-
1
-
-
84881082807
-
The composition, functions, and regulation of the budding yeast kinetochore
-
Biggins, S. 2013. The composition, functions, and regulation of the budding yeast kinetochore. Genetics. 194:817-846. http://dx.doi.org/10.1534/genetics.112.145276
-
(2013)
Genetics.
, vol.194
, pp. 817-846
-
-
Biggins, S.1
-
2
-
-
34247563842
-
Inhibitory factors associated with anaphase-promoting complex/cylosome in mitotic checkpoint
-
Braunstein, I., S. Miniowitz, Y. Moshe, and A. Hershko. 2007. Inhibitory factors associated with anaphase-promoting complex/cylosome in mitotic checkpoint. Proc. Natl. Acad. Sci. USA. 104:4870-4875. http://dx.doi.org/10.1073/pnas.0700523104
-
(2007)
Proc. Natl. Acad. Sci. USA.
, vol.104
, pp. 4870-4875
-
-
Braunstein, I.1
Miniowitz, S.2
Moshe, Y.3
Hershko, A.4
-
3
-
-
84877575218
-
Tension sensing by Aurora B kinase is independent of survivin-based centromere localization
-
Campbell, C.S., and A. Desai. 2013. Tension sensing by Aurora B kinase is independent of survivin-based centromere localization. Nature. 497:118-121. http://dx.doi.org/10.1038/nature12057
-
(2013)
Nature.
, vol.497
, pp. 118-121
-
-
Campbell, C.S.1
Desai, A.2
-
4
-
-
84862776998
-
Structure of the mitotic checkpoint complex
-
Chao, W.C., K. Kulkarni, Z. Zhang, E.H. Kong, and D. Barford. 2012. Structure of the mitotic checkpoint complex. Nature. 484:208-213. http://dx.doi.org/10.1038/nature10896
-
(2012)
Nature.
, vol.484
, pp. 208-213
-
-
Chao, W.C.1
Kulkarni, K.2
Zhang, Z.3
Kong, E.H.4
Barford, D.5
-
5
-
-
35548980785
-
Bub1 kinase targets Sgo1 to ensure efficient chromosome biorientation in budding yeast mitosis
-
Fernius, J., and K.G. Hardwick. 2007. Bub1 kinase targets Sgo1 to ensure efficient chromosome biorientation in budding yeast mitosis. PLoS Genet. 3:e213. http://dx.doi.org/10.1371/journal.pgen.0030213
-
(2007)
PLoS Genet.
, vol.3
-
-
Fernius, J.1
Hardwick, K.G.2
-
6
-
-
81855184983
-
Ubiquitination of Cdc20 by the APC occurs through an intramolecular mechanism
-
Foe, I.T., S.A. Foster, S.K. Cheung, S.Z. DeLuca, D.O. Morgan, and D.P. Toczyski. 2011. Ubiquitination of Cdc20 by the APC occurs through an intramolecular mechanism. Curr. Biol. 21:1870-1877. http://dx.doi.org/10.1016/j.cub.2011.09.051
-
(2011)
Curr. Biol.
, vol.21
, pp. 1870-1877
-
-
Foe, I.T.1
Foster, S.A.2
Cheung, S.K.3
DeLuca, S.Z.4
Morgan, D.O.5
Toczyski, D.P.6
-
7
-
-
84866850568
-
The APC/C subunit Mnd2/Apc15 promotes Cdc20 autoubiquitination and spindle assembly checkpoint inactivation
-
Foster, S.A., and D.O. Morgan. 2012. The APC/C subunit Mnd2/Apc15 promotes Cdc20 autoubiquitination and spindle assembly checkpoint inactivation. Mol. Cell. 47:921-932. http://dx.doi.org/10.1016/j.molcel.2012.07.031
-
(2012)
Mol. Cell.
, vol.47
, pp. 921-932
-
-
Foster, S.A.1
Morgan, D.O.2
-
8
-
-
60749129493
-
APC/C- and Mad2-mediated degradation of Cdc20 during spindle checkpoint activation
-
Ge, S., J.R. Skaar, and M. Pagano. 2009. APC/C- and Mad2-mediated degradation of Cdc20 during spindle checkpoint activation. Cell Cycle. 8:167-171. http://dx.doi.org/10.4161/cc.8.1.7606
-
(2009)
Cell Cycle.
, vol.8
, pp. 167-171
-
-
Ge, S.1
Skaar, J.R.2
Pagano, M.3
-
9
-
-
1242307468
-
Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast
-
Gillett, E.S., C.W. Espelin, and P.K. Sorger. 2004. Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast. J. Cell Biol. 164:535-546. http://dx.doi.org/10.1083/jcb.200308100
-
(2004)
J. Cell Biol.
, vol.164
, pp. 535-546
-
-
Gillett, E.S.1
Espelin, C.W.2
Sorger, P.K.3
-
10
-
-
62449220573
-
Structure of the anaphase-promoting complex/cyclosome interacting with a mitotic checkpoint complex
-
Herzog, F., I. Primorac, P. Dube, P. Lenart, B. Sander, K. Mechtler, H. Stark, and J.M. Peters. 2009. Structure of the anaphase-promoting complex/cyclosome interacting with a mitotic checkpoint complex. Science. 323:1477-1481. http://dx.doi.org/10.1126/science.1163300
-
(2009)
Science.
, vol.323
, pp. 1477-1481
-
-
Herzog, F.1
Primorac, I.2
Dube, P.3
Lenart, P.4
Sander, B.5
Mechtler, K.6
Stark, H.7
Peters, J.M.8
-
11
-
-
0025941405
-
S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function
-
Hoyt, M.A., L. Totis, and B.T. Roberts. 1991. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell. 66:507-517. http://dx.doi.org/10.1016/0092-8674(81)90014-3
-
(1991)
Cell.
, vol.66
, pp. 507-517
-
-
Hoyt, M.A.1
Totis, L.2
Roberts, B.T.3
-
12
-
-
4444271170
-
A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes
-
Janke, C., M.M. Magiera, N. Rathfelder, C. Taxis, S. Reber, H. Maekawa, A. Moreno-Borchart, G. Doenges, E. Schwob, E. Schiebel, and M. Knop. 2004. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast. 21:947-962. http://dx.doi.org/10.1002/yea.1142
-
(2004)
Yeast.
, vol.21
, pp. 947-962
-
-
Janke, C.1
Magiera, M.M.2
Rathfelder, N.3
Taxis, C.4
Reber, S.5
Maekawa, H.6
Moreno-Borchart, A.7
Doenges, G.8
Schwob, E.9
Schiebel, E.10
Knop, M.11
-
13
-
-
37249003338
-
Counting kinetochore protein numbers in budding yeast using genetically encoded fluorescent proteins
-
Joglekar, A.P., E.D. Salmon, and K.S. Bloom. 2008. Counting kinetochore protein numbers in budding yeast using genetically encoded fluorescent proteins. Methods Cell Biol. 85:127-151. http://dx.doi.org/10.1016/S0091-679X(08)85007-8
-
(2008)
Methods Cell Biol.
, vol.85
, pp. 127-151
-
-
Joglekar, A.P.1
Salmon, E.D.2
Bloom, K.S.3
-
14
-
-
74249093169
-
Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin
-
Kawashima, S.A., Y. Yamagishi, T. Honda, K. Ishiguro, and Y. Watanabe. 2010. Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science. 327:172-177. http://dx.doi.org/10.1126/science.1180189
-
(2010)
Science.
, vol.327
, pp. 172-177
-
-
Kawashima, S.A.1
Yamagishi, Y.2
Honda, T.3
Ishiguro, K.4
Watanabe, Y.5
-
15
-
-
56149107126
-
Mad3 KEN boxes mediate both Cdc20 and Mad3 turnover, and are critical for the spindle checkpoint
-
King, E.M., S.J. van der Sar, and K.G. Hardwick. 2007. Mad3 KEN boxes mediate both Cdc20 and Mad3 turnover, and are critical for the spindle checkpoint. PLoS ONE. 2:e342. http://dx.doi.org/10.1371/journal.pone.0000342
-
(2007)
PLoS ONE.
, vol.2
-
-
King, E.M.1
van der Sar, S.J.2
Hardwick, K.G.3
-
16
-
-
0026009964
-
Feedback control of mitosis in budding yeast
-
Li, R., and A.W. Murray. 1991. Feedback control of mitosis in budding yeast. Cell. 66:519-531. http://dx.doi.org/10.1016/0092-8674(81)90015-5
-
(1991)
Cell.
, vol.66
, pp. 519-531
-
-
Li, R.1
Murray, A.W.2
-
17
-
-
84892740735
-
Mad1 kinetochore recruitment by Mps1-mediated phosphorylation of Bub1 signals the spindle checkpoint
-
London, N., and S. Biggins. 2014a. Mad1 kinetochore recruitment by Mps1-mediated phosphorylation of Bub1 signals the spindle checkpoint. Genes Dev. 28:140-152. http://dx.doi.org/10.1101/gad.233700.113
-
(2014)
Genes Dev.
, vol.28
, pp. 140-152
-
-
London, N.1
Biggins, S.2
-
18
-
-
84908151071
-
Signalling dynamics in the spindle checkpoint response
-
London, N., and S. Biggins. 2014b. Signalling dynamics in the spindle checkpoint response. Nat. Rev. Mol. Cell Biol. 15:736-748. http://dx.doi.org/10.1038/nrm3888
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 736-748
-
-
London, N.1
Biggins, S.2
-
19
-
-
84861532305
-
Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores
-
London, N., S. Ceto, J.A. Ranish, and S. Biggins. 2012. Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores. Curr. Biol. 22:900-906. http://dx.doi.org/10.1016/j.cub.2012.03.052
-
(2012)
Curr. Biol.
, vol.22
, pp. 900-906
-
-
London, N.1
Ceto, S.2
Ranish, J.A.3
Biggins, S.4
-
20
-
-
0031820288
-
Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
-
Longtine, M.S., A. McKenzie III, D.J. Demarini, N.G. Shah, A. Wach, A. Brachat, P. Philippsen, and J.R. Pringle. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 14:953-961. http://dx.doi.org/10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
-
(1998)
Yeast.
, vol.14
, pp. 953-961
-
-
Longtine, M.S.1
McKenzie, A.2
Demarini, D.J.3
Shah, N.G.4
Wach, A.5
Brachat, A.6
Philippsen, P.7
Pringle, J.R.8
-
21
-
-
14044275563
-
The Drosophila Bub3 protein is required for the mitotic checkpoint and for normal accumulation of cyclins during G2 and early stages of mitosis
-
Lopes, C.S., P. Sampaio, B. Williams, M. Goldberg, and C.E. Sunkel. 2005. The Drosophila Bub3 protein is required for the mitotic checkpoint and for normal accumulation of cyclins during G2 and early stages of mitosis. J. Cell Sci. 118:187-198. http://dx.doi.org/10.1242/jcs.01602
-
(2005)
J. Cell Sci.
, vol.118
, pp. 187-198
-
-
Lopes, C.S.1
Sampaio, P.2
Williams, B.3
Goldberg, M.4
Sunkel, C.E.5
-
22
-
-
0032125794
-
Fizzy is required for activation of the APC/cyclosome in Xenopus egg extracts
-
Lorca, T., A. Castro, A.M. Martinez, S. Vigneron, N. Morin, S. Sigrist, C. Lehner, M. Dorée, and J.C. Labbé. 1998. Fizzy is required for activation of the APC/cyclosome in Xenopus egg extracts. EMBO J. 17:3565-3575. http://dx.doi.org/10.1093/emboj/17.13.3565
-
(1998)
EMBO J.
, vol.17
, pp. 3565-3575
-
-
Lorca, T.1
Castro, A.2
Martinez, A.M.3
Vigneron, S.4
Morin, N.5
Sigrist, S.6
Lehner, C.7
Dorée, M.8
Labbé, J.C.9
-
23
-
-
80053561641
-
APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment
-
Mansfeld, J., P. Collin, M.O. Collins, J.S. Choudhary, and J. Pines. 2011. APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Nat. Cell Biol. 13:1234-1243. http://dx.doi.org/10.1038/ncb2347
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1234-1243
-
-
Mansfeld, J.1
Collin, P.2
Collins, M.O.3
Choudhary, J.S.4
Pines, J.5
-
24
-
-
4344610852
-
Timing and checkpoints in the regulation of mitotic progression
-
Meraldi, P., V.M. Draviam, and P.K. Sorger. 2004. Timing and checkpoints in the regulation of mitotic progression. Dev. Cell. 7:45-60. http://dx.doi.org/10.1016/j.devcel.2004.06.006
-
(2004)
Dev. Cell.
, vol.7
, pp. 45-60
-
-
Meraldi, P.1
Draviam, V.M.2
Sorger, P.K.3
-
25
-
-
84895743550
-
A Bub1-Mad1 interaction targets the Mad1-Mad2 complex to unattached kinetochores to initiate the spindle checkpoint
-
Moyle, M.W., T. Kim, N. Hattersley, J. Espeut, D.K. Cheerambathur, K. Oegema, and A. Desai. 2014. A Bub1-Mad1 interaction targets the Mad1-Mad2 complex to unattached kinetochores to initiate the spindle checkpoint. J. Cell Biol. 204:647-657. http://dx.doi.org/10.1083/jcb.201311015
-
(2014)
J. Cell Biol.
, vol.204
, pp. 647-657
-
-
Moyle, M.W.1
Kim, T.2
Hattersley, N.3
Espeut, J.4
Cheerambathur, D.K.5
Oegema, K.6
Desai, A.7
-
26
-
-
57049097535
-
The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction
-
Nilsson, J., M. Yekezare, J. Minshull, and J. Pines. 2008. The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nat. Cell Biol. 10:1411-1420. http://dx.doi.org/10.1038/ncb1799
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 1411-1420
-
-
Nilsson, J.1
Yekezare, M.2
Minshull, J.3
Pines, J.4
-
27
-
-
2942690009
-
Spindle checkpoint regulates Cdc20p stability in Saccharomyces cerevisiae
-
Pan, J., and R.H. Chen. 2004. Spindle checkpoint regulates Cdc20p stability in Saccharomyces cerevisiae. Genes Dev. 18:1439-1451. http://dx.doi.org/10.1101/gad.1184204
-
(2004)
Genes Dev.
, vol.18
, pp. 1439-1451
-
-
Pan, J.1
Chen, R.H.2
-
28
-
-
84884683570
-
Bub3 reads phosphorylated MELT repeats to promote spindle assembly checkpoint signaling
-
Primorac, I., J.R. Weir, E. Chiroli, F. Gross, I. Hoffmann, S. van Gerwen, A. Ciliberto, and A. Musacchio. 2013. Bub3 reads phosphorylated MELT repeats to promote spindle assembly checkpoint signaling. eLife. 2:e01030. http://dx.doi.org/10.7554/eLife.01030
-
(2013)
eLife
, vol.2
-
-
Primorac, I.1
Weir, J.R.2
Chiroli, E.3
Gross, F.4
Hoffmann, I.5
van Gerwen, S.6
Ciliberto, A.7
Musacchio, A.8
-
29
-
-
84861526045
-
Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint
-
Shepperd, L.A., J.C. Meadows, A.M. Sochaj, T.C. Lancaster, J. Zou, G.J. Buttrick, J. Rappsilber, K.G. Hardwick, and J.B. Millar. 2012. Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Curr. Biol. 22:891-899. http://dx.doi.org/10.1016/j.cub.2012.03.051
-
(2012)
Curr. Biol.
, vol.22
, pp. 891-899
-
-
Shepperd, L.A.1
Meadows, J.C.2
Sochaj, A.M.3
Lancaster, T.C.4
Zou, J.5
Buttrick, G.J.6
Rappsilber, J.7
Hardwick, K.G.8
Millar, J.B.9
-
30
-
-
0035802122
-
Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2
-
Sudakin, V., G.K. Chan, and T.J. Yen. 2001. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol. 154:925-936. http://dx.doi.org/10.1083/jcb.200102093
-
(2001)
J. Cell Biol.
, vol.154
, pp. 925-936
-
-
Sudakin, V.1
Chan, G.K.2
Yen, T.J.3
-
31
-
-
84877108757
-
Aneuploid yeast strains exhibit defects in cell growth and passage through START
-
Thorburn, R.R., C. Gonzalez, G.A. Brar, S. Christen, T.M. Carlile, N.T. Ingolia, U. Sauer, J.S. Weissman, and A. Amon. 2013. Aneuploid yeast strains exhibit defects in cell growth and passage through START. Mol. Biol. Cell. 24:1274-1289. http://dx.doi.org/10.1091/mbc.E12-07-0520
-
(2013)
Mol. Biol. Cell.
, vol.24
, pp. 1274-1289
-
-
Thorburn, R.R.1
Gonzalez, C.2
Brar, G.A.3
Christen, S.4
Carlile, T.M.5
Ingolia, N.T.6
Sauer, U.7
Weissman, J.S.8
Amon, A.9
-
32
-
-
34548131710
-
Effects of aneuploidy on cellular physiology and cell division in haploid yeast
-
Torres, E.M., T. Sokolsky, C.M. Tucker, L.Y. Chan, M. Boselli, M.J. Dunham, and A. Amon. 2007. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science. 317:916-924. http://dx.doi.org/10.1126/science.1142210
-
(2007)
Science.
, vol.317
, pp. 916-924
-
-
Torres, E.M.1
Sokolsky, T.2
Tucker, C.M.3
Chan, L.Y.4
Boselli, M.5
Dunham, M.J.6
Amon, A.7
-
33
-
-
0034721669
-
Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast
-
Uhlmann, F., D. Wernic, M.A. Poupart, E.V. Koonin, and K. Nasmyth. 2000. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell. 103:375-386. http://dx.doi.org/10.1016/S0092-8674(00)00130-6
-
(2000)
Cell.
, vol.103
, pp. 375-386
-
-
Uhlmann, F.1
Wernic, D.2
Poupart, M.A.3
Koonin, E.V.4
Nasmyth, K.5
-
34
-
-
84897473699
-
Cell division: control of the chromosomal passenger complex in time and space
-
van der Horst, A., and S.M. Lens. 2014. Cell division: control of the chromosomal passenger complex in time and space. Chromosoma. 123:25-42. http://dx.doi.org/10.1007/s00412-013-0437-6
-
(2014)
Chromosoma.
, vol.123
, pp. 25-42
-
-
van der Horst, A.1
Lens, S.M.2
-
35
-
-
0030693087
-
CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis
-
Visintin, R., S. Prinz, and A. Amon. 1997. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science. 278:460-463. http://dx.doi.org/10.1126/science.278.5337.460
-
(1997)
Science.
, vol.278
, pp. 460-463
-
-
Visintin, R.1
Prinz, S.2
Amon, A.3
-
36
-
-
0036732884
-
Distinct chromosome segregation roles for spindle checkpoint proteins
-
Warren, C.D., D.M. Brady, R.C. Johnston, J.S. Hanna, K.G. Hardwick, and F.A. Spencer. 2002. Distinct chromosome segregation roles for spindle checkpoint proteins. Mol. Biol. Cell. 13:3029-3041. http://dx.doi.org/10.1091/mbc.E02-04-0203
-
(2002)
Mol. Biol. Cell.
, vol.13
, pp. 3029-3041
-
-
Warren, C.D.1
Brady, D.M.2
Johnston, R.C.3
Hanna, J.S.4
Hardwick, K.G.5
Spencer, F.A.6
-
37
-
-
84863226706
-
MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components
-
Yamagishi, Y., C.H. Yang, Y. Tanno, and Y. Watanabe. 2012. MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat. Cell Biol. 14:746-752. http://dx.doi.org/10.1038/ncb2515
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 746-752
-
-
Yamagishi, Y.1
Yang, C.H.2
Tanno, Y.3
Watanabe, Y.4
|