019 [7-nitro-1H-indole-2-carboxylic acid {4-[1-(guanidinohydrazone)-ethyl]-phenyl}-amide]
-
Jobson A. G., Lountos, G. T., and Lorenzi, P. L., Llamas, J., Connelly, J., Cerna, D., and Tropea, J. E., Onda, A., Zoppoli, G., Kondapaka, S., Zhang, G., Caplen, N. J., and Cardellina, J. H., 2nd, Yoo, S. S., Monks, A., Self, C., Waugh, D. S., Shoemaker, R. H., and Pommier, Y. (2009) Cellular inhibition of checkpoint kinase 2 (Chk2) and potentiation of camptothecins and radiation by the novel Chk2 inhibitor PV1019 [7-nitro-1H-indole-2-carboxylic acid {4-[1-(guanidinohydrazone)-ethyl]-phenyl}-amide]. J. Pharmacol. Exp. Ther. 331, 816-826
-
(2009)
J. Pharmacol. Exp. Ther.
, vol.331
, pp. 816-826
-
-
Jobson, A.G.1
Lountos, G.T.2
Lorenzi, P.L.3
Llamas, J.4
Connelly, J.5
Cerna, D.6
Tropea, J.E.7
Onda, A.8
Zoppoli, G.9
Kondapaka, S.10
Zhang, G.11
Caplen, N.J.12
Cardellina, J.H.13
Yoo, S.S.14
Monks, A.15
Self, C.16
Waugh, D.S.17
Shoemaker, R.H.18
Pommier, Y.19
-
56
-
-
33749626550
-
Phosphorylation of chk1 by ATR is antagonized by a chk1-regulated protein phosphatase 2A circuit
-
Leung-Pineda, V., Ryan, C. E., and Piwnica-Worms, H. (2006) Phosphorylation of Chk1 by ATR is antagonized by a Chk1-regulated protein phosphatase 2A circuit. Mol. Cell. Biol. 26, 7529-7538
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 7529-7538
-
-
Leung-Pineda, V.1
Ryan, C.E.2
Piwnica-Worms, H.3
-
57
-
-
66149162000
-
A role for chk1 in blocking transcriptional elongation of p21 RNA during the S-phase checkpoint
-
Beckerman, R., and Donner, A. J., Mattia, M., Peart, M. J., and Manley, J. L., Espinosa, J. M., and Prives, C. (2009) A role for Chk1 in blocking transcriptional elongation of p21 RNA during the S-phase checkpoint. Genes Dev. 23, 1364-1377
-
(2009)
Genes Dev.
, vol.23
, pp. 1364-1377
-
-
Beckerman, R.1
Donner, A.J.2
Mattia, M.3
Peart, M.J.4
Manley, J.L.5
Espinosa, J.M.6
Prives, C.7
-
58
-
-
0024802389
-
The 6S- and 6R-diastereomers of 5, 10-dideaza-5, 6, 7, 8-tetrahydrofolate are equiactive inhibitors of de novo purine synthesis
-
Moran, R. G., and Baldwin, S. W., Taylor, E.C., and Shih, C. (1989) The 6S- and 6R-diastereomers of 5, 10-dideaza-5, 6, 7, 8-tetrahydrofolate are equiactive inhibitors of de novo purine synthesis. J. Biol. Chem. 264, 21047-21051
-
(1989)
J. Biol. Chem.
, vol.264
, pp. 21047-21051
-
-
Moran, R.G.1
Baldwin, S.W.2
Taylor, E.C.3
Shih, C.4
-
59
-
-
0035930537
-
Histone H2AX is phosphorylated in an ATR-dependent manner in response to replication stress
-
Ward, I. M., and Chen, J. (2001) Histone H2AX is phosphorylated in an ATR-dependent manner in response to replication stress. J. Biol. Chem. 276, 47759-47762
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 47759-47762
-
-
Ward, I.M.1
Chen, J.2
-
60
-
-
0031024897
-
Cell cycle effects of antifolate antimetabolites: Implications for cytotoxicity and cytostasis
-
Tonkinson, J.L., Marder, P., Andis, S.L., Schultz, R.M., Gossett, L.S., Shih, C., and Mendelsohn, L. G. (1997) Cell cycle effects of antifolate antimetabolites: implications for cytotoxicity and cytostasis. Cancer Chemother. Pharmacol. 39, 521-531
-
(1997)
Cancer Chemother. Pharmacol.
, vol.39
, pp. 521-531
-
-
Tonkinson, J.L.1
Marder, P.2
Andis, S.L.3
Schultz, R.M.4
Gossett, L.S.5
Shih, C.6
Mendelsohn, L.G.7
-
61
-
-
23844438209
-
Activation of akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition
-
Sun, S. Y., and Rosenberg, L. M., Wang, X., Zhou, Z., Yue, P., Fu, H., and Khuri, F. R. (2005) Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res. 65, 7052-7058
-
(2005)
Cancer Res.
, vol.65
, pp. 7052-7058
-
-
Sun, S.Y.1
Rosenberg, L.M.2
Wang, X.3
Zhou, Z.4
Yue, P.5
Fu, H.6
Khuri, F.R.7
-
62
-
-
1042267229
-
Determinants of rapamycin sensitivity in breast cancer cells
-
Noh, W. C., Mondesire, W.H., Peng, J., Jian, W., Zhang, H., Dong, J., Mills, G. B., and Hung, M. C., and Meric-Bernstam, F. (2004) Determinants of rapamycin sensitivity in breast cancer cells. Clin. Cancer Res. 10, 1013-1023
-
(2004)
Clin. Cancer Res.
, vol.10
, pp. 1013-1023
-
-
Noh, W.C.1
Mondesire, W.H.2
Peng, J.3
Jian, W.4
Zhang, H.5
Dong, J.6
Mills, G.B.7
Hung, M.C.8
Meric-Bernstam, F.9
-
63
-
-
6044259204
-
Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells
-
Mondesire, W. H., Jian, W., Zhang, H., Ensor, J., and Hung, M. C., Mills, G. B., and Meric-Bernstam, F. (2004) Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin. Cancer Res. 10, 7031-7042
-
(2004)
Clin. Cancer Res.
, vol.10
, pp. 7031-7042
-
-
Mondesire, W.H.1
Jian, W.2
Zhang, H.3
Ensor, J.4
Hung, M.C.5
Mills, G.B.6
Meric-Bernstam, F.7
-
64
-
-
1542676770
-
A defect in the p53 response pathway induced by de novo purine synthesis inhibition
-
Bronder, J. L., and Moran, R. G. (2003) A defect in the p53 response pathway induced by de novo purine synthesis inhibition. J. Biol. Chem. 278, 48861-48871
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 48861-48871
-
-
Bronder, J.L.1
Moran, R.G.2
-
65
-
-
85047680162
-
p53 accumulates but is functionally impaired when DNA synthesis is blocked
-
Gottifredi, V., Shieh, S., Taya, Y., and Prives, C. (2001) p53 accumulates but is functionally impaired when DNA synthesis is blocked. Proc. Natl. Acad. Sci. U.S.A. 98, 1036-1041
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 1036-1041
-
-
Gottifredi, V.1
Shieh, S.2
Taya, Y.3
Prives, C.4
|