메뉴 건너뛰기




Volumn , Issue , 2015, Pages 473-494

Deep and modular neural networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX NETWORKS; DEEP LEARNING; EDUCATION; LEARNING ALGORITHMS; LEARNING SYSTEMS; MOTIVATION; NETWORK ARCHITECTURE; NEURAL NETWORKS; PATTERN RECOGNITION; PROBLEM SOLVING;

EID: 84944583733     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-3-662-43505-2     Document Type: Chapter
Times cited : (18)

References (91)
  • 4
    • 33750974061 scopus 로고    scopus 로고
    • Ph.D. Thesis (School of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg
    • F. Azam: Biologically inspired modular neural networks, Ph.D. Thesis (School of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg 2000)
    • (2000) Biologically Inspired Modular Neural Networks
    • Azam, F.1
  • 5
    • 0033110487 scopus 로고    scopus 로고
    • Modular neural networks: A survey
    • G. Auda, M. Kamel: Modular neural networks: A survey, Int. J. Neural Syst. 9(2), 129-151 (1999)
    • (1999) Int. J. Neural Syst , vol.9 , Issue.2 , pp. 129-151
    • Auda, G.1    Kamel, M.2
  • 6
    • 0026509547 scopus 로고
    • Information processing in the primate visual system
    • D.C. Van Essen, C.H. Anderson, D.J. Fellman: Information processing in the primate visual system, Science 255, 419-423 (1992)
    • (1992) Science , vol.255 , pp. 419-423
    • Van Essen, D.C.1    Anderson, C.H.2    Fellman, D.J.3
  • 7
    • 0024845028 scopus 로고
    • Why does the brain have so many visual areas
    • J.H. Kaas: Why does the brain have so many visual areas?, J. Cogn. Neurosci. 1(2), 121-135 (1989)
    • (1989) J. Cogn. Neurosci , vol.1 , Issue.2 , pp. 121-135
    • Kaas, J.H.1
  • 8
    • 0031060119 scopus 로고    scopus 로고
    • Biologically plausible neural computation
    • G. Bugmann: Biologically plausible neural computation, Biosystems 40(1), 11-19 (1997)
    • (1997) Biosystems , vol.40 , Issue.1 , pp. 11-19
    • Bugmann, G.1
  • 11
    • 0022471098 scopus 로고
    • Learning internal representations by error propagation
    • D.E. Rumelhurt, G.E. Hinton, R.J. Williams: Learning internal representations by error propagation, Nature 323, 533-536 (1986)
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhurt, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 12
    • 0032203257 scopus 로고    scopus 로고
    • Gradient based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, P. Haffner: Gradient based learning applied to document recognition, Proc. IEEE 86(9), 2278-2324 (1998)
    • (1998) Proc. IEEE , vol.86 , Issue.9 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 13
    • 0001046225 scopus 로고
    • Practical issues in temporal difference learning
    • G. Tesauro: Practical issues in temporal difference learning, Mach. Learn. 8(2), 257-277 (1992)
    • (1992) Mach. Learn , vol.8 , Issue.2 , pp. 257-277
    • Tesauro, G.1
  • 14
    • 0024861871 scopus 로고
    • Approximations by superpositions of sigmoidal functions
    • G. Cybenko: Approximations by superpositions of sigmoidal functions, Math. Control Signals Syst. 2(4), 302-314 (1989)
    • (1989) Math. Control Signals Syst , vol.2 , Issue.4 , pp. 302-314
    • Cybenko, G.1
  • 16
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towards ai
    • L. Bottou, O. Chapelle, D. DeCoste, J. Weston (MIT Press, Cambridge, Chap
    • Y. Bengio, Y. LeCun: Scaling learning algorithms towards AI. In: Large-Scale Kernel Machines, ed. by L. Bottou, O. Chapelle, D. DeCoste, J. Weston (MIT Press, Cambridge 2006), Chap. 14
    • (2006) Large-Scale Kernel Machines , pp. 14
    • Bengio, Y.1    LeCun, Y.2
  • 17
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for ai
    • Y. Bengio: Learning deep architectures for AI, Found. Trends Mach. Learn. 2(1), 1-127 (2009)
    • (2009) Found. Trends Mach. Learn , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 18
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G.E. Hinton, S. Osindero, Y. Teh: A fast learning algorithm for deep belief nets, Neural Comput. 18(9), 1527-1554 (2006)
    • (2006) Neural Comput , vol.18 , Issue.9 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 19
    • 84872343315 scopus 로고    scopus 로고
    • Deep learning of representations for unsupervised and transfer learning
    • Y. Bengio: Deep learning of representations for unsupervised and transfer learning, JMLR: Workshop Conf. Proc., Vol. 7 (2011) pp. 1-20
    • (2011) JMLR: Workshop Conf. Proc , vol.7 , pp. 1-20
    • Bengio, Y.1
  • 23
    • 80053619156 scopus 로고    scopus 로고
    • Deep learning regularized fisher mappings
    • W.K. Wong, M. Sun: Deep learning regularized Fisher mappings, IEEE Trans. Neural Netw. 22(10), 1668-1675 (2011)
    • (2011) IEEE Trans. Neural Netw , vol.22 , Issue.10 , pp. 1668-1675
    • Wong, W.K.1    Sun, M.2
  • 24
    • 85161976678 scopus 로고    scopus 로고
    • Modeling image patches with a directed hierarchy of markov random field
    • S. Osindero, G.E. Hinton: Modeling image patches with a directed hierarchy of Markov random field, Adv. Neural Inf. Process. Syst. (NIPS) (2007) pp. 1121-1128
    • (2007) Adv. Neural Inf. Process. Syst. (NIPS) , pp. 1121-1128
    • Osindero, S.1    Hinton, G.E.2
  • 27
    • 84863380535 scopus 로고    scopus 로고
    • Unsupervised feature learning for audio classification using con-volutional deep belief networks
    • H. Lee, Y. Largman, P. Pham, A. Ng: Unsupervised feature learning for audio classification using con-volutional deep belief networks, Adv. Neural Inf. Process. Syst. (NIPS) (2009)
    • (2009) Adv. Neural Inf. Process. Syst. (NIPS)
    • Lee, H.1    Largman, Y.2    Pham, P.3    Ng, A.4
  • 28
    • 80455143732 scopus 로고    scopus 로고
    • Learning speaker-specific characteristics with a deep neural architecture
    • K. Chen, A. Salman: Learning speaker-specific characteristics with a deep neural architecture, IEEE Trans. Neural Netw. 22(11), 1744-1756 (2011)
    • (2011) IEEE Trans. Neural Netw , vol.22 , Issue.11 , pp. 1744-1756
    • Chen, K.1    Salman, A.2
  • 29
    • 85162511851 scopus 로고    scopus 로고
    • Extracting speaker-specific information with a regularized siamese deep network
    • K. Chen, A. Salman: Extracting speaker-specific information with a regularized Siamese deep network, Adv. Neural Inf. Process. Syst. (NIPS) (2011)
    • (2011) Adv. Neural Inf. Process. Syst. (NIPS)
    • Chen, K.1    Salman, A.2
  • 31
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
    • G.E. Dahl, D. Yu, L. Deng, A. Acero: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition, IEEE Trans. Audio Speech Lang. Process. 20(1), 30-42 (2012)
    • (2012) IEEE Trans. Audio Speech Lang. Process , vol.20 , Issue.1 , pp. 30-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 33
    • 56449123056 scopus 로고    scopus 로고
    • Semi-supervised learning of compact document representations with deep networks
    • M. Ranzato, M. Szummer: Semi-supervised learning of compact document representations with deep networks, Proc. Int. Conf. Mach. Learn. (ICML) (2008)
    • (2008) Proc. Int. Conf. Mach. Learn. (ICML)
    • Ranzato, M.1    Szummer, M.2
  • 35
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • R. Collobert, J. Weston: A unified architecture for natural language processing: Deep neural networks with multitask learning, Proc. Int. Conf. Mach. Learn. (ICML) (2008)
    • (2008) Proc. Int. Conf. Mach. Learn. (ICML)
    • Collobert, R.1    Weston, J.2
  • 41
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.A. Manzagol: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, J. Mach. Learn. Res. 11, 3371-3408 (2010)
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 42
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by min-imizing contrastive divergence
    • G.E. Hinton: Training products of experts by min-imizing contrastive divergence, Neural Comput. 14(10), 1771-1800 (2002)
    • (2002) Neural Comput , vol.14 , Issue.10 , pp. 1771-1800
    • Hinton, G.E.1
  • 43
    • 70049083257 scopus 로고    scopus 로고
    • Fast inference in sparse coding algorithms with applications to object recognition
    • K. Kavukcuoglu, M. Ranzato, Y. LeCun: Fast inference in sparse coding algorithms with applications to object recognition. CoRR, arXiv:(2010)
    • (2010) Corr, Arxiv
    • Kavukcuoglu, K.1    Ranzato, M.2    LeCun, Y.3
  • 44
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1?
    • B.A. Olshausen, D.J. Field: Sparse coding with an overcomplete basis set: A strategy employed by V1?, Vis. Res. 37, 3311-3325 (1997)
    • (1997) Vis. Res , vol.37 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 49
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G.E. Hinton, R. Salakhutdinov: Reducing the dimensionality of data with neural networks, Science 313, 504-507 (2006)
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 56
    • 80053540444 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical representations with convolutional deep belief networks
    • H. Lee, R. Grosse, R. Ranganath, A.Y. Ng: Unsupervised learning of hierarchical representations with convolutional deep belief networks, Commun. ACM 54(10), 95-103 (2011)
    • (2011) Commun. ACM , vol.54 , Issue.10 , pp. 95-103
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 57
    • 85007207023 scopus 로고    scopus 로고
    • Exploring hierarchical speech representations with a deep convolutional neural network
    • D. Hau, K. Chen: Exploring hierarchical speech representations with a deep convolutional neural network, Proc. U.K. Workshop Comput. Intell. (UKCI) (2011)
    • (2011) Proc. U.K. Workshop Comput. Intell. (UKCI)
    • Hau, D.1    Chen, K.2
  • 64
    • 0000262562 scopus 로고
    • Hierarchical mixture of experts and the em algorithm
    • M.I. Jordan, R.A. Jacobs: Hierarchical mixture of experts and the EM algorithm, Neural Comput. 6(2), 181-214 (1994)
    • (1994) Neural Comput , vol.6 , Issue.2 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 65
    • 0033280266 scopus 로고    scopus 로고
    • Simultaneous training of negatively correlated neural networks in an ensemble
    • Y. Liu, X. Yao: Simultaneous training of negatively correlated neural networks in an ensemble, IEEE Trans. Syst. Man Cybern. B 29(6), 716-725 (1999)
    • (1999) IEEE Trans. Syst. Man Cybern. B , vol.29 , Issue.6 , pp. 716-725
    • Liu, Y.1    Yao, X.2
  • 66
    • 0032876594 scopus 로고    scopus 로고
    • Improved learning algorithms for mixture of experts in multi-class classification
    • K. Chen, L. Xu, H.S. Chi: Improved learning algorithms for mixture of experts in multi-class classification, Neural Netw. 12(9), 1229-1252 (1999)
    • (1999) Neural Netw , vol.12 , Issue.9 , pp. 1229-1252
    • Chen, K.1    Xu, L.2    Chi, H.S.3
  • 68
    • 0000926506 scopus 로고
    • Ensemble methods for hybrid neural networks
    • R.J. Mammone (Chapman-Hall, New York
    • M.P. Perrone, L.N. Cooper: Ensemble methods for hybrid neural networks. In: Artificial Neural Networks for Speech and Vision, ed. by R.J. Mammone (Chapman-Hall, New York 1993) pp. 126-142
    • (1993) Artificial Neural Networks for Speech and Vision , pp. 126-142
    • Perrone, M.P.1    Cooper, L.N.2
  • 69
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • T.K. Ho: The random subspace method for constructing decision forests, IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 823-844 (1998)
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell , vol.20 , Issue.8 , pp. 823-844
    • Ho, T.K.1
  • 70
    • 0000291808 scopus 로고    scopus 로고
    • Methods of combining multiple classifiers with different feature sets and their applications to text-independent speaker identification
    • K. Chen, L. Wang, H.S. Chi: Methods of combining multiple classifiers with different feature sets and their applications to text-independent speaker identification, Int. J. Pattern Recogn. Ar-tif. Intell. 11(3), 417-445 (1997)
    • (1997) Int. J. Pattern Recogn. Ar-Tif. Intell , vol.11 , Issue.3 , pp. 417-445
    • Chen, K.1    Wang, L.2    Chi, H.S.3
  • 72
    • 0026692226 scopus 로고
    • Stacked generalization
    • D.H. Wolpert: Stacked generalization, Neural Netw. 2(3), 241-259 (1992)
    • (1992) Neural Netw , vol.2 , Issue.3 , pp. 241-259
    • Wolpert, D.H.1
  • 74
    • 0005907330 scopus 로고
    • Associative switch for combining multiple classifiers
    • L. Xu, A. Krzyzak, C.Y. Suen: Associative switch for combining multiple classifiers, J. Artif. Neural Netw. 1(1), 77-100 (1994)
    • (1994) J. Artif. Neural Netw , vol.1 , Issue.1 , pp. 77-100
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 75
    • 0032066455 scopus 로고    scopus 로고
    • A connectionist method for pattern classification with diverse feature sets
    • K. Chen: A connectionist method for pattern classification with diverse feature sets, Pattern Recogn. Lett. 19(7), 545-558 (1998)
    • (1998) Pattern Recogn. Lett , vol.19 , Issue.7 , pp. 545-558
    • Chen, K.1
  • 76
    • 0032584920 scopus 로고    scopus 로고
    • A method of combining multiple probabilistic classifiers through soft competition on different feature sets
    • K. Chen, H.S. Chi: A method of combining multiple probabilistic classifiers through soft competition on different feature sets, Neurocomputing 20(1-3), 227-252 (1998)
    • (1998) Neurocomputing , vol.20 , Issue.1-3 , pp. 227-252
    • Chen, K.1    Chi, H.S.2
  • 77
    • 23944498183 scopus 로고    scopus 로고
    • On the use of different representations for speaker modeling
    • K. Chen: On the use of different representations for speaker modeling, IEEE Trans. Syst. Man Cybern. C 35(3), 328-346 (2005)
    • (2005) IEEE Trans. Syst. Man Cybern. C , vol.35 , Issue.3 , pp. 328-346
    • Chen, K.1
  • 78
    • 78650558761 scopus 로고    scopus 로고
    • Temporal data clustering via weighted clustering ensemble with different representations
    • Y. Yang, K. Chen: Temporal data clustering via weighted clustering ensemble with different representations, IEEE Trans. Knowl. Data Eng. 23(2), 307-320 (2011)
    • (2011) IEEE Trans. Knowl. Data Eng , vol.23 , Issue.2 , pp. 307-320
    • Yang, Y.1    Chen, K.2
  • 79
    • 79951956050 scopus 로고    scopus 로고
    • Time series clustering via rpcl ensemble networks with different representations
    • Y. Yang, K. Chen: Time series clustering via RPCL ensemble networks with different representations, IEEE Trans. Syst. Man Cybern. C 41(2), 190-199 (2011)
    • (2011) IEEE Trans. Syst. Man Cybern. C , vol.41 , Issue.2 , pp. 190-199
    • Yang, Y.1    Chen, K.2
  • 80
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwriting recognition
    • L. Xu, A. Krzyzak, C.Y. Suen: Methods of combining multiple classifiers and their applications to handwriting recognition, IEEE Trans. Syst. Man Cybern. 22(3), 418-435 (1992)
    • (1992) IEEE Trans. Syst. Man Cybern , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 81
    • 0031515598 scopus 로고    scopus 로고
    • Combining linear discriminant functions with neural networks for supervised learning
    • K. Chen, X. Yu, H.S. Chi: Combining linear discriminant functions with neural networks for supervised learning, Neural Comput. Appl. 6(1), 19-41 (1997)
    • (1997) Neural Comput. Appl , vol.6 , Issue.1 , pp. 19-41
    • Chen, K.1    Yu, X.2    Chi, H.S.3
  • 82
    • 0031194887 scopus 로고    scopus 로고
    • A self-generating modular neural network architecture for supervised learning
    • K. Chen, L.P. Yang, X. Yu, H.S. Chi: A self-generating modular neural network architecture for supervised learning, Neurocomputing 16(1), 33-48 (1997)
    • (1997) Neurocomputing , vol.16 , Issue.1 , pp. 33-48
    • Chen, K.1    Yang, L.P.2    Yu, X.3    Chi, H.S.4
  • 83
    • 0032594843 scopus 로고    scopus 로고
    • Task decomposition and module combination based on class relations: A modular neural network for pattern classification
    • B.L. Lu, M. Ito: Task decomposition and module combination based on class relations: A modular neural network for pattern classification, IEEE Trans. Neural Netw. Learn. Syst. 10(5), 1244-1256 (1999)
    • (1999) IEEE Trans. Neural Netw. Learn. Syst , vol.10 , Issue.5 , pp. 1244-1256
    • Lu, B.L.1    Ito, M.2
  • 84
    • 0037381038 scopus 로고    scopus 로고
    • Support vector machines experts for time series forecasting
    • L. Cao: Support vector machines experts for time series forecasting, Neurocomputing 51(3), 321-339 (2003)
    • (2003) Neurocomputing , vol.51 , Issue.3 , pp. 321-339
    • Cao, L.1
  • 87
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman: Bagging predictors, Mach. Learn. 24(2), 123-140 (1996)
    • (1996) Mach. Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 88
    • 0034243471 scopus 로고    scopus 로고
    • Boosting neural networks
    • H. Schwenk, Y. Bengio: Boosting neural networks, Neural Comput. 12(8), 1869-1887 (2000)
    • (2000) Neural Comput , vol.12 , Issue.8 , pp. 1869-1887
    • Schwenk, H.1    Bengio, Y.2
  • 90
    • 33745456231 scopus 로고    scopus 로고
    • Technical Report, School of Computer Science (University of Wisconsin, Madison
    • X.J. Zhu: Semi-supervised learning literature survey, Technical Report, School of Computer Science (University of Wisconsin, Madison 2008)
    • (2008) Semi-Supervised Learning Literature Survey
    • Zhu, X.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.