-
1
-
-
78149408167
-
Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach
-
M.K. Tiwari, and Ch. Chatterjee Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach J. Hydrol. 394 2010 458 470
-
(2010)
J. Hydrol.
, vol.394
, pp. 458-470
-
-
Tiwari, M.K.1
Chatterjee, Ch.2
-
2
-
-
0001632928
-
The NWS river forecast system - Catchment modeling
-
V.P. Singh, Water Resource Publications Colorado
-
R.J.C. Burnash The NWS river forecast system - catchment modeling V.P. Singh, Computer Models of Watershed Hydrology 1995 Water Resource Publications Colorado 311 366
-
(1995)
Computer Models of Watershed Hydrology
, pp. 311-366
-
-
Burnash, R.J.C.1
-
3
-
-
0024471068
-
Changing ideas in hydrology - The case of physically-based models
-
K. Beven Changing ideas in hydrology - the case of physically-based models J. Hydrol. 105 1989 157 172
-
(1989)
J. Hydrol.
, vol.105
, pp. 157-172
-
-
Beven, K.1
-
4
-
-
0031922634
-
Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information
-
H.V. Gupta, S. Sorooshian, and P.O. Yapo Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information Water Resour. Res. 34 4 1998 751 763
-
(1998)
Water Resour. Res.
, vol.34
, Issue.4
, pp. 751-763
-
-
Gupta, H.V.1
Sorooshian, S.2
Yapo, P.O.3
-
5
-
-
0028176324
-
Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed
-
J. Michaud, and S. Sorooshian Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed Water Resour. Res. 30 3 1994 593 605
-
(1994)
Water Resour. Res.
, vol.30
, Issue.3
, pp. 593-605
-
-
Michaud, J.1
Sorooshian, S.2
-
6
-
-
0035961496
-
Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments
-
C. Perrin, C. Michel, and V. AndreÂassian Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments J. Hydrol. 242 2001 275 301
-
(2001)
J. Hydrol.
, vol.242
, pp. 275-301
-
-
Perrin, C.1
Michel, C.2
Andreâassian, V.3
-
8
-
-
0033827239
-
Comparison of ANNs and empirical approach for predicting watershed runoff
-
J. Anmala, B. Zhang, and R. Govindaraju Comparison of ANNs and empirical approach for predicting watershed runoff ASCE J. Water Resour. Plan. Manag. 126 3 2000 156 166
-
(2000)
ASCE J. Water Resour. Plan. Manag.
, vol.126
, Issue.3
, pp. 156-166
-
-
Anmala, J.1
Zhang, B.2
Govindaraju, R.3
-
9
-
-
0034174280
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology Artificial neural networks in hydrology
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology Artificial neural networks in hydrology J. Hydrol. Eng. 5 2 2000 115 123
-
(2000)
J. Hydrol. Eng.
, vol.5
, Issue.2
, pp. 115-123
-
-
-
10
-
-
2442639370
-
Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
-
A. Jain, and S. Srinivasulu Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques Water Resour. Res. 40 2004 W04302
-
(2004)
Water Resour. Res.
, vol.40
, pp. W04302
-
-
Jain, A.1
Srinivasulu, S.2
-
11
-
-
84870159777
-
Modeling rainfall-runoff process using soft computing techniques
-
O. Kisi, J. Shiri, and M. Tombul Modeling rainfall-runoff process using soft computing techniques Comput. Geosci. 51 2013 108 117
-
(2013)
Comput. Geosci.
, vol.51
, pp. 108-117
-
-
Kisi, O.1
Shiri, J.2
Tombul, M.3
-
12
-
-
39449089195
-
Data-driven modelling: Some past experiences and new approaches
-
D.P. Solomatine, and A. Ostfeld Data-driven modelling: some past experiences and new approaches J. Hydroinform. 10 1 2008 3 22
-
(2008)
J. Hydroinform.
, vol.10
, Issue.1
, pp. 3-22
-
-
Solomatine, D.P.1
Ostfeld, A.2
-
13
-
-
80052953523
-
Flood simulation using parallel genetic algorithm integrated wavelet neural networks
-
Y. Wang, H. Wang, X. Lei, Y. Jiang, and X. Song Flood simulation using parallel genetic algorithm integrated wavelet neural networks Neurocomputing 74 2011 2734 2744
-
(2011)
Neurocomputing
, vol.74
, pp. 2734-2744
-
-
Wang, Y.1
Wang, H.2
Lei, X.3
Jiang, Y.4
Song, X.5
-
14
-
-
0033957764
-
Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
-
H.R. Maier, and G.C. Dandy Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications Environ. Modell. Softw. 15 2000 101 124
-
(2000)
Environ. Modell. Softw.
, vol.15
, pp. 101-124
-
-
Maier, H.R.1
Dandy, G.C.2
-
15
-
-
34249082149
-
Development of a possibilistic method for the evaluation of predictive uncertainty in rainfall-runoff modeling
-
A.P. Jacquin, and A.Y. Shamseldin Development of a possibilistic method for the evaluation of predictive uncertainty in rainfall-runoff modeling Water Resour. Res. 43 4 2007
-
(2007)
Water Resour. Res.
, vol.43
, Issue.4
-
-
Jacquin, A.P.1
Shamseldin, A.Y.2
-
16
-
-
34547728744
-
Discussion of generalized regression neural networks for evapotranspiration modelling by O. Kisi
-
H. Aksoy, A. Guven, A. Aytek, M.I. Yuce, and N.E. Unal Discussion of generalized regression neural networks for evapotranspiration modelling by O. Kisi Hydrol. Sci. J. 52 4 2007 825 828
-
(2007)
Hydrol. Sci. J.
, vol.52
, Issue.4
, pp. 825-828
-
-
Aksoy, H.1
Guven, A.2
Aytek, A.3
Yuce, M.I.4
Unal, N.E.5
-
18
-
-
0037388711
-
Detection of conceptual model rainfall-runoff processes inside an artificial neural network
-
R.L. Wilby, R.J. Abrahart, and C.W. Dawson Detection of conceptual model rainfall-runoff processes inside an artificial neural network Hydrol. Sci. J. 48 2 2003 163 181
-
(2003)
Hydrol. Sci. J.
, vol.48
, Issue.2
, pp. 163-181
-
-
Wilby, R.L.1
Abrahart, R.J.2
Dawson, C.W.3
-
19
-
-
37549066943
-
Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modeling
-
E. Toth, and A. Brath Multistep ahead streamflow forecasting: role of calibration data in conceptual and neural network modeling Water Resour. Res. 43 2007 W11405
-
(2007)
Water Resour. Res.
, vol.43
, pp. W11405
-
-
Toth, E.1
Brath, A.2
-
20
-
-
53849113979
-
Multi-objective training of artificial neural networks for rainfall-runoff modeling
-
N.J. De Vos, and T.H.M. Rientjes Multi-objective training of artificial neural networks for rainfall-runoff modeling Water Resour. Res. 44 2008 W08434
-
(2008)
Water Resour. Res.
, vol.44
, pp. W08434
-
-
De Vos, N.J.1
Rientjes, T.H.M.2
-
21
-
-
0037466126
-
Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds
-
B. Zhang, and R.S. Govindaraju Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds J. Hydrol. 273 2003 18 34
-
(2003)
J. Hydrol.
, vol.273
, pp. 18-34
-
-
Zhang, B.1
Govindaraju, R.S.2
-
22
-
-
84945894889
-
ANN modeling for estimation of surface and subsurface flows based on watershed geomorphology
-
M.R. Najafi, K.T. Lee, and S.M. Hosseini ANN modeling for estimation of surface and subsurface flows based on watershed geomorphology J. Agric. Sci. Technol. 9 2007 305 316
-
(2007)
J. Agric. Sci. Technol.
, vol.9
, pp. 305-316
-
-
Najafi, M.R.1
Lee, K.T.2
Hosseini, S.M.3
-
23
-
-
24344445921
-
Incorporating subsurface-flow mechanism into geomorphology based IUH modeling
-
K.T. Lee, and C. Chang Incorporating subsurface-flow mechanism into geomorphology based IUH modeling J. Hydrol. 311 2005 91 105
-
(2005)
J. Hydrol.
, vol.311
, pp. 91-105
-
-
Lee, K.T.1
Chang, C.2
-
24
-
-
0022471098
-
Learning representations by backpropagation errors
-
D.E. Rumelhart, G.E. Hinton, and R.J. Williams Learning representations by backpropagation errors Nature 323 1986 533 536
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
25
-
-
0000615669
-
Function minimization by conjugate gradients
-
R. Fletcher, and C.M. Reeves Function minimization by conjugate gradients Comput. J. 7 1964 149 154
-
(1964)
Comput. J.
, vol.7
, pp. 149-154
-
-
Fletcher, R.1
Reeves, C.M.2
-
26
-
-
0027205884
-
A scaled conjugate gradient algorithm for fast supervised learning
-
M.F. Møller A scaled conjugate gradient algorithm for fast supervised learning Neural Netw. 6 4 1993 525 533
-
(1993)
Neural Netw.
, vol.6
, Issue.4
, pp. 525-533
-
-
Møller, M.F.1
-
27
-
-
0028543366
-
Training feedforward networks with the Marquardt algorithm
-
M.T. Hagan, and M.B. Menhaj Training feedforward networks with the Marquardt algorithm IEEE Trans. Neural Netw. 5 6 1994 989 993
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, Issue.6
, pp. 989-993
-
-
Hagan, M.T.1
Menhaj, M.B.2
-
28
-
-
80052028861
-
Optimizing neural networks for river flow forecasting - Evolutionary computation methods versus the Levenberg-Marquardt approach
-
A.P. Piotrowski, and J.J. Napiórkowski Optimizing neural networks for river flow forecasting - evolutionary computation methods versus the Levenberg-Marquardt approach J. Hydrol. 407 1-4 2011 12 27
-
(2011)
J. Hydrol.
, vol.407
, Issue.1-4
, pp. 12-27
-
-
Piotrowski, A.P.1
Napiórkowski, J.J.2
-
29
-
-
33845421111
-
A flood forecasting neural network model with genetic algorithm
-
C.L. Wu, and K.W. Chau A flood forecasting neural network model with genetic algorithm Int. J. Environ. Pollut. 28 3-4 2006 261 273
-
(2006)
Int. J. Environ. Pollut.
, vol.28
, Issue.3-4
, pp. 261-273
-
-
Wu, C.L.1
Chau, K.W.2
-
30
-
-
33748929857
-
Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River
-
K.W. Chau Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River J. Hydrol. 329 2006 363 367
-
(2006)
J. Hydrol.
, vol.329
, pp. 363-367
-
-
Chau, K.W.1
-
32
-
-
0028988614
-
Optimal field-scale groundwater remediation using neural networks and the genetic algorithm
-
L.L. Rogers, U.D. Farid, and M.J. Virginia Optimal field-scale groundwater remediation using neural networks and the genetic algorithm Environ. Sci. Technol. 29 1995 1145 1155
-
(1995)
Environ. Sci. Technol.
, vol.29
, pp. 1145-1155
-
-
Rogers, L.L.1
Farid, U.D.2
Virginia, M.J.3
-
33
-
-
77955716349
-
Novel application of a neuro-fuzzy computational technique in event-based rainfall-runoff modeling
-
A. Talei, L. Hock, C. Chua, and C. Quek novel application of a neuro-fuzzy computational technique in event-based rainfall-runoff modeling Expert Syst. Appl. 37 2010 7456 7468
-
(2010)
Expert Syst. Appl.
, vol.37
, pp. 7456-7468
-
-
Talei, A.1
Hock, L.2
Chua, C.3
Quek, C.4
-
34
-
-
78049527665
-
Comparison of spatial interpolation methods for estimating heavy metals in sediments of Caspian Sea
-
S.M. Kazemi, and S.M. Hosseini Comparison of spatial interpolation methods for estimating heavy metals in sediments of Caspian Sea Expert Syst. Appl. 38 2012 1632 1649
-
(2012)
Expert Syst. Appl.
, vol.38
, pp. 1632-1649
-
-
Kazemi, S.M.1
Hosseini, S.M.2
-
35
-
-
0035340544
-
A nonlinear combination of the forecasts of rainfall-runoff models by the first order Takagi-Sugeno fuzzy system
-
L.H. Xiong, A.Y. Shamseldin, and K.M. O'Connor A nonlinear combination of the forecasts of rainfall-runoff models by the first order Takagi-Sugeno fuzzy system J. Hydrol. 245 1-4 2001 196 217
-
(2001)
J. Hydrol.
, vol.245
, Issue.1-4
, pp. 196-217
-
-
Xiong, L.H.1
Shamseldin, A.Y.2
O'Connor, K.M.3
-
36
-
-
0035340711
-
A counter propagation fuzzy-neural network modeling approach to real time stream flow prediction
-
F.J. Chang, and Y.Ch. Chen A counter propagation fuzzy-neural network modeling approach to real time stream flow prediction J. Hydrol. 245 1 2001 153 164
-
(2001)
J. Hydrol.
, vol.245
, Issue.1
, pp. 153-164
-
-
Chang, F.J.1
Chen, Y.Ch.2
-
37
-
-
0035398081
-
Model induction with support vector machines: Introduction and applications
-
Y.B. Dibike, S. Velickov, D. Solomatine, and M.B. Abbott Model induction with support vector machines: introduction and applications J. Comput. Civil Eng. 15 3 2001 208 216
-
(2001)
J. Comput. Civil Eng.
, vol.15
, Issue.3
, pp. 208-216
-
-
Dibike, Y.B.1
Velickov, S.2
Solomatine, D.3
Abbott, M.B.4
-
38
-
-
31044438334
-
Multi-time scale stream flow predictions: The support vector machines approach
-
T. Asefa, M. Kemblowski, M. McKee, and A. Khalil Multi-time scale stream flow predictions: the support vector machines approach J. Hydrol. 318 2006 7 16
-
(2006)
J. Hydrol.
, vol.318
, pp. 7-16
-
-
Asefa, T.1
Kemblowski, M.2
McKee, M.3
Khalil, A.4
-
39
-
-
33845702662
-
Forecasting of hydrology time series with ridge regression in feature space
-
X.Y. Yu, and S.Y. Liong Forecasting of hydrology time series with ridge regression in feature space J. Hydrol. 332 3-4 2007 290 302
-
(2007)
J. Hydrol.
, vol.332
, Issue.3-4
, pp. 290-302
-
-
Yu, X.Y.1
Liong, S.Y.2
-
40
-
-
0036202123
-
Flood stage forecasting with support vector machines
-
S.Y. Liong, and C. Sivapragasam Flood stage forecasting with support vector machines J. Am. Water Resour. Assoc. 38 1 2002 173 196
-
(2002)
J. Am. Water Resour. Assoc.
, vol.38
, Issue.1
, pp. 173-196
-
-
Liong, S.Y.1
Sivapragasam, C.2
-
41
-
-
33746916489
-
Support vector regression for real-time flood stage forecasting
-
P.S. Yu, S.T. Chen, and I.F. Chang Support vector regression for real-time flood stage forecasting J. Hydrol. 328 3-4 2006 704 716
-
(2006)
J. Hydrol.
, vol.328
, Issue.3-4
, pp. 704-716
-
-
Yu, P.S.1
Chen, S.T.2
Chang, I.F.3
-
42
-
-
31444454927
-
Support vector machines for nonlinear state space reconstruction: Application to the Great Salt Lake time series
-
T. Asefa, M.W. Kemblowski, U. Lall, and G. Urroz Support vector machines for nonlinear state space reconstruction: application to the Great Salt Lake time series Water Resour. Res. 2005
-
(2005)
Water Resour. Res.
-
-
Asefa, T.1
Kemblowski, M.W.2
Lall, U.3
Urroz, G.4
-
43
-
-
33645864343
-
Application of support vector machine in lake water level prediction
-
M.S. Khan, and P. Coulibaly Application of support vector machine in lake water level prediction J. Hydrol. Eng. 11 2006 199 205
-
(2006)
J. Hydrol. Eng.
, vol.11
, pp. 199-205
-
-
Khan, M.S.1
Coulibaly, P.2
-
44
-
-
84900823209
-
Developing a fuzzy neural network-based support vector regression (FNN-SVR) for regionalizing nitrate concentration in groundwater
-
S.M. Hosseini, and N. Mahjouri Developing a fuzzy neural network-based support vector regression (FNN-SVR) for regionalizing nitrate concentration in groundwater Environ. Monit. Assess. 186 2014 3685 3699
-
(2014)
Environ. Monit. Assess.
, vol.186
, pp. 3685-3699
-
-
Hosseini, S.M.1
Mahjouri, N.2
-
46
-
-
77955765168
-
Comparative study of SVMs and ANNs in aquifer water level prediction
-
M. Behzad, K. Asghari, and E.A. Coppola Comparative study of SVMs and ANNs in aquifer water level prediction J. Comput. Civil Eng. ASCE 24 2010 408 413
-
(2010)
J. Comput. Civil Eng. ASCE
, vol.24
, pp. 408-413
-
-
Behzad, M.1
Asghari, K.2
Coppola, E.A.3
-
47
-
-
0003408420
-
-
Cambridge MIT Press
-
B. Schölkopf, and A.J. Smola Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond 2002 Cambridge MIT Press 626
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
, pp. 626
-
-
Schölkopf, B.1
Smola, A.J.2
-
48
-
-
84945936769
-
Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA
-
A. Cotter, Sh. Shalev-Shwartz, and N. Srebro Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA JMLR: W&CP vol. 28 2013
-
(2013)
JMLR: W&CP
, vol.28
-
-
Cotter, A.1
Shalev-Shwartz, Sh.2
Srebro, N.3
-
49
-
-
0004048082
-
-
Prentice Hall of India New Delhi, India
-
V.P. Singh Elementary Hydrology 1994 Prentice Hall of India New Delhi, India
-
(1994)
Elementary Hydrology
-
-
Singh, V.P.1
-
51
-
-
1942490118
-
A neuro-fuzzy computing technique for modeling hydrological time series
-
P.C. Nayak, K.P. Sudheer, D.M. Rangan, and K.S. Ramasastri A neuro-fuzzy computing technique for modeling hydrological time series J. Hydrol. 291 2004 52 66
-
(2004)
J. Hydrol.
, vol.291
, pp. 52-66
-
-
Nayak, P.C.1
Sudheer, K.P.2
Rangan, D.M.3
Ramasastri, K.S.4
-
52
-
-
77954378095
-
A modified support vector machine based prediction model on streamflow at the Shihmen Reservoir, Taiwan
-
P.H. Li, H.H. Kwon, L. Sun, U. Lall, and J.J. Kao A modified support vector machine based prediction model on streamflow at the Shihmen Reservoir, Taiwan Int. J. Climatol. 30 2010 1256 1268
-
(2010)
Int. J. Climatol.
, vol.30
, pp. 1256-1268
-
-
Li, P.H.1
Kwon, H.H.2
Sun, L.3
Lall, U.4
Kao, J.J.5
-
53
-
-
0032089826
-
Real-coded genetic algorithm for rule-based flood control reservoir management
-
F.J. Chang, and L. Chen Real-coded genetic algorithm for rule-based flood control reservoir management Water Resour. Manag. 12 3 2004 185 198
-
(2004)
Water Resour. Manag.
, vol.12
, Issue.3
, pp. 185-198
-
-
Chang, F.J.1
Chen, L.2
-
54
-
-
0001403575
-
Genetic algorithms for real parameter optimization
-
G.J.E. Rawlins, Morgan Kaufmann San Mateo, CA
-
A. Wright Genetic algorithms for real parameter optimization G.J.E. Rawlins, Foundations of Genetic Algorithms 1991 Morgan Kaufmann San Mateo, CA 205 218
-
(1991)
Foundations of Genetic Algorithms
, pp. 205-218
-
-
Wright, A.1
-
56
-
-
33744822541
-
The significance of the evaluation function in evolutionary algorithms
-
Inst for Mathematics and Its Applications, University of Minnesota, Minneapolis, Minnesota, October 21-25, 1996 Springer-Verlag, vol. 111 of the "IMA Volumes in Mathematics and Its Applications", L. Davis, K. De Jong, M. Vose, D. Whitley (Eds.), pp. 151-166
-
Z. Michalewicz The significance of the evaluation function in evolutionary algorithms Proc of the Workshop on Evolutionary Algorithms Inst for Mathematics and Its Applications, University of Minnesota, Minneapolis, Minnesota, October 21-25, 1996 1998 Springer-Verlag, vol. 111 of the "IMA Volumes in Mathematics and Its Applications", L. Davis, K. De Jong, M. Vose, D. Whitley (Eds.), pp. 151-166
-
(1998)
Proc of the Workshop on Evolutionary Algorithms
-
-
Michalewicz, Z.1
-
57
-
-
18744366631
-
Artificial neural networks for forecasting watershed runoff and stream flows
-
J.S. Wu, J. Han, S. Annambhotla, and S. Bryant Artificial neural networks for forecasting watershed runoff and stream flows J. Hydrol. Eng. ASCE 10 3 2005 216 222
-
(2005)
J. Hydrol. Eng. ASCE
, vol.10
, Issue.3
, pp. 216-222
-
-
Wu, J.S.1
Han, J.2
Annambhotla, S.3
Bryant, S.4
-
58
-
-
33947572974
-
A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff
-
M. Aqil, I. Kita, A. Yano, and S. Nishiyama A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff J. Hydrol. 337 1-2 2007 22 34
-
(2007)
J. Hydrol.
, vol.337
, Issue.1-2
, pp. 22-34
-
-
Aqil, M.1
Kita, I.2
Yano, A.3
Nishiyama, S.4
-
59
-
-
0017703889
-
Application of fuzzy logic to approximate reasoning using linguistic synthesis
-
E.H. Mamdani Application of fuzzy logic to approximate reasoning using linguistic synthesis IEEE Trans. Comput. 26 12 1977 1182 1191
-
(1977)
IEEE Trans. Comput.
, vol.26
, Issue.12
, pp. 1182-1191
-
-
Mamdani, E.H.1
-
60
-
-
0242306014
-
A real time hydrological forecasting system using a fuzzy clustering approach
-
A. Luchetta, and S. Manetti A real time hydrological forecasting system using a fuzzy clustering approach Comput. Geosci. 29 9 2003 1111 1117
-
(2003)
Comput. Geosci.
, vol.29
, Issue.9
, pp. 1111-1117
-
-
Luchetta, A.1
Manetti, S.2
-
61
-
-
58849094959
-
Modelling level change in lakes using neuro-fuzzy and artificial neural networks
-
A. Yarar, M. OnucyIldIz, and N.K. Copty Modelling level change in lakes using neuro-fuzzy and artificial neural networks J. Hydrol. 365 3-4 2009 329 334
-
(2009)
J. Hydrol.
, vol.365
, Issue.3-4
, pp. 329-334
-
-
Yarar, A.1
OnucyIldIz, M.2
Copty, N.K.3
-
62
-
-
0027601884
-
ANFIS: Adaptive network based fuzzy inference system
-
J. Jang ANFIS: adaptive network based fuzzy inference system IEEE Trans. Syst. Man Cybern. 23 1993 665 684
-
(1993)
IEEE Trans. Syst. Man Cybern.
, vol.23
, pp. 665-684
-
-
Jang, J.1
-
63
-
-
0030162090
-
Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data
-
P.O. Yapo, H.V. Gupta, and S. Sorooshian Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data J. Hydrol. 181 1-4 1996 23 48
-
(1996)
J. Hydrol.
, vol.181
, Issue.1-4
, pp. 23-48
-
-
Yapo, P.O.1
Gupta, H.V.2
Sorooshian, S.3
-
65
-
-
0014776873
-
River flow forecasting through conceptual models
-
J.E. Nash, and J.V. Sutcliffe River flow forecasting through conceptual models J. Hydrol. 10 1970 282 290
-
(1970)
J. Hydrol.
, vol.10
, pp. 282-290
-
-
Nash, J.E.1
Sutcliffe, J.V.2
-
66
-
-
0027790160
-
How much complexity is warranted in a rainfall-runoff model?
-
A.J. Jakeman, and G.M. Hornberger How much complexity is warranted in a rainfall-runoff model? Water Resour. Res. 29 8 1993 2637 2649
-
(1993)
Water Resour. Res.
, vol.29
, Issue.8
, pp. 2637-2649
-
-
Jakeman, A.J.1
Hornberger, G.M.2
-
67
-
-
0002919951
-
Progress and directions in rainfall-runoff modelling
-
A.J. Jakeman, M.B. Beck, M.J. McAleer, Wiley
-
H.S. Wheater, A.J. Jakeman, and K.J. Beven Progress and directions in rainfall-runoff modelling A.J. Jakeman, M.B. Beck, M.J. McAleer, Modelling Change in Environmental Systems 1993 Wiley 101 132
-
(1993)
Modelling Change in Environmental Systems
, pp. 101-132
-
-
Wheater, H.S.1
Jakeman, A.J.2
Beven, K.J.3
-
68
-
-
84945934516
-
-
Management of Water Resources and Application of Hydrological Practices, sixth ed., WMO-No.
-
Guide to Hydrological Practices, vol. II: Management of Water Resources and Application of Hydrological Practices, sixth ed., 2009. WMO-No. 168.
-
(2009)
Guide to Hydrological Practices
, vol.2
, pp. 168
-
-
-
69
-
-
0035973156
-
Intelligent control for modeling of real-time reservoir operation
-
L.-C. Chang, and F.-J. Chang Intelligent control for modeling of real-time reservoir operation Hydrogeol. Process. 15 9 2001 1621 1634
-
(2001)
Hydrogeol. Process.
, vol.15
, Issue.9
, pp. 1621-1634
-
-
Chang, L.-C.1
Chang, F.-J.2
-
70
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
V. Cherkassky, and M.Y. Yunqian Practical selection of SVM parameters and noise estimation for SVM regression Neural Netw. 17 2002 113 126
-
(2002)
Neural Netw.
, vol.17
, pp. 113-126
-
-
Cherkassky, V.1
Yunqian, M.Y.2
|