메뉴 건너뛰기




Volumn 186, Issue 6, 2014, Pages 3685-3699

Developing a fuzzy neural network-based support vector regression (FNN-SVR) for regionalizing nitrate concentration in groundwater

Author keywords

Artificial neural network; Fuzzy set theory; Genetic algorithm; Groundwater quality; Nitrate concentration; Support vector regression

Indexed keywords

AQUIFERS; BENCHMARKING; FUZZY NEURAL NETWORKS; FUZZY SET THEORY; GROUNDWATER RESOURCES; NEURAL NETWORKS; REGRESSION ANALYSIS; WATER QUALITY;

EID: 84900823209     PISSN: 01676369     EISSN: 15732959     Source Type: Journal    
DOI: 10.1007/s10661-014-3650-8     Document Type: Article
Times cited : (24)

References (73)
  • 1
    • 78650584376 scopus 로고    scopus 로고
    • Fuzzy neural networks for water level and discharge forecasting with uncertainty
    • Alvisi, S., & Franchini, M. (2011). Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environmental Modelling & Software, 26, 523-537.
    • (2011) Environmental Modelling & Software , vol.26 , pp. 523-537
    • Alvisi, S.1    Franchini, M.2
  • 2
    • 33947572974 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff
    • DOI 10.1016/j.jhydrol.2007.01.013, PII S0022169407000194
    • Aqil, M., Kita, I., Yano, A., & Nishiyama, S. (2007). A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. Journal of Hydrology, 337, 22-34. (Pubitemid 46483469)
    • (2007) Journal of Hydrology , vol.337 , Issue.1-2 , pp. 22-34
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 3
    • 10944257448 scopus 로고    scopus 로고
    • Support vector machines approximation of flow and transportmodels in initial groundwater contamination network design
    • Fall Meeting 2002, abstract #H72D-0882
    • Asefa, T., & Kemblowski, M. W. (2002). Support vector machines approximation of flow and transportmodels in initial groundwater contamination network design. EOS. Transactions of the American Geophysical Union, Fall Meeting 2002, abstract #H72D-0882.
    • (2002) EOS. Transactions of the American Geophysical Union
    • Asefa, T.1    Kemblowski, M.W.2
  • 4
  • 5
    • 31444454927 scopus 로고    scopus 로고
    • Support vectormachines for nonlinear state space reconstruction: Application to the Great Salt Lake time series
    • doi:10.1029/2004WR003785
    • Asefa, T., Kemblowski, M. W., Lall, U., & Urroz, G. (2005). Support vectormachines for nonlinear state space reconstruction: application to the Great Salt Lake time series. Water Resources Research. doi:10.1029/2004WR003785.
    • (2005) Water Resources Research
    • Asefa, T.1    Kemblowski, M.W.2    Lall, U.3    Urroz, G.4
  • 6
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow predictions: The support vector machines approach
    • DOI 10.1016/j.jhydrol.2005.06.001, PII S0022169405002908
    • Asefa, T., Kemblowski, M., McKee, M., & Khalil, A. (2006). Multi-time scale stream flow predictions: the support vector machines approach. Journal of Hydrology, 318, 7-16. (Pubitemid 43120784)
    • (2006) Journal of Hydrology , vol.318 , Issue.1-4 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 9
    • 8444241860 scopus 로고    scopus 로고
    • Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
    • DOI 10.1016/j.neunet.2004.07.002, PII S0893608004001431
    • Cawley, G. C., & Talbot, N. L. C. (2004). Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Networks, 17(10), 1467-1475. (Pubitemid 39487142)
    • (2004) Neural Networks , vol.17 , Issue.10 , pp. 1467-1475
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 10
    • 0032089826 scopus 로고    scopus 로고
    • Real-coded genetic algorithm for rule-based flood control reservoir management
    • Chang, F. J., & Chen, L. (2004). Real-coded genetic algorithm for rule-based flood control reservoir management. Water Resources Management, 12(3), 185-198.
    • (2004) Water Resources Management , vol.12 , Issue.3 , pp. 185-198
    • Chang, F.J.1    Chen, L.2
  • 11
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • doi:10.1016/S0893-6080(03)00169-2
    • Cherkassky, V., & Yunqian, M. Y. (2002). Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 17, 113 - 126. doi:10.1016/S0893-6080(03)00169-2.
    • (2002) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Yunqian, M.Y.2
  • 12
    • 35748960851 scopus 로고    scopus 로고
    • Extended support vector interval regression networks for interval input - output data
    • Chuang, C. C. (2008). Extended support vector interval regression networks for interval input - output data. Information Sciences, 178, 871-891.
    • (2008) Information Sciences , vol.178 , pp. 871-891
    • Chuang, C.C.1
  • 13
    • 34547173207 scopus 로고    scopus 로고
    • Analysis of groundwater quality using fuzzy synthetic evaluation
    • DOI 10.1016/j.jhazmat.2007.01.119, PII S0304389407001860
    • Dahiy, S., Singh, B., Gaur, S., Garg, V. K., & Kushwaha, H. S. (2007). Analysis of groundwater quality using fuzzy synthetic evaluation. Journal of Hazardous Materials, 147, 938-946. (Pubitemid 47126721)
    • (2007) Journal of Hazardous Materials , vol.147 , Issue.3 , pp. 938-946
    • Dahiya, S.1    Singh, B.2    Gaur, S.3    Garg, V.K.4    Kushwaha, H.S.5
  • 15
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: Introduction and applications
    • DOI 10.1061/(ASCE)0887-3801(2001)15:3(208), Reportnr 22146
    • Dibike, Y. B., Velickov, S., Solomatine, D., & Abbott, M. B. (2001). Model induction with support vector machines: introduction and applications. Journal of Computing in Civil Engineering, 15(3), 208-216. (Pubitemid 32583199)
    • (2001) Journal of Computing in Civil Engineering , vol.15 , Issue.3 , pp. 208-216
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.3    Abbott, M.B.4
  • 17
    • 36649000728 scopus 로고    scopus 로고
    • Effect of missing data on performance of learning algorithms for hydrologic predictions: Implications to an imputation technique
    • doi:10.1029/2006WR005298
    • Gill, M. K., Asefa, T., Kaheil, Y., & McKee, M. (2007). Effect of missing data on performance of learning algorithms for hydrologic predictions: implications to an imputation technique. Water Resources Research. doi:10.1029/2006WR005298.
    • (2007) Water Resources Research
    • Gill, M.K.1    Asefa, T.2    Kaheil, Y.3    McKee, M.4
  • 18
    • 0002819121 scopus 로고
    • A comparative analysis of selection scheme used in genetic algorithms
    • San Mateo: Morgan Kaufman
    • Goldberg, D. E. (1989). A comparative analysis of selection scheme used in genetic algorithms. Foundations of genetic algorithms (pp. 69-93). San Mateo: Morgan Kaufman.
    • (1989) Foundations of Genetic Algorithms , pp. 69-93
    • Goldberg, D.E.1
  • 19
    • 35348956876 scopus 로고    scopus 로고
    • Flood forecasting using support vector machines
    • Han, D., Chan, L., & Zhu, N. (2007). Flood forecasting using support vector machines. Journal of Hydroinformatics, 9(4), 267-276.
    • (2007) Journal of Hydroinformatics , vol.9 , Issue.4 , pp. 267-276
    • Han, D.1    Chan, L.2    Zhu, N.3
  • 20
    • 34248169802 scopus 로고    scopus 로고
    • A fuzzy model of support vector regression machine
    • Hao, P. Y., & Chiang, J. H. (2007). A fuzzy model of support vector regression machine. International Journal of Fuzzy Systems, 9(1), 45-50.
    • (2007) International Journal of Fuzzy Systems , vol.9 , Issue.1 , pp. 45-50
    • Hao, P.Y.1    Chiang, J.H.2
  • 21
    • 42549092067 scopus 로고    scopus 로고
    • Fuzzy regression analysis by support vector learning approach
    • Hao, P. Y., & Chiang, J. H. (2008). Fuzzy regression analysis by support vector learning approach. IEEE Transactions on Fuzzy Systems, 16(2), 428-441.
    • (2008) IEEE Transactions on Fuzzy Systems , vol.16 , Issue.2 , pp. 428-441
    • Hao, P.Y.1    Chiang, J.H.2
  • 22
    • 0026988817 scopus 로고
    • Genetic algorithms
    • Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66-72.
    • (1992) Scientific American , vol.267 , Issue.1 , pp. 66-72
    • Holland, J.H.1
  • 23
    • 0042591514 scopus 로고    scopus 로고
    • Support vector fuzzy regression machines
    • Hong, D. H., & Hwang, C. (2003a). Support vector fuzzy regression machines. Fuzzy Sets and Systems, 138(2), 271-281.
    • (2003) Fuzzy Sets and Systems , vol.138 , Issue.2 , pp. 271-281
    • Hong, D.H.1    Hwang, C.2
  • 24
    • 0042591514 scopus 로고    scopus 로고
    • Support vector fuzzy regression machines
    • Hong, D. H., & Hwang, C. (2003b). Support vector fuzzy regression machines. Fuzzy Sets and Systems, 138, 271-281.
    • (2003) Fuzzy Sets and Systems , vol.138 , pp. 271-281
    • Hong, D.H.1    Hwang, C.2
  • 25
    • 33750439450 scopus 로고    scopus 로고
    • A hybrid support vector machines and logistic regression approach for forecasting intermittent demand of spare parts
    • Hua, Z. S., & Zhang, B. (2006). A hybrid support vector machines and logistic regression approach for forecasting intermittent demand of spare parts. Applied Mathematics and Computation, 181, 1035-1048.
    • (2006) Applied Mathematics and Computation , vol.181 , pp. 1035-1048
    • Hua, Z.S.1    Zhang, B.2
  • 29
    • 0041589566 scopus 로고    scopus 로고
    • Support vector interval regression networks for interval regression analysis
    • Jeng, J. T., Chuang, C. C., & Su, S. F. (2003). Support vector interval regression networks for interval regression analysis. Fuzzy Sets and Systems, 138, 283-300.
    • (2003) Fuzzy Sets and Systems , vol.138 , pp. 283-300
    • Jeng, J.T.1    Chuang, C.C.2    Su, S.F.3
  • 30
    • 84876150708 scopus 로고    scopus 로고
    • Combination of support vector regression and artificial neural networks for prediction of critical heat flux
    • Jiang, B. T., & Zhao, F. Y. (2013). Combination of support vector regression and artificial neural networks for prediction of critical heat flux. International Journal of Heat and Mass Transfer, 62, 481-494.
    • (2013) International Journal of Heat and Mass Transfer , vol.62 , pp. 481-494
    • Jiang, B.T.1    Zhao, F.Y.2
  • 32
    • 67649993046 scopus 로고    scopus 로고
    • TS-fuzzy system-based support vector regression
    • Juang, C. F., & Hsieh, C. D. (2009). TS-fuzzy system-based support vector regression. Fuzzy Sets and Systems, 160, 2486-2504.
    • (2009) Fuzzy Sets and Systems , vol.160 , pp. 2486-2504
    • Juang, C.F.1    Hsieh, C.D.2
  • 34
    • 84874509284 scopus 로고    scopus 로고
    • Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform
    • Kalteh, A. M. (2013). Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform. Computers & Geosciences, 54, 1-8.
    • (2013) Computers & Geosciences , vol.54 , pp. 1-8
    • Kalteh, A.M.1
  • 36
    • 78049527665 scopus 로고    scopus 로고
    • Comparison of spatial interpolation methods for estimating heavy metals in sediments of Caspian Sea
    • Kazemi, S. M., & Hosseini, S. M. (2011). Comparison of spatial interpolation methods for estimating heavy metals in sediments of Caspian Sea. Expert Systems with Applications, 38, 1632-1649.
    • (2011) Expert Systems with Applications , vol.38 , pp. 1632-1649
    • Kazemi, S.M.1    Hosseini, S.M.2
  • 38
    • 33645864343 scopus 로고    scopus 로고
    • Application of support vector machine in lake water level prediction
    • Khan, M. S., & Coulibaly, P. (2006). Application of support vector machine in lake water level prediction. Journal of Hydrologic Engineering, 11, 199-205.
    • (2006) Journal of Hydrologic Engineering , vol.11 , pp. 199-205
    • Khan, M.S.1    Coulibaly, P.2
  • 39
    • 78049264460 scopus 로고    scopus 로고
    • Comparison of groundwater level estimation using neuro-fuzzy and ordinary Kriging
    • doi:10. 1007/s10666-008-9174-2
    • Kholghi, M., & Hosseini, S. M. (2009). Comparison of groundwater level estimation using neuro-fuzzy and ordinary Kriging. Environmental Modeling and Assessment. doi:10. 1007/s10666-008-9174-2.
    • (2009) Environmental Modeling and Assessment
    • Kholghi, M.1    Hosseini, S.M.2
  • 40
    • 42149163573 scopus 로고    scopus 로고
    • Modelling groundwater levels in an urban coastal aquifer using artificial neural networks
    • Krishna, B., Satyaji, R. Y. R., & Vijaya, T. (2008). Modelling groundwater levels in an urban coastal aquifer using artificial neural networks. Hydrological Processes, 22, 1180 -1188.
    • (2008) Hydrological Processes , vol.22 , pp. 1180-1188
    • Krishna, B.1    Satyaji, R.Y.R.2    Vijaya, T.3
  • 41
    • 0032853041 scopus 로고    scopus 로고
    • Bayesian theory of probabilistic forecasting via deterministic hydrologic model
    • Krzysztofowicz, R. (1999). Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resources Research, 35(9), 2739-2750.
    • (1999) Water Resources Research , vol.35 , Issue.9 , pp. 2739-2750
    • Krzysztofowicz, R.1
  • 43
    • 80055093807 scopus 로고    scopus 로고
    • Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: A survey
    • Kumar, M., & Yadav, N. (2011). Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: a survey. Computers and Mathematics with Applications, 62, 3796-3811.
    • (2011) Computers and Mathematics with Applications , vol.62 , pp. 3796-3811
    • Kumar, M.1    Yadav, N.2
  • 44
    • 77950189122 scopus 로고    scopus 로고
    • A fuzzy support vector regression model for business cycle predictions
    • Lin, K. P., & Pai, P. F. (2010). A fuzzy support vector regression model for business cycle predictions. Expert Systems with Applications, 37, 5430-5435.
    • (2010) Expert Systems with Applications , vol.37 , pp. 5430-5435
    • Lin, K.P.1    Pai, P.F.2
  • 46
    • 0033038735 scopus 로고    scopus 로고
    • Geostatistical applications in ground-water modeling in south-central Kansas
    • DOI 10.1061/(ASCE)1084-0699(1999)4:1(57)
    • Ma, T. S., Sophocleous, M., & Yu, Y. S. (1999). Geostatistical applications in ground-water modeling in south-central Kansas. Journal of Hydrologic Engineering, 4(1), 57-64. (Pubitemid 29154375)
    • (1999) Journal of Hydrologic Engineering , vol.4 , Issue.1 , pp. 57-64
    • Ma, T.-S.1    Sophocleous, M.2    Yu, Y.-S.3
  • 47
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • DOI 10.1016/S1364-8152(99)00007-9, PII S1364815299000079
    • Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modeling and Software, 101-124. (Pubitemid 30018318)
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 48
    • 0031968002 scopus 로고    scopus 로고
    • Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery
    • Morshed, J., & Kaluarachchi, J. J. (2012). Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery. Water Resources Research, 34(5), 1101-1113.
    • (2012) Water Resources Research , vol.34 , Issue.5 , pp. 1101-1113
    • Morshed, J.1    Kaluarachchi, J.J.2
  • 49
    • 84876425624 scopus 로고    scopus 로고
    • Water quality zoning using probabilistic support vector machines: Two case studies
    • Springer
    • Nikoo, M. R. & Mahjouri, N. (2013) Water quality zoning using probabilistic support vector machines: two case studies, Water Resources Management, Springer, 27, 2577-2594
    • (2013) Water Resources Management , vol.27 , pp. 2577-2594
    • Nikoo, M.R.1    Mahjouri, N.2
  • 51
    • 0002321387 scopus 로고    scopus 로고
    • Some theory and examples of genetic function approximation with comparison to evolutionary techniques
    • J. Devillers (Ed.), London: Academic Press
    • Rogers, D. (1996). Some theory and examples of genetic function approximation with comparison to evolutionary techniques. In J. Devillers (Ed.), Genetic algorithms in molecular modeling (pp. 87-107). London: Academic Press.
    • (1996) Genetic Algorithms in Molecular Modeling , pp. 87-107
    • Rogers, D.1
  • 54
    • 33745780111 scopus 로고    scopus 로고
    • Experiments with AdaBoost.RT, an improved boosting scheme for regression
    • DOI 10.1162/neco.2006.18.7.1678
    • Shrestha, D. L., & Solomatine, D. P. (2006). Experiments with AdaBoost. RT, an improved boosting scheme for regression. Neural Computation, 18, 1678-1710. (Pubitemid 44024734)
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1678-1710
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 56
    • 34548134022 scopus 로고    scopus 로고
    • A hybrid artificial neural network-numerical model for ground water problems
    • DOI 10.1111/j.1745-6584.2007.00330.x
    • Szidarovszky, F., Coppola, E. A., Long, J., Hall, A. D., & Poulton, M. M. (2007). A hybrid artificial neural network-numerical model for ground water problems. Ground Water, 45(5), 590-600. (Pubitemid 47301552)
    • (2007) Ground Water , vol.45 , Issue.5 , pp. 590-600
    • Szidarovszky, F.1    Coppola Jr., E.A.2    Long, J.3    Hall, A.D.4    Poulton, M.M.5
  • 58
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • Task Committee, A. S. C. E.
    • Task Committee, A. S. C. E. (2000). Artificial neural networks in hydrology. II: hydrologic applications. Journal of Hydrologic Engineering, ASCE, 5(2), 124-137.
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , Issue.2 , pp. 124-137
  • 59
    • 33644891019 scopus 로고    scopus 로고
    • Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system
    • DOI 10.1016/j.cageo.2005.07.003, PII S0098300405001652
    • Tutmez, B., Hatipoglu, Z., & Kaymak, U. (2006). Modelling electrical conductivity of groundwater using an adaptive neurofuzzy inference system. Computers & Geosciences, 32, 421-433. (Pubitemid 43380877)
    • (2006) Computers and Geosciences , vol.32 , Issue.4 , pp. 421-433
    • Tutmez, B.1    Hatipoglu, Z.2    Kaymak, U.3
  • 61
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik, V. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, l0(5), 988-999.
    • (1999) IEEE Transactions on Neural Networks , vol.0 , Issue.5 , pp. 988-999
    • Vapnik, V.1
  • 66
    • 80052037726 scopus 로고    scopus 로고
    • The complex fuzzy system forecasting model based on triangular fuzzy robust wavelet m-support vector machine
    • Wu, Q. (2011). The complex fuzzy system forecasting model based on triangular fuzzy robust wavelet m-support vector machine. Expert Systems with Applications, 38, 14478-14489.
    • (2011) Expert Systems with Applications , vol.38 , pp. 14478-14489
    • Wu, Q.1
  • 67
    • 33845421111 scopus 로고    scopus 로고
    • A flood forecasting neural network model with genetic algorithm
    • Wu, C. L., & Chau, K. W. (2006). A flood forecasting neural network model with genetic algorithm. International Journal of Environment and Pollution, 28(3/4), 261-272.
    • (2006) International Journal of Environment and Pollution , vol.28 , Issue.3-4 , pp. 261-272
    • Wu, C.L.1    Chau, K.W.2
  • 68
    • 33751257781 scopus 로고    scopus 로고
    • Fuzzy regression based on asymmetric support vector machines
    • Yao, C. C., & Yu, P. T. (2006). Fuzzy regression based on asymmetric support vector machines. Applied Mathematics and Computation, 182, 175-193.
    • (2006) Applied Mathematics and Computation , vol.182 , pp. 175-193
    • Yao, C.C.1    Yu, P.T.2
  • 69
    • 0000570996 scopus 로고    scopus 로고
    • A linear regression model using triangular fuzzy number coefficients
    • Yen, K. K., Goshray, S., & Roig, G. (1999). A linear regression model using triangular fuzzy number coefficients. Fuzzy Sets and Systems, 106, 166-177.
    • (1999) Fuzzy Sets and Systems , vol.106 , pp. 166-177
    • Yen, K.K.1    Goshray, S.2    Roig, G.3
  • 70
    • 78650179085 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
    • Yoon, H., Jun, S. C., Hyun, Y., Bae, G. O., & Lee, K. K. (2011). A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology, 396, 128-138.
    • (2011) Journal of Hydrology , vol.396 , pp. 128-138
    • Yoon, H.1    Jun, S.C.2    Hyun, Y.3    Bae, G.O.4    Lee, K.K.5
  • 71
    • 33845702662 scopus 로고    scopus 로고
    • Forecasting of hydrology time series with ridge regression in feature space
    • Yu, X. Y., & Liong, S. Y. (2007). Forecasting of hydrology time series with ridge regression in feature space. Journal of Hydrology, 332(3-4), 290-302.
    • (2007) Journal of Hydrology , vol.332 , Issue.3-4 , pp. 290-302
    • Yu, X.Y.1    Liong, S.Y.2
  • 72
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu, P. S., Chen, S. T., & Chang, I. F. (2006). Support vector regression for real-time flood stage forecasting. Journal of Hydrology, 328(3-4), 704-716.
    • (2006) Journal of Hydrology , vol.328 , Issue.3-4 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3
  • 73
    • 58349101519 scopus 로고    scopus 로고
    • Development of reservoir operation policies considering variable agricultural water demands
    • Zahraie, B., & Hosseini, S. M. (2009). Development of reservoir operation policies considering variable agricultural water demands. Expert Systems with Applications, 36, 4980-4987.
    • (2009) Expert Systems with Applications , vol.36 , pp. 4980-4987
    • Zahraie, B.1    Hosseini, S.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.