-
1
-
-
78650584376
-
Fuzzy neural networks for water level and discharge forecasting with uncertainty
-
Alvisi, S., & Franchini, M. (2011). Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environmental Modelling & Software, 26, 523-537.
-
(2011)
Environmental Modelling & Software
, vol.26
, pp. 523-537
-
-
Alvisi, S.1
Franchini, M.2
-
2
-
-
33947572974
-
A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff
-
DOI 10.1016/j.jhydrol.2007.01.013, PII S0022169407000194
-
Aqil, M., Kita, I., Yano, A., & Nishiyama, S. (2007). A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. Journal of Hydrology, 337, 22-34. (Pubitemid 46483469)
-
(2007)
Journal of Hydrology
, vol.337
, Issue.1-2
, pp. 22-34
-
-
Aqil, M.1
Kita, I.2
Yano, A.3
Nishiyama, S.4
-
3
-
-
10944257448
-
Support vector machines approximation of flow and transportmodels in initial groundwater contamination network design
-
Fall Meeting 2002, abstract #H72D-0882
-
Asefa, T., & Kemblowski, M. W. (2002). Support vector machines approximation of flow and transportmodels in initial groundwater contamination network design. EOS. Transactions of the American Geophysical Union, Fall Meeting 2002, abstract #H72D-0882.
-
(2002)
EOS. Transactions of the American Geophysical Union
-
-
Asefa, T.1
Kemblowski, M.W.2
-
4
-
-
10944274219
-
Support vectors-based groundwater head observation networks design
-
doi:10.1029/2004WR003304
-
Asefa, T., Kemblowski, M. W., Urroz, G., McKee, M., & Khalil, A. (2004). Support vectors-based groundwater head observation networks design. Water Resources Research. doi:10.1029/2004WR003304.
-
(2004)
Water Resources Research
-
-
Asefa, T.1
Kemblowski, M.W.2
Urroz, G.3
McKee, M.4
Khalil, A.5
-
5
-
-
31444454927
-
Support vectormachines for nonlinear state space reconstruction: Application to the Great Salt Lake time series
-
doi:10.1029/2004WR003785
-
Asefa, T., Kemblowski, M. W., Lall, U., & Urroz, G. (2005). Support vectormachines for nonlinear state space reconstruction: application to the Great Salt Lake time series. Water Resources Research. doi:10.1029/2004WR003785.
-
(2005)
Water Resources Research
-
-
Asefa, T.1
Kemblowski, M.W.2
Lall, U.3
Urroz, G.4
-
6
-
-
31044438334
-
Multi-time scale stream flow predictions: The support vector machines approach
-
DOI 10.1016/j.jhydrol.2005.06.001, PII S0022169405002908
-
Asefa, T., Kemblowski, M., McKee, M., & Khalil, A. (2006). Multi-time scale stream flow predictions: the support vector machines approach. Journal of Hydrology, 318, 7-16. (Pubitemid 43120784)
-
(2006)
Journal of Hydrology
, vol.318
, Issue.1-4
, pp. 7-16
-
-
Asefa, T.1
Kemblowski, M.2
McKee, M.3
Khalil, A.4
-
7
-
-
14544299369
-
-
USA: Iowa Institute of Hydraulic Research, Iowa
-
Babovic, V., Keijzer, M., & Bundzel, M. (2000). From global to local modelling: a case study in error correction of deterministic models, hydroinformatics. USA: Iowa Institute of Hydraulic Research, Iowa.
-
(2000)
From Global to Local Modelling: A Case Study in Error Correction of Deterministic Models, Hydroinformatics
-
-
Babovic, V.1
Keijzer, M.2
Bundzel, M.3
-
8
-
-
77955765168
-
Comparative study of SVMs and ANNs in aquifer water level prediction
-
Behzad, M., Asghari, K., & Coppola, E. A. (2010). Comparative study of SVMs and ANNs in aquifer water level prediction. Journal of Computing in Civil Engineering ASCE, 24, 408-413.
-
(2010)
Journal of Computing in Civil Engineering ASCE
, vol.24
, pp. 408-413
-
-
Behzad, M.1
Asghari, K.2
Coppola, E.A.3
-
9
-
-
8444241860
-
Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
-
DOI 10.1016/j.neunet.2004.07.002, PII S0893608004001431
-
Cawley, G. C., & Talbot, N. L. C. (2004). Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Networks, 17(10), 1467-1475. (Pubitemid 39487142)
-
(2004)
Neural Networks
, vol.17
, Issue.10
, pp. 1467-1475
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
10
-
-
0032089826
-
Real-coded genetic algorithm for rule-based flood control reservoir management
-
Chang, F. J., & Chen, L. (2004). Real-coded genetic algorithm for rule-based flood control reservoir management. Water Resources Management, 12(3), 185-198.
-
(2004)
Water Resources Management
, vol.12
, Issue.3
, pp. 185-198
-
-
Chang, F.J.1
Chen, L.2
-
11
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
doi:10.1016/S0893-6080(03)00169-2
-
Cherkassky, V., & Yunqian, M. Y. (2002). Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 17, 113 - 126. doi:10.1016/S0893-6080(03)00169-2.
-
(2002)
Neural Networks
, vol.17
, pp. 113-126
-
-
Cherkassky, V.1
Yunqian, M.Y.2
-
12
-
-
35748960851
-
Extended support vector interval regression networks for interval input - output data
-
Chuang, C. C. (2008). Extended support vector interval regression networks for interval input - output data. Information Sciences, 178, 871-891.
-
(2008)
Information Sciences
, vol.178
, pp. 871-891
-
-
Chuang, C.C.1
-
13
-
-
34547173207
-
Analysis of groundwater quality using fuzzy synthetic evaluation
-
DOI 10.1016/j.jhazmat.2007.01.119, PII S0304389407001860
-
Dahiy, S., Singh, B., Gaur, S., Garg, V. K., & Kushwaha, H. S. (2007). Analysis of groundwater quality using fuzzy synthetic evaluation. Journal of Hazardous Materials, 147, 938-946. (Pubitemid 47126721)
-
(2007)
Journal of Hazardous Materials
, vol.147
, Issue.3
, pp. 938-946
-
-
Dahiya, S.1
Singh, B.2
Gaur, S.3
Garg, V.K.4
Kushwaha, H.S.5
-
15
-
-
0035398081
-
Model induction with support vector machines: Introduction and applications
-
DOI 10.1061/(ASCE)0887-3801(2001)15:3(208), Reportnr 22146
-
Dibike, Y. B., Velickov, S., Solomatine, D., & Abbott, M. B. (2001). Model induction with support vector machines: introduction and applications. Journal of Computing in Civil Engineering, 15(3), 208-216. (Pubitemid 32583199)
-
(2001)
Journal of Computing in Civil Engineering
, vol.15
, Issue.3
, pp. 208-216
-
-
Dibike, Y.B.1
Velickov, S.2
Solomatine, D.3
Abbott, M.B.4
-
16
-
-
33748030511
-
Soil moisture prediction using support vector machines
-
DOI 10.1111/j.1752-1688.2006.tb04512.x
-
Gill, M. K., Asefa, T., Kemblowski, M. W., & McKee, M. (2006). Soil moisture prediction using support vector machines. Journal of the American Water Resources Association, 42(4), 1033-1046. (Pubitemid 44870396)
-
(2006)
Journal of the American Water Resources Association
, vol.42
, Issue.4
, pp. 1033-1046
-
-
Gill, M.K.1
Asefa, T.2
Kemblowski, M.W.3
McKee, M.4
-
17
-
-
36649000728
-
Effect of missing data on performance of learning algorithms for hydrologic predictions: Implications to an imputation technique
-
doi:10.1029/2006WR005298
-
Gill, M. K., Asefa, T., Kaheil, Y., & McKee, M. (2007). Effect of missing data on performance of learning algorithms for hydrologic predictions: implications to an imputation technique. Water Resources Research. doi:10.1029/2006WR005298.
-
(2007)
Water Resources Research
-
-
Gill, M.K.1
Asefa, T.2
Kaheil, Y.3
McKee, M.4
-
18
-
-
0002819121
-
A comparative analysis of selection scheme used in genetic algorithms
-
San Mateo: Morgan Kaufman
-
Goldberg, D. E. (1989). A comparative analysis of selection scheme used in genetic algorithms. Foundations of genetic algorithms (pp. 69-93). San Mateo: Morgan Kaufman.
-
(1989)
Foundations of Genetic Algorithms
, pp. 69-93
-
-
Goldberg, D.E.1
-
19
-
-
35348956876
-
Flood forecasting using support vector machines
-
Han, D., Chan, L., & Zhu, N. (2007). Flood forecasting using support vector machines. Journal of Hydroinformatics, 9(4), 267-276.
-
(2007)
Journal of Hydroinformatics
, vol.9
, Issue.4
, pp. 267-276
-
-
Han, D.1
Chan, L.2
Zhu, N.3
-
20
-
-
34248169802
-
A fuzzy model of support vector regression machine
-
Hao, P. Y., & Chiang, J. H. (2007). A fuzzy model of support vector regression machine. International Journal of Fuzzy Systems, 9(1), 45-50.
-
(2007)
International Journal of Fuzzy Systems
, vol.9
, Issue.1
, pp. 45-50
-
-
Hao, P.Y.1
Chiang, J.H.2
-
21
-
-
42549092067
-
Fuzzy regression analysis by support vector learning approach
-
Hao, P. Y., & Chiang, J. H. (2008). Fuzzy regression analysis by support vector learning approach. IEEE Transactions on Fuzzy Systems, 16(2), 428-441.
-
(2008)
IEEE Transactions on Fuzzy Systems
, vol.16
, Issue.2
, pp. 428-441
-
-
Hao, P.Y.1
Chiang, J.H.2
-
22
-
-
0026988817
-
Genetic algorithms
-
Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66-72.
-
(1992)
Scientific American
, vol.267
, Issue.1
, pp. 66-72
-
-
Holland, J.H.1
-
23
-
-
0042591514
-
Support vector fuzzy regression machines
-
Hong, D. H., & Hwang, C. (2003a). Support vector fuzzy regression machines. Fuzzy Sets and Systems, 138(2), 271-281.
-
(2003)
Fuzzy Sets and Systems
, vol.138
, Issue.2
, pp. 271-281
-
-
Hong, D.H.1
Hwang, C.2
-
24
-
-
0042591514
-
Support vector fuzzy regression machines
-
Hong, D. H., & Hwang, C. (2003b). Support vector fuzzy regression machines. Fuzzy Sets and Systems, 138, 271-281.
-
(2003)
Fuzzy Sets and Systems
, vol.138
, pp. 271-281
-
-
Hong, D.H.1
Hwang, C.2
-
25
-
-
33750439450
-
A hybrid support vector machines and logistic regression approach for forecasting intermittent demand of spare parts
-
Hua, Z. S., & Zhang, B. (2006). A hybrid support vector machines and logistic regression approach for forecasting intermittent demand of spare parts. Applied Mathematics and Computation, 181, 1035-1048.
-
(2006)
Applied Mathematics and Computation
, vol.181
, pp. 1035-1048
-
-
Hua, Z.S.1
Zhang, B.2
-
27
-
-
0003753097
-
-
USA, NJ: Prentice Hall
-
Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neuro-fuzzy and soft computing, a computational approach to learning and machine intelligence. USA, NJ: Prentice Hall.
-
(1997)
Neuro-fuzzy and Soft Computing, a Computational Approach to Learning and Machine Intelligence
-
-
Jang, J.S.R.1
Sun, C.T.2
Mizutani, E.3
-
28
-
-
0033346003
-
Support vector machines for the fuzzy neural networks
-
Jeng, J.T., & Lee, T.T. (1999). Support vector machines for the fuzzy neural networks, In: Proc. IEEE International Conference on System, Man and Cybernetics (IEEE SMC'99), 115-120.
-
(1999)
Proc. IEEE International Conference on System, Man and Cybernetics (IEEE SMC'99)
, pp. 115-120
-
-
Jeng, J.T.1
Lee, T.T.2
-
29
-
-
0041589566
-
Support vector interval regression networks for interval regression analysis
-
Jeng, J. T., Chuang, C. C., & Su, S. F. (2003). Support vector interval regression networks for interval regression analysis. Fuzzy Sets and Systems, 138, 283-300.
-
(2003)
Fuzzy Sets and Systems
, vol.138
, pp. 283-300
-
-
Jeng, J.T.1
Chuang, C.C.2
Su, S.F.3
-
30
-
-
84876150708
-
Combination of support vector regression and artificial neural networks for prediction of critical heat flux
-
Jiang, B. T., & Zhao, F. Y. (2013). Combination of support vector regression and artificial neural networks for prediction of critical heat flux. International Journal of Heat and Mass Transfer, 62, 481-494.
-
(2013)
International Journal of Heat and Mass Transfer
, vol.62
, pp. 481-494
-
-
Jiang, B.T.1
Zhao, F.Y.2
-
32
-
-
67649993046
-
TS-fuzzy system-based support vector regression
-
Juang, C. F., & Hsieh, C. D. (2009). TS-fuzzy system-based support vector regression. Fuzzy Sets and Systems, 160, 2486-2504.
-
(2009)
Fuzzy Sets and Systems
, vol.160
, pp. 2486-2504
-
-
Juang, C.F.1
Hsieh, C.D.2
-
34
-
-
84874509284
-
Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform
-
Kalteh, A. M. (2013). Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Computers & Geosciences, 54, 1-8.
-
(2013)
Computers & Geosciences
, vol.54
, pp. 1-8
-
-
Kalteh, A.M.1
-
35
-
-
33645695410
-
Support vector machine in R
-
Karatzoglou, A., Meyer, D., & Hornik, K. (2006). Support vector machine in R. Journal of Statistical Software, 15(9), 1-28.
-
(2006)
Journal of Statistical Software
, vol.15
, Issue.9
, pp. 1-28
-
-
Karatzoglou, A.1
Meyer, D.2
Hornik, K.3
-
36
-
-
78049527665
-
Comparison of spatial interpolation methods for estimating heavy metals in sediments of Caspian Sea
-
Kazemi, S. M., & Hosseini, S. M. (2011). Comparison of spatial interpolation methods for estimating heavy metals in sediments of Caspian Sea. Expert Systems with Applications, 38, 1632-1649.
-
(2011)
Expert Systems with Applications
, vol.38
, pp. 1632-1649
-
-
Kazemi, S.M.1
Hosseini, S.M.2
-
38
-
-
33645864343
-
Application of support vector machine in lake water level prediction
-
Khan, M. S., & Coulibaly, P. (2006). Application of support vector machine in lake water level prediction. Journal of Hydrologic Engineering, 11, 199-205.
-
(2006)
Journal of Hydrologic Engineering
, vol.11
, pp. 199-205
-
-
Khan, M.S.1
Coulibaly, P.2
-
39
-
-
78049264460
-
Comparison of groundwater level estimation using neuro-fuzzy and ordinary Kriging
-
doi:10. 1007/s10666-008-9174-2
-
Kholghi, M., & Hosseini, S. M. (2009). Comparison of groundwater level estimation using neuro-fuzzy and ordinary Kriging. Environmental Modeling and Assessment. doi:10. 1007/s10666-008-9174-2.
-
(2009)
Environmental Modeling and Assessment
-
-
Kholghi, M.1
Hosseini, S.M.2
-
40
-
-
42149163573
-
Modelling groundwater levels in an urban coastal aquifer using artificial neural networks
-
Krishna, B., Satyaji, R. Y. R., & Vijaya, T. (2008). Modelling groundwater levels in an urban coastal aquifer using artificial neural networks. Hydrological Processes, 22, 1180 -1188.
-
(2008)
Hydrological Processes
, vol.22
, pp. 1180-1188
-
-
Krishna, B.1
Satyaji, R.Y.R.2
Vijaya, T.3
-
41
-
-
0032853041
-
Bayesian theory of probabilistic forecasting via deterministic hydrologic model
-
Krzysztofowicz, R. (1999). Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resources Research, 35(9), 2739-2750.
-
(1999)
Water Resources Research
, vol.35
, Issue.9
, pp. 2739-2750
-
-
Krzysztofowicz, R.1
-
43
-
-
80055093807
-
Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: A survey
-
Kumar, M., & Yadav, N. (2011). Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: a survey. Computers and Mathematics with Applications, 62, 3796-3811.
-
(2011)
Computers and Mathematics with Applications
, vol.62
, pp. 3796-3811
-
-
Kumar, M.1
Yadav, N.2
-
44
-
-
77950189122
-
A fuzzy support vector regression model for business cycle predictions
-
Lin, K. P., & Pai, P. F. (2010). A fuzzy support vector regression model for business cycle predictions. Expert Systems with Applications, 37, 5430-5435.
-
(2010)
Expert Systems with Applications
, vol.37
, pp. 5430-5435
-
-
Lin, K.P.1
Pai, P.F.2
-
45
-
-
0036202123
-
Flood stage forecasting with support vectormachines
-
Liong, S. Y., & Sivapragasam, C. (2002). Flood stage forecasting with support vectormachines. Journal of the American Water Resources Association, 38(1), 173-196.
-
(2002)
Journal of the American Water Resources Association
, vol.38
, Issue.1
, pp. 173-196
-
-
Liong, S.Y.1
Sivapragasam, C.2
-
46
-
-
0033038735
-
Geostatistical applications in ground-water modeling in south-central Kansas
-
DOI 10.1061/(ASCE)1084-0699(1999)4:1(57)
-
Ma, T. S., Sophocleous, M., & Yu, Y. S. (1999). Geostatistical applications in ground-water modeling in south-central Kansas. Journal of Hydrologic Engineering, 4(1), 57-64. (Pubitemid 29154375)
-
(1999)
Journal of Hydrologic Engineering
, vol.4
, Issue.1
, pp. 57-64
-
-
Ma, T.-S.1
Sophocleous, M.2
Yu, Y.-S.3
-
47
-
-
0033957764
-
Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
-
DOI 10.1016/S1364-8152(99)00007-9, PII S1364815299000079
-
Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modeling and Software, 101-124. (Pubitemid 30018318)
-
(2000)
Environmental Modelling and Software
, vol.15
, Issue.1
, pp. 101-124
-
-
Maier, H.R.1
Dandy, G.C.2
-
48
-
-
0031968002
-
Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery
-
Morshed, J., & Kaluarachchi, J. J. (2012). Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery. Water Resources Research, 34(5), 1101-1113.
-
(2012)
Water Resources Research
, vol.34
, Issue.5
, pp. 1101-1113
-
-
Morshed, J.1
Kaluarachchi, J.J.2
-
49
-
-
84876425624
-
Water quality zoning using probabilistic support vector machines: Two case studies
-
Springer
-
Nikoo, M. R. & Mahjouri, N. (2013) Water quality zoning using probabilistic support vector machines: two case studies, Water Resources Management, Springer, 27, 2577-2594
-
(2013)
Water Resources Management
, vol.27
, pp. 2577-2594
-
-
Nikoo, M.R.1
Mahjouri, N.2
-
51
-
-
0002321387
-
Some theory and examples of genetic function approximation with comparison to evolutionary techniques
-
J. Devillers (Ed.), London: Academic Press
-
Rogers, D. (1996). Some theory and examples of genetic function approximation with comparison to evolutionary techniques. In J. Devillers (Ed.), Genetic algorithms in molecular modeling (pp. 87-107). London: Academic Press.
-
(1996)
Genetic Algorithms in Molecular Modeling
, pp. 87-107
-
-
Rogers, D.1
-
52
-
-
0003408420
-
-
Cambridge: MIT Press
-
Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. Cambridge: MIT Press. 626.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
, pp. 626
-
-
Schölkopf, B.1
Smola, A.J.2
-
53
-
-
0034271493
-
Improvements to the SMO algorithm for SVM regression
-
Shevade, S. K., Keerthi, S. S., Bhattacharyya, C., & Murthy, K. R. K. (2000). Improvements to the SMO algorithm for SVM regression. IEEE Trans on Neural Netw, 11, 1188-1193.
-
(2000)
IEEE Trans on Neural Netw
, vol.11
, pp. 1188-1193
-
-
Shevade, S.K.1
Keerthi, S.S.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
54
-
-
33745780111
-
Experiments with AdaBoost.RT, an improved boosting scheme for regression
-
DOI 10.1162/neco.2006.18.7.1678
-
Shrestha, D. L., & Solomatine, D. P. (2006). Experiments with AdaBoost. RT, an improved boosting scheme for regression. Neural Computation, 18, 1678-1710. (Pubitemid 44024734)
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1678-1710
-
-
Shrestha, D.L.1
Solomatine, D.P.2
-
55
-
-
85006941509
-
Rainfall and runoff forecasting with SSA-SVM approach
-
Sivapragasam, C., Liong, S. Y., & Pasha, M. F. K. (2001). Rainfall and runoff forecasting with SSA-SVM approach. Journal of Hydroinformatics, 3(3), 141-152.
-
(2001)
Journal of Hydroinformatics
, vol.3
, Issue.3
, pp. 141-152
-
-
Sivapragasam, C.1
Liong, S.Y.2
Pasha, M.F.K.3
-
56
-
-
34548134022
-
A hybrid artificial neural network-numerical model for ground water problems
-
DOI 10.1111/j.1745-6584.2007.00330.x
-
Szidarovszky, F., Coppola, E. A., Long, J., Hall, A. D., & Poulton, M. M. (2007). A hybrid artificial neural network-numerical model for ground water problems. Ground Water, 45(5), 590-600. (Pubitemid 47301552)
-
(2007)
Ground Water
, vol.45
, Issue.5
, pp. 590-600
-
-
Szidarovszky, F.1
Coppola Jr., E.A.2
Long, J.3
Hall, A.D.4
Poulton, M.M.5
-
57
-
-
0020207081
-
LINEAR REGRESSION ANALYSIS WITH FUZZY MODEL
-
Tanaka, H., Uejima, S., & Asai, K. (1982). Linear regression analysis with fuzzy model. IEEE Transactions on Systems Man and Cybernetics, 12(6), 903-907. (Pubitemid 13493493)
-
(1982)
IEEE Transactions on Systems, Man and Cybernetics
, vol.SMC-12
, Issue.6
, pp. 903-907
-
-
Tanaka, H.1
Uejima, S.2
Asai, K.3
-
58
-
-
0034174396
-
Artificial neural networks in hydrology. II: Hydrologic applications
-
Task Committee, A. S. C. E.
-
Task Committee, A. S. C. E. (2000). Artificial neural networks in hydrology. II: hydrologic applications. Journal of Hydrologic Engineering, ASCE, 5(2), 124-137.
-
(2000)
Journal of Hydrologic Engineering, ASCE
, vol.5
, Issue.2
, pp. 124-137
-
-
-
59
-
-
33644891019
-
Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system
-
DOI 10.1016/j.cageo.2005.07.003, PII S0098300405001652
-
Tutmez, B., Hatipoglu, Z., & Kaymak, U. (2006). Modelling electrical conductivity of groundwater using an adaptive neurofuzzy inference system. Computers & Geosciences, 32, 421-433. (Pubitemid 43380877)
-
(2006)
Computers and Geosciences
, vol.32
, Issue.4
, pp. 421-433
-
-
Tutmez, B.1
Hatipoglu, Z.2
Kaymak, U.3
-
61
-
-
0032594959
-
An overview of statistical learning theory
-
Vapnik, V. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, l0(5), 988-999.
-
(1999)
IEEE Transactions on Neural Networks
, vol.0
, Issue.5
, pp. 988-999
-
-
Vapnik, V.1
-
63
-
-
27744600776
-
Workgroup report: Drinking-water nitrate and health - Recent findings and research needs
-
DOI 10.1289/ehp.8043
-
Ward, M. H., deKok, T. M., Levallois, P., Brender, J., Gulis, G., Nolan, B. T., et al. (2005). Workgroup report: drinking-water nitrate and health -recent findings and research needs. Environmental Health Perspectives, 113(11), 1607-1614. (Pubitemid 41614919)
-
(2005)
Environmental Health Perspectives
, vol.113
, Issue.11
, pp. 1607-1614
-
-
Ward, M.H.1
DeKok, T.M.2
Levallois, P.3
Brender, J.4
Gulis, G.5
Nolan, B.T.6
VanDerslice, J.7
-
66
-
-
80052037726
-
The complex fuzzy system forecasting model based on triangular fuzzy robust wavelet m-support vector machine
-
Wu, Q. (2011). The complex fuzzy system forecasting model based on triangular fuzzy robust wavelet m-support vector machine. Expert Systems with Applications, 38, 14478-14489.
-
(2011)
Expert Systems with Applications
, vol.38
, pp. 14478-14489
-
-
Wu, Q.1
-
67
-
-
33845421111
-
A flood forecasting neural network model with genetic algorithm
-
Wu, C. L., & Chau, K. W. (2006). A flood forecasting neural network model with genetic algorithm. International Journal of Environment and Pollution, 28(3/4), 261-272.
-
(2006)
International Journal of Environment and Pollution
, vol.28
, Issue.3-4
, pp. 261-272
-
-
Wu, C.L.1
Chau, K.W.2
-
68
-
-
33751257781
-
Fuzzy regression based on asymmetric support vector machines
-
Yao, C. C., & Yu, P. T. (2006). Fuzzy regression based on asymmetric support vector machines. Applied Mathematics and Computation, 182, 175-193.
-
(2006)
Applied Mathematics and Computation
, vol.182
, pp. 175-193
-
-
Yao, C.C.1
Yu, P.T.2
-
69
-
-
0000570996
-
A linear regression model using triangular fuzzy number coefficients
-
Yen, K. K., Goshray, S., & Roig, G. (1999). A linear regression model using triangular fuzzy number coefficients. Fuzzy Sets and Systems, 106, 166-177.
-
(1999)
Fuzzy Sets and Systems
, vol.106
, pp. 166-177
-
-
Yen, K.K.1
Goshray, S.2
Roig, G.3
-
70
-
-
78650179085
-
A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
-
Yoon, H., Jun, S. C., Hyun, Y., Bae, G. O., & Lee, K. K. (2011). A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology, 396, 128-138.
-
(2011)
Journal of Hydrology
, vol.396
, pp. 128-138
-
-
Yoon, H.1
Jun, S.C.2
Hyun, Y.3
Bae, G.O.4
Lee, K.K.5
-
71
-
-
33845702662
-
Forecasting of hydrology time series with ridge regression in feature space
-
Yu, X. Y., & Liong, S. Y. (2007). Forecasting of hydrology time series with ridge regression in feature space. Journal of Hydrology, 332(3-4), 290-302.
-
(2007)
Journal of Hydrology
, vol.332
, Issue.3-4
, pp. 290-302
-
-
Yu, X.Y.1
Liong, S.Y.2
-
72
-
-
33746916489
-
Support vector regression for real-time flood stage forecasting
-
Yu, P. S., Chen, S. T., & Chang, I. F. (2006). Support vector regression for real-time flood stage forecasting. Journal of Hydrology, 328(3-4), 704-716.
-
(2006)
Journal of Hydrology
, vol.328
, Issue.3-4
, pp. 704-716
-
-
Yu, P.S.1
Chen, S.T.2
Chang, I.F.3
-
73
-
-
58349101519
-
Development of reservoir operation policies considering variable agricultural water demands
-
Zahraie, B., & Hosseini, S. M. (2009). Development of reservoir operation policies considering variable agricultural water demands. Expert Systems with Applications, 36, 4980-4987.
-
(2009)
Expert Systems with Applications
, vol.36
, pp. 4980-4987
-
-
Zahraie, B.1
Hosseini, S.M.2
|