메뉴 건너뛰기




Volumn 204, Issue 5, 2014, Pages 647-657

A Bub1-Mad1 interaction targets the Mad1-Mad2 complex to unattached kinetochores to initiate the spindle checkpoint

Author keywords

[No Author keywords available]

Indexed keywords

BUB1 RELATED PROTEIN; MUTANT PROTEIN; PROTEIN MAD1; PROTEIN MAD2;

EID: 84895743550     PISSN: 00219525     EISSN: 15408140     Source Type: Journal    
DOI: 10.1083/jcb.201311015     Document Type: Article
Times cited : (98)

References (49)
  • 1
    • 0034214405 scopus 로고    scopus 로고
    • Complex formation between Mad1p, Bub1p and Bub3p is crucial for spindle checkpoint function
    • Brady, D.M., and K.G. Hardwick. 2000. Complex formation between Mad1p, Bub1p and Bub3p is crucial for spindle checkpoint function. Curr. Biol. 10:675-678. http://dx.doi.org/10.1016/S0960-9822(00)00515-7
    • (2000) Curr. Biol. , vol.10 , pp. 675-678
    • Brady, D.M.1    Hardwick, K.G.2
  • 2
    • 18844449387 scopus 로고    scopus 로고
    • Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex
    • Buffin, E., C. Lefebvre, J. Huang, M.E. Gagou, and R.E. Karess. 2005. Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex. Curr. Biol. 15:856-861. http://dx.doi.org/10.1016/j.cub.2005.03.052
    • (2005) Curr. Biol. , vol.15 , pp. 856-886
    • Buffin, E.1    Lefebvre, C.2    Huang, J.3    Gagou, M.E.4    Karess, R.E.5
  • 3
    • 0035063690 scopus 로고    scopus 로고
    • Mitotic checkpoint proteins HsMAD1 and HsMAD2 are associated with nuclear pore complexes in interphase
    • Campbell, M.S., G.K. Chan, and T.J. Yen. 2001. Mitotic checkpoint proteins HsMAD1 and HsMAD2 are associated with nuclear pore complexes in interphase. J. Cell Sci. 114:953-963.
    • (2001) J. Cell Sci. , vol.114 , pp. 953-963
    • Campbell, M.S.1    Chan, G.K.2    Yen, T.J.3
  • 5
    • 4444241998 scopus 로고    scopus 로고
    • A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension
    • Cheeseman, I.M., S. Niessen, S. Anderson, F. Hyndman, J.R. Yates III, K. Oegema, and A. Desai. 2004. A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev. 18:2255-2268. http://dx.doi.org/10.1101/gad.1234104
    • (2004) Genes Dev. , vol.18 , pp. 2255-2268
    • Cheeseman, I.M.1    Niessen, S.2    Anderson, S.3    Hyndman, F.4    Yates, J.R.5    Oegema, K.6    Desai, A.7
  • 6
    • 0032547733 scopus 로고    scopus 로고
    • Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores
    • Chen, R.H., A. Shevchenko, M. Mann, and A.W. Murray. 1998. Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J. Cell Biol. 143:283-295. http://dx.doi.org/10.1083/jcb.143.2.283
    • (1998) J. Cell Biol. , vol.143 , pp. 283-295
    • Chen, R.H.1    Shevchenko, A.2    Mann, M.3    Murray, A.W.4
  • 7
    • 0032776301 scopus 로고    scopus 로고
    • The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins
    • Chen, R.H., D.M. Brady, D. Smith, A.W. Murray, and K.G. Hardwick. 1999. The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins. Mol. Biol. Cell. 10:2607-2618. http://dx.doi.org/10.1091/mbc.10.8.2607
    • (1999) Mol. Biol. Cell. , vol.10 , pp. 2607-2618
    • Chen, R.H.1    Brady, D.M.2    Smith, D.3    Murray, A.W.4    Hardwick, K.G.5
  • 9
    • 77956403582 scopus 로고    scopus 로고
    • A kinetochore-independent mechanism drives anaphase chromosome separation during acentrosomal meiosis
    • Dumont, J., K. Oegema, and A. Desai. 2010. A kinetochore-independent mechanism drives anaphase chromosome separation during acentrosomal meiosis. Nat. Cell Biol. 12:894-901. http://dx.doi.org/10.1038/ncb2093
    • (2010) Nat. Cell Biol. , vol.12 , pp. 894-901
    • Dumont, J.1    Oegema, K.2    Desai, A.3
  • 10
    • 84859941751 scopus 로고    scopus 로고
    • Microtubule binding by KNL-1 contributes to spindle checkpoint silencing at the kinetochore
    • Espeut, J., D.K. Cheerambathur, L. Krenning, K. Oegema, and A. Desai. 2012. Microtubule binding by KNL-1 contributes to spindle checkpoint silencing at the kinetochore. J. Cell Biol. 196:469-482. http://dx.doi.org/10.1083/jcb.201111107
    • (2012) J. Cell Biol. , vol.196 , pp. 469-482
    • Espeut, J.1    Cheerambathur, D.K.2    Krenning, L.3    Oegema, K.4    Desai, A.5
  • 11
    • 64149100167 scopus 로고    scopus 로고
    • Systematic analysis in Caenorhabditis elegans reveals that the spindle checkpoint is composed of two largely independent branches
    • Essex, A., A. Dammermann, L. Lewellyn, K. Oegema, and A. Desai. 2009. Systematic analysis in Caenorhabditis elegans reveals that the spindle checkpoint is composed of two largely independent branches. Mol. Biol. Cell. 20:1252-1267. http://dx.doi.org/10.1091/mbc. E08-10-1047
    • (2009) Mol. Biol. Cell. , vol.20 , pp. 1252-1267
    • Essex, A.1    Dammermann, A.2    Lewellyn, L.3    Oegema, K.4    Desai, A.5
  • 13
    • 51149118049 scopus 로고    scopus 로고
    • A new mechanism controlling kinetochore-microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex
    • Gassmann, R., A. Essex, J.S. Hu, P.S. Maddox, F. Motegi, A. Sugimoto, S.M. O'Rourke, B. Bowerman, I. McLeod, J.R. Yates III, et al. 2008. A new mechanism controlling kinetochore-microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex. Genes Dev. 22:2385-2399. http://dx.doi.org/10.1101/gad.1687508
    • (2008) Genes Dev. , vol.22 , pp. 2385-2399
    • Gassmann, R.1    Essex, A.2    Hu, J.S.3    Maddox, P.S.4    Motegi, F.5    Sugimoto, A.6    O'Rourke, S.M.7    Bowerman, B.8    McLeod, I.9    Yates, J.R.10
  • 14
    • 77951875761 scopus 로고    scopus 로고
    • Removal of Spindly from microtubuleattached kinetochores controls spindle checkpoint silencing in human cells
    • Gassmann, R., A.J. Holland, D. Varma, X. Wan, F. Civril, D.W. Cleveland, K. Oegema, E.D. Salmon, and A. Desai. 2010. Removal of Spindly from microtubuleattached kinetochores controls spindle checkpoint silencing in human cells. Genes Dev. 24:957-971. http://dx.doi.org/10.1101/gad.1886810
    • (2010) Genes Dev. , vol.24 , pp. 957-971
    • Gassmann, R.1    Holland, A.J.2    Varma, D.3    Wan, X.4    Civril, F.5    Cleveland, D.W.6    Oegema, K.7    Salmon, E.D.8    Desai, A.9
  • 15
    • 1242307468 scopus 로고    scopus 로고
    • Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast
    • Gillett, E.S., C.W. Espelin, and P.K. Sorger. 2004. Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast. J. Cell Biol. 164:535-546. http://dx.doi.org/10.1083/jcb.200308100
    • (2004) J. Cell Biol. , vol.164 , pp. 535-546
    • Gillett, E.S.1    Espelin, C.W.2    Sorger, P.K.3
  • 16
    • 34250751295 scopus 로고    scopus 로고
    • Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore
    • Griffis, E.R., N. Stuurman, and R.D. Vale. 2007. Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore. J. Cell Biol. 177:1005-1015. http://dx.doi.org/10.1083/jcb.200702062
    • (2007) J. Cell Biol. , vol.177 , pp. 1005-1015
    • Griffis, E.R.1    Stuurman, N.2    Vale, R.D.3
  • 17
    • 0028842802 scopus 로고
    • Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast
    • Hardwick, K.G., and A.W. Murray. 1995. Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast. J. Cell Biol. 131:709-720. http://dx.doi.org/10.1083/jcb.131.3.709
    • (1995) J. Cell Biol. , vol.131 , pp. 709-720
    • Hardwick, K.G.1    Murray, A.W.2
  • 18
    • 0025941405 scopus 로고
    • S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function.
    • Hoyt, M.A., L. Totis, and B.T. Roberts. 1991. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell. 66:507-517. http://dx.doi.org/10.1016/0092-8674(81)90014-3
    • (1991) Cell. , vol.66 , pp. 507-517
    • Hoyt, M.A.1    Totis, L.2    Roberts, B.T.3
  • 19
    • 0037049550 scopus 로고    scopus 로고
    • The yeast nuclear pore complex functionally interacts with components of the spindle assembly checkpoint
    • Iouk, T., O. Kerscher, R.J. Scott, M.A. Basrai, and R.W. Wozniak. 2002. The yeast nuclear pore complex functionally interacts with components of the spindle assembly checkpoint. J. Cell Biol. 159:807-819. http://dx.doi.org/10.1083/jcb.200205068
    • (2002) J. Cell Biol. , vol.159 , pp. 807-819
    • Iouk, T.1    Kerscher, O.2    Scott, R.J.3    Basrai, M.A.4    Wozniak, R.W.5
  • 20
    • 2342439525 scopus 로고    scopus 로고
    • Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression
    • Johnson, V.L., M.I. Scott, S.V. Holt, D. Hussein, and S.S. Taylor. 2004. Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression. J. Cell Sci. 117:1577-1589. http://dx.doi.org/10.1242/jcs.01006
    • (2004) J. Cell Sci. , vol.117 , pp. 1577-1589
    • Johnson, V.L.1    Scott, M.I.2    Holt, S.V.3    Hussein, D.4    Taylor, S.S.5
  • 21
    • 55049093739 scopus 로고    scopus 로고
    • Structure and substrate recruitment of the human spindle checkpoint kinase Bub1
    • Kang, J., M. Yang, B. Li, W. Qi, C. Zhang, K.M. Shokat, D.R. Tomchick, M. Machius, and H. Yu. 2008. Structure and substrate recruitment of the human spindle checkpoint kinase Bub1. Mol. Cell. 32:394-405. http://dx.doi.org/10.1016/j.molcel.2008.09.017
    • (2008) Mol. Cell. , vol.32 , pp. 394-405
    • Kang, J.1    Yang, M.2    Li, B.3    Qi, W.4    Zhang, C.5    Shokat, K.M.6    Tomchick, D.R.7    Machius, M.8    Yu, H.9
  • 22
    • 84860178087 scopus 로고    scopus 로고
    • Structure of human Mad1 C-terminal domain reveals its involvement in kinetochore targeting
    • Kim, S., H. Sun, D.R. Tomchick, H. Yu, and X. Luo. 2012. Structure of human Mad1 C-terminal domain reveals its involvement in kinetochore targeting. Proc. Natl. Acad. Sci. USA. 109:6549-6554. http://dx.doi.org/10.1073/pnas.1118210109
    • (2012) Proc. Natl. Acad. Sci. USA. , vol.109 , pp. 6549-6554
    • Kim, S.1    Sun, H.2    Tomchick, D.R.3    Yu, H.4    Luo, X.5
  • 23
    • 0033257869 scopus 로고    scopus 로고
    • Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans
    • Kitagawa, R., and A.M. Rose. 1999. Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans. Nat. Cell Biol. 1:514-521. http://dx.doi.org/10.1038/70309
    • (1999) Nat. Cell Biol. , vol.1 , pp. 514-521
    • Kitagawa, R.1    Rose, A.M.2
  • 24
    • 66349124679 scopus 로고    scopus 로고
    • Bub1 regulates chromosome segregation in a kinetochore-independent manner
    • Klebig, C., D. Korinth, and P. Meraldi. 2009. Bub1 regulates chromosome segregation in a kinetochore-independent manner. J. Cell Biol. 185:841-858. http://dx.doi.org/10.1083/jcb.200902128
    • (2009) J. Cell Biol. , vol.185 , pp. 841-858
    • Klebig, C.1    Korinth, D.2    Meraldi, P.3
  • 26
    • 84891833727 scopus 로고    scopus 로고
    • KI motifs of human Knl1 enhance assembly of comprehensive spindle checkpoint complexes around MELT repeats
    • Krenn, V., K. Overlack, I. Primorac, S. van Gerwen, and A. Musacchio. 2014. KI motifs of human Knl1 enhance assembly of comprehensive spindle checkpoint complexes around MELT repeats. Curr. Biol. 24:29-39. http://dx.doi.org/10.1016/j.cub.2013.11.046
    • (2014) Curr. Biol. , vol.24 , pp. 29-39
    • Krenn, V.1    Overlack, K.2    Primorac, I.3    van Gerwen, S.4    Musacchio, A.5
  • 27
    • 84869417129 scopus 로고    scopus 로고
    • The spindle assembly checkpoint
    • Lara-Gonzalez, P., F.G. Westhorpe, and S.S. Taylor. 2012. The spindle assembly checkpoint. Curr. Biol. 22:R966-R980. http://dx.doi.org/10.1016/j.cub.2012.10.006
    • (2012) Curr. Biol. , vol.22
    • Lara-Gonzalez, P.1    Westhorpe, F.G.2    Taylor, S.S.3
  • 28
    • 84877804830 scopus 로고    scopus 로고
    • Direct binding of SAS-6 to ZYG-1 recruits SAS-6 to the mother centriole for cartwheel assembly
    • Lettman, M.M., Y.L. Wong, V. Viscardi, S. Niessen, S.H. Chen, A.K. Shiau, H. Zhou, A. Desai, and K. Oegema. 2013. Direct binding of SAS-6 to ZYG-1 recruits SAS-6 to the mother centriole for cartwheel assembly. Dev. Cell. 25:284-298. http://dx.doi.org/10.1016/j.devcel.2013.03.011
    • (2013) Dev. Cell. , vol.25 , pp. 284-298
    • Lettman, M.M.1    Wong, Y.L.2    Viscardi, V.3    Niessen, S.4    Chen, S.H.5    Shiau, A.K.6    Zhou, H.7    Desai, A.8    Oegema, K.9
  • 29
    • 0026009964 scopus 로고
    • Feedback control of mitosis in budding yeast
    • Li, R., and A.W. Murray. 1991. Feedback control of mitosis in budding yeast. Cell. 66:519-531. http://dx.doi.org/10.1016/0092-8674(81)90015-5
    • (1991) Cell. , vol.66 , pp. 519-531
    • Li, R.1    Murray, A.W.2
  • 30
    • 84861532305 scopus 로고    scopus 로고
    • Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores
    • London, N., S. Ceto, J.A. Ranish, and S. Biggins. 2012. Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores. Curr. Biol. 22:900-906. http://dx.doi.org/10.1016/j.cub.2012.03.052
    • (2012) Curr. Biol. , vol.22 , pp. 900-906
    • London, N.1    Ceto, S.2    Ranish, J.A.3    Biggins, S.4
  • 31
    • 55249120526 scopus 로고    scopus 로고
    • Protein metamorphosis: the two-state behavior of Mad2
    • Luo, X., and H. Yu. 2008. Protein metamorphosis: the two-state behavior of Mad2. Structure. 16:1616-1625. http://dx.doi.org/10.1016/j.str.2008.10.002
    • (2008) Structure. , vol.16 , pp. 1616-1625
    • Luo, X.1    Yu, H.2
  • 32
    • 36549050792 scopus 로고    scopus 로고
    • MAD contortions: conformational dimerization boosts spindle checkpoint signaling
    • Mapelli, M., and A. Musacchio. 2007. MAD contortions: conformational dimerization boosts spindle checkpoint signaling. Curr. Opin. Struct. Biol. 17:716-725. http://dx.doi.org/10.1016/j.sbi.2007.08.011
    • (2007) Curr. Opin. Struct. Biol. , vol.17 , pp. 716-725
    • Mapelli, M.1    Musacchio, A.2
  • 33
    • 0037183886 scopus 로고    scopus 로고
    • Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2
    • Martin-Lluesma, S., V.M. Stucke, and E.A. Nigg. 2002. Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science. 297:2267-2270. http://dx.doi.org/10.1126/science.1075596
    • (2002) Science. , vol.297 , pp. 2267-2270
    • Martin-Lluesma, S.1    Stucke, V.M.2    Nigg, E.A.3
  • 34
    • 34247333444 scopus 로고    scopus 로고
    • The spindle-assembly checkpoint in space and time
    • Musacchio, A., and E.D. Salmon. 2007. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8:379-393. http://dx.doi.org/10.1038/nrm2163
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 379-393
    • Musacchio, A.1    Salmon, E.D.2
  • 35
    • 77149171460 scopus 로고    scopus 로고
    • Sgo1 establishes the centromeric cohesion protection mechanism in G2 before subsequent Bub1-dependent recruitment in mitosis
    • Perera, D., and S.S. Taylor. 2010. Sgo1 establishes the centromeric cohesion protection mechanism in G2 before subsequent Bub1-dependent recruitment in mitosis. J. Cell Sci. 123:653-659. http://dx.doi.org/10.1242/jcs.059501
    • (2010) J. Cell Sci. , vol.123 , pp. 653-659
    • Perera, D.1    Taylor, S.S.2
  • 37
    • 84872043569 scopus 로고    scopus 로고
    • Bub1 kinase activity drives error correction and mitotic checkpoint control but not tumor suppression
    • Ricke, R.M., K.B. Jeganathan, L. Malureanu, A.M. Harrison, and J.M. van Deursen. 2012. Bub1 kinase activity drives error correction and mitotic checkpoint control but not tumor suppression. J. Cell Biol. 199:931-949. http://dx.doi.org/10.1083/jcb.201205115
    • (2012) J. Cell Biol. , vol.199 , pp. 931-949
    • Ricke, R.M.1    Jeganathan, K.B.2    Malureanu, L.3    Harrison, A.M.4    van Deursen, J.M.5
  • 38
    • 0028089758 scopus 로고
    • The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase
    • Roberts, B.T., K.A. Farr, and M.A. Hoyt. 1994. The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase. Mol. Cell. Biol. 14:8282-8291.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 8282-8291
    • Roberts, B.T.1    Farr, K.A.2    Hoyt, M.A.3
  • 39
    • 0035844878 scopus 로고    scopus 로고
    • Spindle checkpoint protein Bub1 is required for kinetochore localization of Mad1, Mad2, Bub3, and CENP-E, independently of its kinase activity
    • Sharp-Baker, H., and R.H. Chen. 2001. Spindle checkpoint protein Bub1 is required for kinetochore localization of Mad1, Mad2, Bub3, and CENP-E, independently of its kinase activity. J. Cell Biol. 153:1239-1250. http://dx.doi.org/10.1083/jcb.153.6.1239
    • (2001) J. Cell Biol. , vol.153 , pp. 1239-1250
    • Sharp-Baker, H.1    Chen, R.H.2
  • 41
    • 0037093326 scopus 로고    scopus 로고
    • Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a 'safety belt' binding mechanism for the spindle checkpoint
    • Sironi, L., M. Mapelli, S. Knapp, A. De Antoni, K.T. Jeang, and A. Musacchio. 2002. Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a 'safety belt' binding mechanism for the spindle checkpoint. EMBO J. 21:2496-2506. http://dx.doi.org/10.1093/emboj/21.10.2496
    • (2002) EMBO J. , vol.21 , pp. 2496-2506
    • Sironi, L.1    Mapelli, M.2    Knapp, S.3    De Antoni, A.4    Jeang, K.T.5    Musacchio, A.6
  • 42
    • 0030687987 scopus 로고    scopus 로고
    • Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage
    • Taylor, S.S., and F. McKeon. 1997. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell. 89:727-735. http://dx.doi.org/10.1016/S0092-8674(00)80255-X
    • (1997) Cell. , vol.89 , pp. 727-735
    • Taylor, S.S.1    McKeon, F.2
  • 43
    • 0031960691 scopus 로고    scopus 로고
    • Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism
    • Umezu, K., N. Sugawara, C. Chen, J.E. Haber, and R.D. Kolodner. 1998. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics. 148:989-1005.
    • (1998) Genetics. , vol.148 , pp. 989-1005
    • Umezu, K.1    Sugawara, N.2    Chen, C.3    Haber, J.E.4    Kolodner, R.D.5
  • 44
    • 84865072109 scopus 로고    scopus 로고
    • Evolution and function of the mitotic checkpoint
    • Vleugel, M., E. Hoogendoorn, B. Snel, and G.J. Kops. 2012. Evolution and function of the mitotic checkpoint. Dev. Cell. 23:239-250. http://dx.doi.org/10.1016/j.devcel.2012.06.013
    • (2012) Dev. Cell. , vol.23 , pp. 239-250
    • Vleugel, M.1    Hoogendoorn, E.2    Snel, B.3    Kops, G.J.4
  • 45
    • 84892710126 scopus 로고    scopus 로고
    • Arrayed BUB recruitment modules in the kinetochore scaffold KNL1 promote accurate chromosome segregation
    • Vleugel, M., E. Tromer, M. Omerzu, V. Groenewold, W. Nijenhuis, B. Snel, and G.J. Kops. 2013. Arrayed BUB recruitment modules in the kinetochore scaffold KNL1 promote accurate chromosome segregation. J. Cell Biol. 203:943-955. http://dx.doi.org/10.1083/jcb.201307016
    • (2013) J. Cell Biol. , vol.203 , pp. 943-955
    • Vleugel, M.1    Tromer, E.2    Omerzu, M.3    Groenewold, V.4    Nijenhuis, W.5    Snel, B.6    Kops, G.J.7
  • 47
    • 84863226706 scopus 로고    scopus 로고
    • MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components
    • Yamagishi, Y., C.H. Yang, Y. Tanno, and Y. Watanabe. 2012. MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat. Cell Biol. 14:746-752. http://dx.doi.org/10.1038/ncb2515
    • (2012) Nat. Cell Biol. , vol.14 , pp. 746-752
    • Yamagishi, Y.1    Yang, C.H.2    Tanno, Y.3    Watanabe, Y.4
  • 48
    • 55949113268 scopus 로고    scopus 로고
    • SPDL-1 functions as a kinetochore receptor for MDF-1 in Caenorhabditis elegans
    • Yamamoto, T.G., S. Watanabe, A. Essex, and R. Kitagawa. 2008. SPDL-1 functions as a kinetochore receptor for MDF-1 in Caenorhabditis elegans. J. Cell Biol. 183:187-194. http://dx.doi.org/10.1083/jcb.200805185
    • (2008) J. Cell Biol. , vol.183 , pp. 187-194
    • Yamamoto, T.G.1    Watanabe, S.2    Essex, A.3    Kitagawa, R.4
  • 49
    • 84894090345 scopus 로고    scopus 로고
    • A minimal number of MELT repeats supports all functions of KNL1 in chromosome segregation
    • In press
    • Zhang, G., T. Lischetti, and J. Nilsson. 2013. A minimal number of MELT repeats supports all functions of KNL1 in chromosome segregation. J. Cell Sci. In press. http://dx.doi.org/10.1242/jcs.139725
    • (2013) J. Cell Sci.
    • Zhang, G.1    Lischetti, T.2    Nilsson, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.