메뉴 건너뛰기




Volumn 38, Issue , 2016, Pages 329-345

Integrating Support Vector Regression and a geomorphologic Artificial Neural Network for daily rainfall-runoff modeling

Author keywords

Artificial Neural Networks (ANNs); Fuzzy inference system (FIS); Genetic algorithm; Geomorphologic characteristics; Rainfall runoff modeling; Support Vector Regression (SVR)

Indexed keywords

ALGORITHMS; BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; FUZZY INFERENCE; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; GENETIC ALGORITHMS; GEOMORPHOLOGY; INFERENCE ENGINES; NEURAL NETWORKS; RAIN; REGRESSION ANALYSIS;

EID: 84945937560     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2015.09.049     Document Type: Article
Times cited : (83)

References (70)
  • 1
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach
    • M.K. Tiwari, and Ch. Chatterjee Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach J. Hydrol. 394 2010 458 470
    • (2010) J. Hydrol. , vol.394 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, Ch.2
  • 2
    • 0001632928 scopus 로고
    • The NWS river forecast system - Catchment modeling
    • V.P. Singh, Water Resource Publications Colorado
    • R.J.C. Burnash The NWS river forecast system - catchment modeling V.P. Singh, Computer Models of Watershed Hydrology 1995 Water Resource Publications Colorado 311 366
    • (1995) Computer Models of Watershed Hydrology , pp. 311-366
    • Burnash, R.J.C.1
  • 3
    • 0024471068 scopus 로고
    • Changing ideas in hydrology - The case of physically-based models
    • K. Beven Changing ideas in hydrology - the case of physically-based models J. Hydrol. 105 1989 157 172
    • (1989) J. Hydrol. , vol.105 , pp. 157-172
    • Beven, K.1
  • 4
    • 0031922634 scopus 로고    scopus 로고
    • Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information
    • H.V. Gupta, S. Sorooshian, and P.O. Yapo Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information Water Resour. Res. 34 4 1998 751 763
    • (1998) Water Resour. Res. , vol.34 , Issue.4 , pp. 751-763
    • Gupta, H.V.1    Sorooshian, S.2    Yapo, P.O.3
  • 5
    • 0028176324 scopus 로고
    • Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed
    • J. Michaud, and S. Sorooshian Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed Water Resour. Res. 30 3 1994 593 605
    • (1994) Water Resour. Res. , vol.30 , Issue.3 , pp. 593-605
    • Michaud, J.1    Sorooshian, S.2
  • 6
    • 0035961496 scopus 로고    scopus 로고
    • Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments
    • C. Perrin, C. Michel, and V. AndreÂassian Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments J. Hydrol. 242 2001 275 301
    • (2001) J. Hydrol. , vol.242 , pp. 275-301
    • Perrin, C.1    Michel, C.2    Andreâassian, V.3
  • 8
    • 0033827239 scopus 로고    scopus 로고
    • Comparison of ANNs and empirical approach for predicting watershed runoff
    • J. Anmala, B. Zhang, and R. Govindaraju Comparison of ANNs and empirical approach for predicting watershed runoff ASCE J. Water Resour. Plan. Manag. 126 3 2000 156 166
    • (2000) ASCE J. Water Resour. Plan. Manag. , vol.126 , Issue.3 , pp. 156-166
    • Anmala, J.1    Zhang, B.2    Govindaraju, R.3
  • 9
    • 0034174280 scopus 로고    scopus 로고
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology Artificial neural networks in hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology Artificial neural networks in hydrology J. Hydrol. Eng. 5 2 2000 115 123
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 115-123
  • 10
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
    • A. Jain, and S. Srinivasulu Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques Water Resour. Res. 40 2004 W04302
    • (2004) Water Resour. Res. , vol.40 , pp. W04302
    • Jain, A.1    Srinivasulu, S.2
  • 11
    • 84870159777 scopus 로고    scopus 로고
    • Modeling rainfall-runoff process using soft computing techniques
    • O. Kisi, J. Shiri, and M. Tombul Modeling rainfall-runoff process using soft computing techniques Comput. Geosci. 51 2013 108 117
    • (2013) Comput. Geosci. , vol.51 , pp. 108-117
    • Kisi, O.1    Shiri, J.2    Tombul, M.3
  • 12
    • 39449089195 scopus 로고    scopus 로고
    • Data-driven modelling: Some past experiences and new approaches
    • D.P. Solomatine, and A. Ostfeld Data-driven modelling: some past experiences and new approaches J. Hydroinform. 10 1 2008 3 22
    • (2008) J. Hydroinform. , vol.10 , Issue.1 , pp. 3-22
    • Solomatine, D.P.1    Ostfeld, A.2
  • 13
    • 80052953523 scopus 로고    scopus 로고
    • Flood simulation using parallel genetic algorithm integrated wavelet neural networks
    • Y. Wang, H. Wang, X. Lei, Y. Jiang, and X. Song Flood simulation using parallel genetic algorithm integrated wavelet neural networks Neurocomputing 74 2011 2734 2744
    • (2011) Neurocomputing , vol.74 , pp. 2734-2744
    • Wang, Y.1    Wang, H.2    Lei, X.3    Jiang, Y.4    Song, X.5
  • 14
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • H.R. Maier, and G.C. Dandy Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications Environ. Modell. Softw. 15 2000 101 124
    • (2000) Environ. Modell. Softw. , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 15
    • 34249082149 scopus 로고    scopus 로고
    • Development of a possibilistic method for the evaluation of predictive uncertainty in rainfall-runoff modeling
    • A.P. Jacquin, and A.Y. Shamseldin Development of a possibilistic method for the evaluation of predictive uncertainty in rainfall-runoff modeling Water Resour. Res. 43 4 2007
    • (2007) Water Resour. Res. , vol.43 , Issue.4
    • Jacquin, A.P.1    Shamseldin, A.Y.2
  • 16
    • 34547728744 scopus 로고    scopus 로고
    • Discussion of generalized regression neural networks for evapotranspiration modelling by O. Kisi
    • H. Aksoy, A. Guven, A. Aytek, M.I. Yuce, and N.E. Unal Discussion of generalized regression neural networks for evapotranspiration modelling by O. Kisi Hydrol. Sci. J. 52 4 2007 825 828
    • (2007) Hydrol. Sci. J. , vol.52 , Issue.4 , pp. 825-828
    • Aksoy, H.1    Guven, A.2    Aytek, A.3    Yuce, M.I.4    Unal, N.E.5
  • 18
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • R.L. Wilby, R.J. Abrahart, and C.W. Dawson Detection of conceptual model rainfall-runoff processes inside an artificial neural network Hydrol. Sci. J. 48 2 2003 163 181
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 19
    • 37549066943 scopus 로고    scopus 로고
    • Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modeling
    • E. Toth, and A. Brath Multistep ahead streamflow forecasting: role of calibration data in conceptual and neural network modeling Water Resour. Res. 43 2007 W11405
    • (2007) Water Resour. Res. , vol.43 , pp. W11405
    • Toth, E.1    Brath, A.2
  • 20
    • 53849113979 scopus 로고    scopus 로고
    • Multi-objective training of artificial neural networks for rainfall-runoff modeling
    • N.J. De Vos, and T.H.M. Rientjes Multi-objective training of artificial neural networks for rainfall-runoff modeling Water Resour. Res. 44 2008 W08434
    • (2008) Water Resour. Res. , vol.44 , pp. W08434
    • De Vos, N.J.1    Rientjes, T.H.M.2
  • 21
    • 0037466126 scopus 로고    scopus 로고
    • Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds
    • B. Zhang, and R.S. Govindaraju Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds J. Hydrol. 273 2003 18 34
    • (2003) J. Hydrol. , vol.273 , pp. 18-34
    • Zhang, B.1    Govindaraju, R.S.2
  • 22
    • 84945894889 scopus 로고    scopus 로고
    • ANN modeling for estimation of surface and subsurface flows based on watershed geomorphology
    • M.R. Najafi, K.T. Lee, and S.M. Hosseini ANN modeling for estimation of surface and subsurface flows based on watershed geomorphology J. Agric. Sci. Technol. 9 2007 305 316
    • (2007) J. Agric. Sci. Technol. , vol.9 , pp. 305-316
    • Najafi, M.R.1    Lee, K.T.2    Hosseini, S.M.3
  • 23
    • 24344445921 scopus 로고    scopus 로고
    • Incorporating subsurface-flow mechanism into geomorphology based IUH modeling
    • K.T. Lee, and C. Chang Incorporating subsurface-flow mechanism into geomorphology based IUH modeling J. Hydrol. 311 2005 91 105
    • (2005) J. Hydrol. , vol.311 , pp. 91-105
    • Lee, K.T.1    Chang, C.2
  • 24
    • 0022471098 scopus 로고
    • Learning representations by backpropagation errors
    • D.E. Rumelhart, G.E. Hinton, and R.J. Williams Learning representations by backpropagation errors Nature 323 1986 533 536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 25
    • 0000615669 scopus 로고
    • Function minimization by conjugate gradients
    • R. Fletcher, and C.M. Reeves Function minimization by conjugate gradients Comput. J. 7 1964 149 154
    • (1964) Comput. J. , vol.7 , pp. 149-154
    • Fletcher, R.1    Reeves, C.M.2
  • 26
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • M.F. Møller A scaled conjugate gradient algorithm for fast supervised learning Neural Netw. 6 4 1993 525 533
    • (1993) Neural Netw. , vol.6 , Issue.4 , pp. 525-533
    • Møller, M.F.1
  • 27
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • M.T. Hagan, and M.B. Menhaj Training feedforward networks with the Marquardt algorithm IEEE Trans. Neural Netw. 5 6 1994 989 993
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 28
    • 80052028861 scopus 로고    scopus 로고
    • Optimizing neural networks for river flow forecasting - Evolutionary computation methods versus the Levenberg-Marquardt approach
    • A.P. Piotrowski, and J.J. Napiórkowski Optimizing neural networks for river flow forecasting - evolutionary computation methods versus the Levenberg-Marquardt approach J. Hydrol. 407 1-4 2011 12 27
    • (2011) J. Hydrol. , vol.407 , Issue.1-4 , pp. 12-27
    • Piotrowski, A.P.1    Napiórkowski, J.J.2
  • 29
    • 33845421111 scopus 로고    scopus 로고
    • A flood forecasting neural network model with genetic algorithm
    • C.L. Wu, and K.W. Chau A flood forecasting neural network model with genetic algorithm Int. J. Environ. Pollut. 28 3-4 2006 261 273
    • (2006) Int. J. Environ. Pollut. , vol.28 , Issue.3-4 , pp. 261-273
    • Wu, C.L.1    Chau, K.W.2
  • 30
    • 33748929857 scopus 로고    scopus 로고
    • Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River
    • K.W. Chau Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River J. Hydrol. 329 2006 363 367
    • (2006) J. Hydrol. , vol.329 , pp. 363-367
    • Chau, K.W.1
  • 32
    • 0028988614 scopus 로고
    • Optimal field-scale groundwater remediation using neural networks and the genetic algorithm
    • L.L. Rogers, U.D. Farid, and M.J. Virginia Optimal field-scale groundwater remediation using neural networks and the genetic algorithm Environ. Sci. Technol. 29 1995 1145 1155
    • (1995) Environ. Sci. Technol. , vol.29 , pp. 1145-1155
    • Rogers, L.L.1    Farid, U.D.2    Virginia, M.J.3
  • 33
    • 77955716349 scopus 로고    scopus 로고
    • Novel application of a neuro-fuzzy computational technique in event-based rainfall-runoff modeling
    • A. Talei, L. Hock, C. Chua, and C. Quek novel application of a neuro-fuzzy computational technique in event-based rainfall-runoff modeling Expert Syst. Appl. 37 2010 7456 7468
    • (2010) Expert Syst. Appl. , vol.37 , pp. 7456-7468
    • Talei, A.1    Hock, L.2    Chua, C.3    Quek, C.4
  • 34
    • 78049527665 scopus 로고    scopus 로고
    • Comparison of spatial interpolation methods for estimating heavy metals in sediments of Caspian Sea
    • S.M. Kazemi, and S.M. Hosseini Comparison of spatial interpolation methods for estimating heavy metals in sediments of Caspian Sea Expert Syst. Appl. 38 2012 1632 1649
    • (2012) Expert Syst. Appl. , vol.38 , pp. 1632-1649
    • Kazemi, S.M.1    Hosseini, S.M.2
  • 35
    • 0035340544 scopus 로고    scopus 로고
    • A nonlinear combination of the forecasts of rainfall-runoff models by the first order Takagi-Sugeno fuzzy system
    • L.H. Xiong, A.Y. Shamseldin, and K.M. O'Connor A nonlinear combination of the forecasts of rainfall-runoff models by the first order Takagi-Sugeno fuzzy system J. Hydrol. 245 1-4 2001 196 217
    • (2001) J. Hydrol. , vol.245 , Issue.1-4 , pp. 196-217
    • Xiong, L.H.1    Shamseldin, A.Y.2    O'Connor, K.M.3
  • 36
    • 0035340711 scopus 로고    scopus 로고
    • A counter propagation fuzzy-neural network modeling approach to real time stream flow prediction
    • F.J. Chang, and Y.Ch. Chen A counter propagation fuzzy-neural network modeling approach to real time stream flow prediction J. Hydrol. 245 1 2001 153 164
    • (2001) J. Hydrol. , vol.245 , Issue.1 , pp. 153-164
    • Chang, F.J.1    Chen, Y.Ch.2
  • 37
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: Introduction and applications
    • Y.B. Dibike, S. Velickov, D. Solomatine, and M.B. Abbott Model induction with support vector machines: introduction and applications J. Comput. Civil Eng. 15 3 2001 208 216
    • (2001) J. Comput. Civil Eng. , vol.15 , Issue.3 , pp. 208-216
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.3    Abbott, M.B.4
  • 38
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow predictions: The support vector machines approach
    • T. Asefa, M. Kemblowski, M. McKee, and A. Khalil Multi-time scale stream flow predictions: the support vector machines approach J. Hydrol. 318 2006 7 16
    • (2006) J. Hydrol. , vol.318 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 39
    • 33845702662 scopus 로고    scopus 로고
    • Forecasting of hydrology time series with ridge regression in feature space
    • X.Y. Yu, and S.Y. Liong Forecasting of hydrology time series with ridge regression in feature space J. Hydrol. 332 3-4 2007 290 302
    • (2007) J. Hydrol. , vol.332 , Issue.3-4 , pp. 290-302
    • Yu, X.Y.1    Liong, S.Y.2
  • 40
    • 0036202123 scopus 로고    scopus 로고
    • Flood stage forecasting with support vector machines
    • S.Y. Liong, and C. Sivapragasam Flood stage forecasting with support vector machines J. Am. Water Resour. Assoc. 38 1 2002 173 196
    • (2002) J. Am. Water Resour. Assoc. , vol.38 , Issue.1 , pp. 173-196
    • Liong, S.Y.1    Sivapragasam, C.2
  • 41
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • P.S. Yu, S.T. Chen, and I.F. Chang Support vector regression for real-time flood stage forecasting J. Hydrol. 328 3-4 2006 704 716
    • (2006) J. Hydrol. , vol.328 , Issue.3-4 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3
  • 42
    • 31444454927 scopus 로고    scopus 로고
    • Support vector machines for nonlinear state space reconstruction: Application to the Great Salt Lake time series
    • T. Asefa, M.W. Kemblowski, U. Lall, and G. Urroz Support vector machines for nonlinear state space reconstruction: application to the Great Salt Lake time series Water Resour. Res. 2005
    • (2005) Water Resour. Res.
    • Asefa, T.1    Kemblowski, M.W.2    Lall, U.3    Urroz, G.4
  • 43
    • 33645864343 scopus 로고    scopus 로고
    • Application of support vector machine in lake water level prediction
    • M.S. Khan, and P. Coulibaly Application of support vector machine in lake water level prediction J. Hydrol. Eng. 11 2006 199 205
    • (2006) J. Hydrol. Eng. , vol.11 , pp. 199-205
    • Khan, M.S.1    Coulibaly, P.2
  • 44
    • 84900823209 scopus 로고    scopus 로고
    • Developing a fuzzy neural network-based support vector regression (FNN-SVR) for regionalizing nitrate concentration in groundwater
    • S.M. Hosseini, and N. Mahjouri Developing a fuzzy neural network-based support vector regression (FNN-SVR) for regionalizing nitrate concentration in groundwater Environ. Monit. Assess. 186 2014 3685 3699
    • (2014) Environ. Monit. Assess. , vol.186 , pp. 3685-3699
    • Hosseini, S.M.1    Mahjouri, N.2
  • 46
    • 77955765168 scopus 로고    scopus 로고
    • Comparative study of SVMs and ANNs in aquifer water level prediction
    • M. Behzad, K. Asghari, and E.A. Coppola Comparative study of SVMs and ANNs in aquifer water level prediction J. Comput. Civil Eng. ASCE 24 2010 408 413
    • (2010) J. Comput. Civil Eng. ASCE , vol.24 , pp. 408-413
    • Behzad, M.1    Asghari, K.2    Coppola, E.A.3
  • 48
    • 84945936769 scopus 로고    scopus 로고
    • Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA
    • A. Cotter, Sh. Shalev-Shwartz, and N. Srebro Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA JMLR: W&CP vol. 28 2013
    • (2013) JMLR: W&CP , vol.28
    • Cotter, A.1    Shalev-Shwartz, Sh.2    Srebro, N.3
  • 49
    • 0004048082 scopus 로고
    • Prentice Hall of India New Delhi, India
    • V.P. Singh Elementary Hydrology 1994 Prentice Hall of India New Delhi, India
    • (1994) Elementary Hydrology
    • Singh, V.P.1
  • 51
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • P.C. Nayak, K.P. Sudheer, D.M. Rangan, and K.S. Ramasastri A neuro-fuzzy computing technique for modeling hydrological time series J. Hydrol. 291 2004 52 66
    • (2004) J. Hydrol. , vol.291 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 52
    • 77954378095 scopus 로고    scopus 로고
    • A modified support vector machine based prediction model on streamflow at the Shihmen Reservoir, Taiwan
    • P.H. Li, H.H. Kwon, L. Sun, U. Lall, and J.J. Kao A modified support vector machine based prediction model on streamflow at the Shihmen Reservoir, Taiwan Int. J. Climatol. 30 2010 1256 1268
    • (2010) Int. J. Climatol. , vol.30 , pp. 1256-1268
    • Li, P.H.1    Kwon, H.H.2    Sun, L.3    Lall, U.4    Kao, J.J.5
  • 53
    • 0032089826 scopus 로고    scopus 로고
    • Real-coded genetic algorithm for rule-based flood control reservoir management
    • F.J. Chang, and L. Chen Real-coded genetic algorithm for rule-based flood control reservoir management Water Resour. Manag. 12 3 2004 185 198
    • (2004) Water Resour. Manag. , vol.12 , Issue.3 , pp. 185-198
    • Chang, F.J.1    Chen, L.2
  • 54
    • 0001403575 scopus 로고
    • Genetic algorithms for real parameter optimization
    • G.J.E. Rawlins, Morgan Kaufmann San Mateo, CA
    • A. Wright Genetic algorithms for real parameter optimization G.J.E. Rawlins, Foundations of Genetic Algorithms 1991 Morgan Kaufmann San Mateo, CA 205 218
    • (1991) Foundations of Genetic Algorithms , pp. 205-218
    • Wright, A.1
  • 56
    • 33744822541 scopus 로고    scopus 로고
    • The significance of the evaluation function in evolutionary algorithms
    • Inst for Mathematics and Its Applications, University of Minnesota, Minneapolis, Minnesota, October 21-25, 1996 Springer-Verlag, vol. 111 of the "IMA Volumes in Mathematics and Its Applications", L. Davis, K. De Jong, M. Vose, D. Whitley (Eds.), pp. 151-166
    • Z. Michalewicz The significance of the evaluation function in evolutionary algorithms Proc of the Workshop on Evolutionary Algorithms Inst for Mathematics and Its Applications, University of Minnesota, Minneapolis, Minnesota, October 21-25, 1996 1998 Springer-Verlag, vol. 111 of the "IMA Volumes in Mathematics and Its Applications", L. Davis, K. De Jong, M. Vose, D. Whitley (Eds.), pp. 151-166
    • (1998) Proc of the Workshop on Evolutionary Algorithms
    • Michalewicz, Z.1
  • 57
    • 18744366631 scopus 로고    scopus 로고
    • Artificial neural networks for forecasting watershed runoff and stream flows
    • J.S. Wu, J. Han, S. Annambhotla, and S. Bryant Artificial neural networks for forecasting watershed runoff and stream flows J. Hydrol. Eng. ASCE 10 3 2005 216 222
    • (2005) J. Hydrol. Eng. ASCE , vol.10 , Issue.3 , pp. 216-222
    • Wu, J.S.1    Han, J.2    Annambhotla, S.3    Bryant, S.4
  • 58
    • 33947572974 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff
    • M. Aqil, I. Kita, A. Yano, and S. Nishiyama A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff J. Hydrol. 337 1-2 2007 22 34
    • (2007) J. Hydrol. , vol.337 , Issue.1-2 , pp. 22-34
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 59
    • 0017703889 scopus 로고
    • Application of fuzzy logic to approximate reasoning using linguistic synthesis
    • E.H. Mamdani Application of fuzzy logic to approximate reasoning using linguistic synthesis IEEE Trans. Comput. 26 12 1977 1182 1191
    • (1977) IEEE Trans. Comput. , vol.26 , Issue.12 , pp. 1182-1191
    • Mamdani, E.H.1
  • 60
    • 0242306014 scopus 로고    scopus 로고
    • A real time hydrological forecasting system using a fuzzy clustering approach
    • A. Luchetta, and S. Manetti A real time hydrological forecasting system using a fuzzy clustering approach Comput. Geosci. 29 9 2003 1111 1117
    • (2003) Comput. Geosci. , vol.29 , Issue.9 , pp. 1111-1117
    • Luchetta, A.1    Manetti, S.2
  • 61
    • 58849094959 scopus 로고    scopus 로고
    • Modelling level change in lakes using neuro-fuzzy and artificial neural networks
    • A. Yarar, M. OnucyIldIz, and N.K. Copty Modelling level change in lakes using neuro-fuzzy and artificial neural networks J. Hydrol. 365 3-4 2009 329 334
    • (2009) J. Hydrol. , vol.365 , Issue.3-4 , pp. 329-334
    • Yarar, A.1    OnucyIldIz, M.2    Copty, N.K.3
  • 62
    • 0027601884 scopus 로고
    • ANFIS: Adaptive network based fuzzy inference system
    • J. Jang ANFIS: adaptive network based fuzzy inference system IEEE Trans. Syst. Man Cybern. 23 1993 665 684
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , pp. 665-684
    • Jang, J.1
  • 63
    • 0030162090 scopus 로고    scopus 로고
    • Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data
    • P.O. Yapo, H.V. Gupta, and S. Sorooshian Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data J. Hydrol. 181 1-4 1996 23 48
    • (1996) J. Hydrol. , vol.181 , Issue.1-4 , pp. 23-48
    • Yapo, P.O.1    Gupta, H.V.2    Sorooshian, S.3
  • 65
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models
    • J.E. Nash, and J.V. Sutcliffe River flow forecasting through conceptual models J. Hydrol. 10 1970 282 290
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 66
    • 0027790160 scopus 로고
    • How much complexity is warranted in a rainfall-runoff model?
    • A.J. Jakeman, and G.M. Hornberger How much complexity is warranted in a rainfall-runoff model? Water Resour. Res. 29 8 1993 2637 2649
    • (1993) Water Resour. Res. , vol.29 , Issue.8 , pp. 2637-2649
    • Jakeman, A.J.1    Hornberger, G.M.2
  • 67
    • 0002919951 scopus 로고
    • Progress and directions in rainfall-runoff modelling
    • A.J. Jakeman, M.B. Beck, M.J. McAleer, Wiley
    • H.S. Wheater, A.J. Jakeman, and K.J. Beven Progress and directions in rainfall-runoff modelling A.J. Jakeman, M.B. Beck, M.J. McAleer, Modelling Change in Environmental Systems 1993 Wiley 101 132
    • (1993) Modelling Change in Environmental Systems , pp. 101-132
    • Wheater, H.S.1    Jakeman, A.J.2    Beven, K.J.3
  • 68
    • 84945934516 scopus 로고    scopus 로고
    • Management of Water Resources and Application of Hydrological Practices, sixth ed., WMO-No.
    • Guide to Hydrological Practices, vol. II: Management of Water Resources and Application of Hydrological Practices, sixth ed., 2009. WMO-No. 168.
    • (2009) Guide to Hydrological Practices , vol.2 , pp. 168
  • 69
    • 0035973156 scopus 로고    scopus 로고
    • Intelligent control for modeling of real-time reservoir operation
    • L.-C. Chang, and F.-J. Chang Intelligent control for modeling of real-time reservoir operation Hydrogeol. Process. 15 9 2001 1621 1634
    • (2001) Hydrogeol. Process. , vol.15 , Issue.9 , pp. 1621-1634
    • Chang, L.-C.1    Chang, F.-J.2
  • 70
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • V. Cherkassky, and M.Y. Yunqian Practical selection of SVM parameters and noise estimation for SVM regression Neural Netw. 17 2002 113 126
    • (2002) Neural Netw. , vol.17 , pp. 113-126
    • Cherkassky, V.1    Yunqian, M.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.