-
1
-
-
0034214405
-
Complex formation between Mad1p, Bub1p and Bub3p is crucial for spindle checkpoint function
-
Brady, D.M., and K.G. Hardwick. 2000. Complex formation between Mad1p, Bub1p and Bub3p is crucial for spindle checkpoint function. Curr. Biol. 10:675-678. http://dx.doi.org/10.1016/S0960-9822(00)00515-7
-
(2000)
Curr. Biol.
, vol.10
, pp. 675-678
-
-
Brady, D.M.1
Hardwick, K.G.2
-
2
-
-
18844449387
-
Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex
-
Buffin, E., C. Lefebvre, J. Huang, M.E. Gagou, and R.E. Karess. 2005. Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex. Curr. Biol. 15:856-861. http://dx.doi.org/10.1016/j.cub.2005.03.052
-
(2005)
Curr. Biol.
, vol.15
, pp. 856-886
-
-
Buffin, E.1
Lefebvre, C.2
Huang, J.3
Gagou, M.E.4
Karess, R.E.5
-
3
-
-
0035063690
-
Mitotic checkpoint proteins HsMAD1 and HsMAD2 are associated with nuclear pore complexes in interphase
-
Campbell, M.S., G.K. Chan, and T.J. Yen. 2001. Mitotic checkpoint proteins HsMAD1 and HsMAD2 are associated with nuclear pore complexes in interphase. J. Cell Sci. 114:953-963.
-
(2001)
J. Cell Sci.
, vol.114
, pp. 953-963
-
-
Campbell, M.S.1
Chan, G.K.2
Yen, T.J.3
-
4
-
-
80052849441
-
Acute drug treatment in the early C. elegans embryo.
-
Carvalho, A., S.K. Olson, E. Gutierrez, K. Zhang, L.B. Noble, E. Zanin, A. Desai, A. Groisman, and K. Oegema. 2011. Acute drug treatment in the early C. elegans embryo. PLoS ONE. 6:e24656. http://dx.doi.org/10.1371/journal.pone.0024656
-
(2011)
PLoS ONE.
, vol.6
-
-
Carvalho, A.1
Olson, S.K.2
Gutierrez, E.3
Zhang, K.4
Noble, L.B.5
Zanin, E.6
Desai, A.7
Groisman, A.8
Oegema, K.9
-
5
-
-
4444241998
-
A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension
-
Cheeseman, I.M., S. Niessen, S. Anderson, F. Hyndman, J.R. Yates III, K. Oegema, and A. Desai. 2004. A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev. 18:2255-2268. http://dx.doi.org/10.1101/gad.1234104
-
(2004)
Genes Dev.
, vol.18
, pp. 2255-2268
-
-
Cheeseman, I.M.1
Niessen, S.2
Anderson, S.3
Hyndman, F.4
Yates, J.R.5
Oegema, K.6
Desai, A.7
-
6
-
-
0032547733
-
Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores
-
Chen, R.H., A. Shevchenko, M. Mann, and A.W. Murray. 1998. Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J. Cell Biol. 143:283-295. http://dx.doi.org/10.1083/jcb.143.2.283
-
(1998)
J. Cell Biol.
, vol.143
, pp. 283-295
-
-
Chen, R.H.1
Shevchenko, A.2
Mann, M.3
Murray, A.W.4
-
7
-
-
0032776301
-
The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins
-
Chen, R.H., D.M. Brady, D. Smith, A.W. Murray, and K.G. Hardwick. 1999. The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins. Mol. Biol. Cell. 10:2607-2618. http://dx.doi.org/10.1091/mbc.10.8.2607
-
(1999)
Mol. Biol. Cell.
, vol.10
, pp. 2607-2618
-
-
Chen, R.H.1
Brady, D.M.2
Smith, D.3
Murray, A.W.4
Hardwick, K.G.5
-
8
-
-
0141818005
-
KNL-1 directs assembly of the microtubulebinding interface of the kinetochore in C
-
Desai, A., S. Rybina, T. Müller-Reichert, A. Shevchenko, A. Shevchenko, A. Hyman, and K. Oegema. 2003. KNL-1 directs assembly of the microtubulebinding interface of the kinetochore in C. elegans. Genes Dev. 17:2421-2435. http://dx.doi.org/10.1101/gad.1126303
-
(2003)
elegans. Genes Dev.
, vol.17
, pp. 2421-2435
-
-
Desai, A.1
Rybina, S.2
Müller-Reichert, T.3
Shevchenko, A.4
Shevchenko, A.5
Hyman, A.6
Oegema, K.7
-
9
-
-
77956403582
-
A kinetochore-independent mechanism drives anaphase chromosome separation during acentrosomal meiosis
-
Dumont, J., K. Oegema, and A. Desai. 2010. A kinetochore-independent mechanism drives anaphase chromosome separation during acentrosomal meiosis. Nat. Cell Biol. 12:894-901. http://dx.doi.org/10.1038/ncb2093
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 894-901
-
-
Dumont, J.1
Oegema, K.2
Desai, A.3
-
10
-
-
84859941751
-
Microtubule binding by KNL-1 contributes to spindle checkpoint silencing at the kinetochore
-
Espeut, J., D.K. Cheerambathur, L. Krenning, K. Oegema, and A. Desai. 2012. Microtubule binding by KNL-1 contributes to spindle checkpoint silencing at the kinetochore. J. Cell Biol. 196:469-482. http://dx.doi.org/10.1083/jcb.201111107
-
(2012)
J. Cell Biol.
, vol.196
, pp. 469-482
-
-
Espeut, J.1
Cheerambathur, D.K.2
Krenning, L.3
Oegema, K.4
Desai, A.5
-
11
-
-
64149100167
-
Systematic analysis in Caenorhabditis elegans reveals that the spindle checkpoint is composed of two largely independent branches
-
Essex, A., A. Dammermann, L. Lewellyn, K. Oegema, and A. Desai. 2009. Systematic analysis in Caenorhabditis elegans reveals that the spindle checkpoint is composed of two largely independent branches. Mol. Biol. Cell. 20:1252-1267. http://dx.doi.org/10.1091/mbc. E08-10-1047
-
(2009)
Mol. Biol. Cell.
, vol.20
, pp. 1252-1267
-
-
Essex, A.1
Dammermann, A.2
Lewellyn, L.3
Oegema, K.4
Desai, A.5
-
12
-
-
55049117864
-
Single-copy insertion of transgenes in Caenorhabditis elegans
-
Frøkjær-Jensen, C., M.W. Davis, C.E. Hopkins, B.J. Newman, J.M. Thummel, S.P. Olesen, M. Grunnet, and E.M. Jorgensen. 2008. Single-copy insertion of transgenes in Caenorhabditis elegans. Nat. Genet. 40:1375-1383. http://dx.doi.org/10.1038/ng.248
-
(2008)
Nat. Genet.
, vol.40
, pp. 1375-1383
-
-
Frøkjær-Jensen, C.1
Davis, M.W.2
Hopkins, C.E.3
Newman, B.J.4
Thummel, J.M.5
Olesen, S.P.6
Grunnet, M.7
Jorgensen, E.M.8
-
13
-
-
51149118049
-
A new mechanism controlling kinetochore-microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex
-
Gassmann, R., A. Essex, J.S. Hu, P.S. Maddox, F. Motegi, A. Sugimoto, S.M. O'Rourke, B. Bowerman, I. McLeod, J.R. Yates III, et al. 2008. A new mechanism controlling kinetochore-microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex. Genes Dev. 22:2385-2399. http://dx.doi.org/10.1101/gad.1687508
-
(2008)
Genes Dev.
, vol.22
, pp. 2385-2399
-
-
Gassmann, R.1
Essex, A.2
Hu, J.S.3
Maddox, P.S.4
Motegi, F.5
Sugimoto, A.6
O'Rourke, S.M.7
Bowerman, B.8
McLeod, I.9
Yates, J.R.10
-
14
-
-
77951875761
-
Removal of Spindly from microtubuleattached kinetochores controls spindle checkpoint silencing in human cells
-
Gassmann, R., A.J. Holland, D. Varma, X. Wan, F. Civril, D.W. Cleveland, K. Oegema, E.D. Salmon, and A. Desai. 2010. Removal of Spindly from microtubuleattached kinetochores controls spindle checkpoint silencing in human cells. Genes Dev. 24:957-971. http://dx.doi.org/10.1101/gad.1886810
-
(2010)
Genes Dev.
, vol.24
, pp. 957-971
-
-
Gassmann, R.1
Holland, A.J.2
Varma, D.3
Wan, X.4
Civril, F.5
Cleveland, D.W.6
Oegema, K.7
Salmon, E.D.8
Desai, A.9
-
15
-
-
1242307468
-
Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast
-
Gillett, E.S., C.W. Espelin, and P.K. Sorger. 2004. Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast. J. Cell Biol. 164:535-546. http://dx.doi.org/10.1083/jcb.200308100
-
(2004)
J. Cell Biol.
, vol.164
, pp. 535-546
-
-
Gillett, E.S.1
Espelin, C.W.2
Sorger, P.K.3
-
16
-
-
34250751295
-
Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore
-
Griffis, E.R., N. Stuurman, and R.D. Vale. 2007. Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore. J. Cell Biol. 177:1005-1015. http://dx.doi.org/10.1083/jcb.200702062
-
(2007)
J. Cell Biol.
, vol.177
, pp. 1005-1015
-
-
Griffis, E.R.1
Stuurman, N.2
Vale, R.D.3
-
17
-
-
0028842802
-
Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast
-
Hardwick, K.G., and A.W. Murray. 1995. Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast. J. Cell Biol. 131:709-720. http://dx.doi.org/10.1083/jcb.131.3.709
-
(1995)
J. Cell Biol.
, vol.131
, pp. 709-720
-
-
Hardwick, K.G.1
Murray, A.W.2
-
18
-
-
0025941405
-
S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function.
-
Hoyt, M.A., L. Totis, and B.T. Roberts. 1991. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell. 66:507-517. http://dx.doi.org/10.1016/0092-8674(81)90014-3
-
(1991)
Cell.
, vol.66
, pp. 507-517
-
-
Hoyt, M.A.1
Totis, L.2
Roberts, B.T.3
-
19
-
-
0037049550
-
The yeast nuclear pore complex functionally interacts with components of the spindle assembly checkpoint
-
Iouk, T., O. Kerscher, R.J. Scott, M.A. Basrai, and R.W. Wozniak. 2002. The yeast nuclear pore complex functionally interacts with components of the spindle assembly checkpoint. J. Cell Biol. 159:807-819. http://dx.doi.org/10.1083/jcb.200205068
-
(2002)
J. Cell Biol.
, vol.159
, pp. 807-819
-
-
Iouk, T.1
Kerscher, O.2
Scott, R.J.3
Basrai, M.A.4
Wozniak, R.W.5
-
20
-
-
2342439525
-
Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression
-
Johnson, V.L., M.I. Scott, S.V. Holt, D. Hussein, and S.S. Taylor. 2004. Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression. J. Cell Sci. 117:1577-1589. http://dx.doi.org/10.1242/jcs.01006
-
(2004)
J. Cell Sci.
, vol.117
, pp. 1577-1589
-
-
Johnson, V.L.1
Scott, M.I.2
Holt, S.V.3
Hussein, D.4
Taylor, S.S.5
-
21
-
-
55049093739
-
Structure and substrate recruitment of the human spindle checkpoint kinase Bub1
-
Kang, J., M. Yang, B. Li, W. Qi, C. Zhang, K.M. Shokat, D.R. Tomchick, M. Machius, and H. Yu. 2008. Structure and substrate recruitment of the human spindle checkpoint kinase Bub1. Mol. Cell. 32:394-405. http://dx.doi.org/10.1016/j.molcel.2008.09.017
-
(2008)
Mol. Cell.
, vol.32
, pp. 394-405
-
-
Kang, J.1
Yang, M.2
Li, B.3
Qi, W.4
Zhang, C.5
Shokat, K.M.6
Tomchick, D.R.7
Machius, M.8
Yu, H.9
-
22
-
-
84860178087
-
Structure of human Mad1 C-terminal domain reveals its involvement in kinetochore targeting
-
Kim, S., H. Sun, D.R. Tomchick, H. Yu, and X. Luo. 2012. Structure of human Mad1 C-terminal domain reveals its involvement in kinetochore targeting. Proc. Natl. Acad. Sci. USA. 109:6549-6554. http://dx.doi.org/10.1073/pnas.1118210109
-
(2012)
Proc. Natl. Acad. Sci. USA.
, vol.109
, pp. 6549-6554
-
-
Kim, S.1
Sun, H.2
Tomchick, D.R.3
Yu, H.4
Luo, X.5
-
23
-
-
0033257869
-
Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans
-
Kitagawa, R., and A.M. Rose. 1999. Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans. Nat. Cell Biol. 1:514-521. http://dx.doi.org/10.1038/70309
-
(1999)
Nat. Cell Biol.
, vol.1
, pp. 514-521
-
-
Kitagawa, R.1
Rose, A.M.2
-
24
-
-
66349124679
-
Bub1 regulates chromosome segregation in a kinetochore-independent manner
-
Klebig, C., D. Korinth, and P. Meraldi. 2009. Bub1 regulates chromosome segregation in a kinetochore-independent manner. J. Cell Biol. 185:841-858. http://dx.doi.org/10.1083/jcb.200902128
-
(2009)
J. Cell Biol.
, vol.185
, pp. 841-858
-
-
Klebig, C.1
Korinth, D.2
Meraldi, P.3
-
25
-
-
17644396387
-
ZW10 links mitotic checkpoint signaling to the structural kinetochore
-
Kops, G.J., Y. Kim, B.A. Weaver, Y. Mao, I. McLeod, J.R. Yates III, M. Tagaya, and D.W. Cleveland. 2005. ZW10 links mitotic checkpoint signaling to the structural kinetochore. J. Cell Biol. 169:49-60. http://dx.doi.org/10.1083/jcb.200411118
-
(2005)
J. Cell Biol.
, vol.169
, pp. 49-60
-
-
Kops, G.J.1
Kim, Y.2
Weaver, B.A.3
Mao, Y.4
McLeod, I.5
Yates, J.R.6
Tagaya, M.7
Cleveland, D.W.8
-
26
-
-
84891833727
-
KI motifs of human Knl1 enhance assembly of comprehensive spindle checkpoint complexes around MELT repeats
-
Krenn, V., K. Overlack, I. Primorac, S. van Gerwen, and A. Musacchio. 2014. KI motifs of human Knl1 enhance assembly of comprehensive spindle checkpoint complexes around MELT repeats. Curr. Biol. 24:29-39. http://dx.doi.org/10.1016/j.cub.2013.11.046
-
(2014)
Curr. Biol.
, vol.24
, pp. 29-39
-
-
Krenn, V.1
Overlack, K.2
Primorac, I.3
van Gerwen, S.4
Musacchio, A.5
-
28
-
-
84877804830
-
Direct binding of SAS-6 to ZYG-1 recruits SAS-6 to the mother centriole for cartwheel assembly
-
Lettman, M.M., Y.L. Wong, V. Viscardi, S. Niessen, S.H. Chen, A.K. Shiau, H. Zhou, A. Desai, and K. Oegema. 2013. Direct binding of SAS-6 to ZYG-1 recruits SAS-6 to the mother centriole for cartwheel assembly. Dev. Cell. 25:284-298. http://dx.doi.org/10.1016/j.devcel.2013.03.011
-
(2013)
Dev. Cell.
, vol.25
, pp. 284-298
-
-
Lettman, M.M.1
Wong, Y.L.2
Viscardi, V.3
Niessen, S.4
Chen, S.H.5
Shiau, A.K.6
Zhou, H.7
Desai, A.8
Oegema, K.9
-
29
-
-
0026009964
-
Feedback control of mitosis in budding yeast
-
Li, R., and A.W. Murray. 1991. Feedback control of mitosis in budding yeast. Cell. 66:519-531. http://dx.doi.org/10.1016/0092-8674(81)90015-5
-
(1991)
Cell.
, vol.66
, pp. 519-531
-
-
Li, R.1
Murray, A.W.2
-
30
-
-
84861532305
-
Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores
-
London, N., S. Ceto, J.A. Ranish, and S. Biggins. 2012. Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores. Curr. Biol. 22:900-906. http://dx.doi.org/10.1016/j.cub.2012.03.052
-
(2012)
Curr. Biol.
, vol.22
, pp. 900-906
-
-
London, N.1
Ceto, S.2
Ranish, J.A.3
Biggins, S.4
-
31
-
-
55249120526
-
Protein metamorphosis: the two-state behavior of Mad2
-
Luo, X., and H. Yu. 2008. Protein metamorphosis: the two-state behavior of Mad2. Structure. 16:1616-1625. http://dx.doi.org/10.1016/j.str.2008.10.002
-
(2008)
Structure.
, vol.16
, pp. 1616-1625
-
-
Luo, X.1
Yu, H.2
-
32
-
-
36549050792
-
MAD contortions: conformational dimerization boosts spindle checkpoint signaling
-
Mapelli, M., and A. Musacchio. 2007. MAD contortions: conformational dimerization boosts spindle checkpoint signaling. Curr. Opin. Struct. Biol. 17:716-725. http://dx.doi.org/10.1016/j.sbi.2007.08.011
-
(2007)
Curr. Opin. Struct. Biol.
, vol.17
, pp. 716-725
-
-
Mapelli, M.1
Musacchio, A.2
-
33
-
-
0037183886
-
Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2
-
Martin-Lluesma, S., V.M. Stucke, and E.A. Nigg. 2002. Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science. 297:2267-2270. http://dx.doi.org/10.1126/science.1075596
-
(2002)
Science.
, vol.297
, pp. 2267-2270
-
-
Martin-Lluesma, S.1
Stucke, V.M.2
Nigg, E.A.3
-
34
-
-
34247333444
-
The spindle-assembly checkpoint in space and time
-
Musacchio, A., and E.D. Salmon. 2007. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8:379-393. http://dx.doi.org/10.1038/nrm2163
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 379-393
-
-
Musacchio, A.1
Salmon, E.D.2
-
35
-
-
77149171460
-
Sgo1 establishes the centromeric cohesion protection mechanism in G2 before subsequent Bub1-dependent recruitment in mitosis
-
Perera, D., and S.S. Taylor. 2010. Sgo1 establishes the centromeric cohesion protection mechanism in G2 before subsequent Bub1-dependent recruitment in mitosis. J. Cell Sci. 123:653-659. http://dx.doi.org/10.1242/jcs.059501
-
(2010)
J. Cell Sci.
, vol.123
, pp. 653-659
-
-
Perera, D.1
Taylor, S.S.2
-
36
-
-
84884683570
-
Bub3 reads phosphorylated MELT repeats to promote spindle assembly checkpoint signaling
-
Primorac, I., J.R. Weir, E. Chiroli, F. Gross, I. Hoffmann, S. van Gerwen, A. Ciliberto, and A. Musacchio. 2013. Bub3 reads phosphorylated MELT repeats to promote spindle assembly checkpoint signaling. Elife. 2: e01030. http://dx.doi.org/10.7554/eLife.01030
-
(2013)
Elife.
, vol.2
-
-
Primorac, I.1
Weir, J.R.2
Chiroli, E.3
Gross, F.4
Hoffmann, I.5
van Gerwen, S.6
Ciliberto, A.7
Musacchio, A.8
-
37
-
-
84872043569
-
Bub1 kinase activity drives error correction and mitotic checkpoint control but not tumor suppression
-
Ricke, R.M., K.B. Jeganathan, L. Malureanu, A.M. Harrison, and J.M. van Deursen. 2012. Bub1 kinase activity drives error correction and mitotic checkpoint control but not tumor suppression. J. Cell Biol. 199:931-949. http://dx.doi.org/10.1083/jcb.201205115
-
(2012)
J. Cell Biol.
, vol.199
, pp. 931-949
-
-
Ricke, R.M.1
Jeganathan, K.B.2
Malureanu, L.3
Harrison, A.M.4
van Deursen, J.M.5
-
38
-
-
0028089758
-
The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase
-
Roberts, B.T., K.A. Farr, and M.A. Hoyt. 1994. The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase. Mol. Cell. Biol. 14:8282-8291.
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 8282-8291
-
-
Roberts, B.T.1
Farr, K.A.2
Hoyt, M.A.3
-
39
-
-
0035844878
-
Spindle checkpoint protein Bub1 is required for kinetochore localization of Mad1, Mad2, Bub3, and CENP-E, independently of its kinase activity
-
Sharp-Baker, H., and R.H. Chen. 2001. Spindle checkpoint protein Bub1 is required for kinetochore localization of Mad1, Mad2, Bub3, and CENP-E, independently of its kinase activity. J. Cell Biol. 153:1239-1250. http://dx.doi.org/10.1083/jcb.153.6.1239
-
(2001)
J. Cell Biol.
, vol.153
, pp. 1239-1250
-
-
Sharp-Baker, H.1
Chen, R.H.2
-
40
-
-
84861526045
-
Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint
-
Shepperd, L.A., J.C. Meadows, A.M. Sochaj, T.C. Lancaster, J. Zou, G.J. Buttrick, J. Rappsilber, K.G. Hardwick, and J.B. Millar. 2012. Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Curr. Biol. 22:891-899. http://dx.doi.org/10.1016/j.cub.2012.03.051
-
(2012)
Curr. Biol.
, vol.22
, pp. 891-899
-
-
Shepperd, L.A.1
Meadows, J.C.2
Sochaj, A.M.3
Lancaster, T.C.4
Zou, J.5
Buttrick, G.J.6
Rappsilber, J.7
Hardwick, K.G.8
Millar, J.B.9
-
41
-
-
0037093326
-
Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a 'safety belt' binding mechanism for the spindle checkpoint
-
Sironi, L., M. Mapelli, S. Knapp, A. De Antoni, K.T. Jeang, and A. Musacchio. 2002. Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a 'safety belt' binding mechanism for the spindle checkpoint. EMBO J. 21:2496-2506. http://dx.doi.org/10.1093/emboj/21.10.2496
-
(2002)
EMBO J.
, vol.21
, pp. 2496-2506
-
-
Sironi, L.1
Mapelli, M.2
Knapp, S.3
De Antoni, A.4
Jeang, K.T.5
Musacchio, A.6
-
42
-
-
0030687987
-
Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage
-
Taylor, S.S., and F. McKeon. 1997. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell. 89:727-735. http://dx.doi.org/10.1016/S0092-8674(00)80255-X
-
(1997)
Cell.
, vol.89
, pp. 727-735
-
-
Taylor, S.S.1
McKeon, F.2
-
43
-
-
0031960691
-
Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism
-
Umezu, K., N. Sugawara, C. Chen, J.E. Haber, and R.D. Kolodner. 1998. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics. 148:989-1005.
-
(1998)
Genetics.
, vol.148
, pp. 989-1005
-
-
Umezu, K.1
Sugawara, N.2
Chen, C.3
Haber, J.E.4
Kolodner, R.D.5
-
44
-
-
84865072109
-
Evolution and function of the mitotic checkpoint
-
Vleugel, M., E. Hoogendoorn, B. Snel, and G.J. Kops. 2012. Evolution and function of the mitotic checkpoint. Dev. Cell. 23:239-250. http://dx.doi.org/10.1016/j.devcel.2012.06.013
-
(2012)
Dev. Cell.
, vol.23
, pp. 239-250
-
-
Vleugel, M.1
Hoogendoorn, E.2
Snel, B.3
Kops, G.J.4
-
45
-
-
84892710126
-
Arrayed BUB recruitment modules in the kinetochore scaffold KNL1 promote accurate chromosome segregation
-
Vleugel, M., E. Tromer, M. Omerzu, V. Groenewold, W. Nijenhuis, B. Snel, and G.J. Kops. 2013. Arrayed BUB recruitment modules in the kinetochore scaffold KNL1 promote accurate chromosome segregation. J. Cell Biol. 203:943-955. http://dx.doi.org/10.1083/jcb.201307016
-
(2013)
J. Cell Biol.
, vol.203
, pp. 943-955
-
-
Vleugel, M.1
Tromer, E.2
Omerzu, M.3
Groenewold, V.4
Nijenhuis, W.5
Snel, B.6
Kops, G.J.7
-
46
-
-
0036732884
-
Distinct chromosome segregation roles for spindle checkpoint proteins
-
Warren, C.D., D.M. Brady, R.C. Johnston, J.S. Hanna, K.G. Hardwick, and F.A. Spencer. 2002. Distinct chromosome segregation roles for spindle checkpoint proteins. Mol. Biol. Cell. 13:3029-3041. http://dx.doi.org/10.1091/mbc. E02-04-0203
-
(2002)
Mol. Biol. Cell.
, vol.13
, pp. 3029-3041
-
-
Warren, C.D.1
Brady, D.M.2
Johnston, R.C.3
Hanna, J.S.4
Hardwick, K.G.5
Spencer, F.A.6
-
47
-
-
84863226706
-
MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components
-
Yamagishi, Y., C.H. Yang, Y. Tanno, and Y. Watanabe. 2012. MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat. Cell Biol. 14:746-752. http://dx.doi.org/10.1038/ncb2515
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 746-752
-
-
Yamagishi, Y.1
Yang, C.H.2
Tanno, Y.3
Watanabe, Y.4
-
48
-
-
55949113268
-
SPDL-1 functions as a kinetochore receptor for MDF-1 in Caenorhabditis elegans
-
Yamamoto, T.G., S. Watanabe, A. Essex, and R. Kitagawa. 2008. SPDL-1 functions as a kinetochore receptor for MDF-1 in Caenorhabditis elegans. J. Cell Biol. 183:187-194. http://dx.doi.org/10.1083/jcb.200805185
-
(2008)
J. Cell Biol.
, vol.183
, pp. 187-194
-
-
Yamamoto, T.G.1
Watanabe, S.2
Essex, A.3
Kitagawa, R.4
-
49
-
-
84894090345
-
A minimal number of MELT repeats supports all functions of KNL1 in chromosome segregation
-
In press
-
Zhang, G., T. Lischetti, and J. Nilsson. 2013. A minimal number of MELT repeats supports all functions of KNL1 in chromosome segregation. J. Cell Sci. In press. http://dx.doi.org/10.1242/jcs.139725
-
(2013)
J. Cell Sci.
-
-
Zhang, G.1
Lischetti, T.2
Nilsson, J.3
|