메뉴 건너뛰기




Volumn 22, Issue 10, 2011, Pages 1668-1675

Deep learning regularized fisher mappings

Author keywords

Deep learning architecture; feature extraction; Fisher criterion; regularization

Indexed keywords

CLASS SEPARABILITY; CLASSIFICATION TASKS; DATA SETS; DEEP LEARNING; DISCRIMINATIVE ABILITY; FEATURE EXTRACTION METHODS; FEATURE EXTRACTOR; FEATURE SPACE; FISHER CRITERION; FLEXIBLE MODEL; KERNEL METHODS; LEARNING ARCHITECTURES; LEARNING PROCEDURES; NONLOCAL; OVERFITTING; REGULARIZATION; SAMPLE SPACE; SIDE EFFECT;

EID: 80053619156     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2011.2162429     Document Type: Article
Times cited : (41)

References (37)
  • 1
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • Oct.
    • G. Baudat and F. Anouar, "Generalized discriminant analysis using a kernel approach," Neural Comput., vol. 12, no. 10, pp. 2385-2404, Oct. 2000.
    • (2000) Neural Comput. , vol.12 , Issue.10 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 2
    • 0037276932 scopus 로고    scopus 로고
    • Face recognition using kernel direct discriminant analysis algorithms
    • Jan.
    • J. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, "Face recognition using kernel direct discriminant analysis algorithms," IEEE Trans. Neural Netw., vol. 14, no. 1, pp. 117-126, Jan. 2003.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.1 , pp. 117-126
    • Lu, J.1    Plataniotis, K.N.2    Venetsanopoulos, A.N.3
  • 4
    • 33749246584 scopus 로고    scopus 로고
    • Optimal kernel selection in kernel Fisher discriminant analysis
    • S.-J. Kim, A. Magnani, and S. Boyd, "Optimal kernel selection in kernel Fisher discriminant analysis," in Proc. 23rd Int. Conf. Mach. Learn., 2006, pp. 465-472.
    • (2006) Proc. 23rd Int. Conf. Mach. Learn. , pp. 465-472
    • Kim, S.-J.1    Magnani, A.2    Boyd, S.3
  • 5
    • 44649123652 scopus 로고    scopus 로고
    • Multiclass discriminant kernel learning via convex programming
    • Apr.
    • J. Ye and J. Chen, "Multiclass discriminant kernel learning via convex programming," J. Mach. Learn. Res., vol. 9, pp. 719-758, Apr. 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 719-758
    • Ye, J.1    Chen, J.2
  • 6
    • 34547099832 scopus 로고    scopus 로고
    • Choosing parameters of kernel subspace LDA for recognition of face images under pose and illumination variations
    • DOI 10.1109/TSMCB.2007.895328
    • J. Huang, P. C. Yuen, W.-S. Chen, and J. H. Lai, "Choosing parameters of kernel subspace LDA for recognition of face images under pose and illumination variations," IEEE Trans. Syst., Man, Cybern., Part B: Cybern., vol. 37, no. 4, pp. 847-862, Aug. 2007. (Pubitemid 47103937)
    • (2007) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.37 , Issue.4 , pp. 847-862
    • Huang, J.1    Yuen, P.C.2    Chen, W.-S.3    Lai, J.H.4
  • 7
    • 67649378823 scopus 로고    scopus 로고
    • Sparse Bayesian modeling with adaptive kernel learning
    • Jun.
    • D. G. Tzikas, A. C. Likas, and N. P. Galatsanos, "Sparse Bayesian modeling with adaptive kernel learning," IEEE Trans. Neural Netw., vol. 20, no. 6, pp. 926-37, Jun. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.6 , pp. 926-37
    • Tzikas, D.G.1    Likas, A.C.2    Galatsanos, N.P.3
  • 8
    • 15344339935 scopus 로고    scopus 로고
    • Optimizing the kernel in the empirical feature space
    • DOI 10.1109/TNN.2004.841784
    • H. Xiong, M. N. S. Swamy, and M. O. Ahmad, "Optimizing the kernel in the empirical feature space," IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 460-474, Mar. 2005. (Pubitemid 40390828)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.2 , pp. 460-474
    • Xiong, H.1    Swamy, M.N.S.2    Ahmad, M.O.3
  • 9
    • 0032786569 scopus 로고    scopus 로고
    • Improving support vector machine classifiers by modifying kernel functions
    • DOI 10.1016/S0893-6080(99)00032-5, PII S0893608099000325
    • S. Amari and S. Wu, "Improving support vector machine classifiers by modifying kernel functions," Neural Netw., vol. 12, no. 6, pp. 783-789, Jul. 1999. (Pubitemid 29359218)
    • (1999) Neural Networks , vol.12 , Issue.6 , pp. 783-789
    • Amari, S.1    Wu, S.2
  • 10
    • 10044254164 scopus 로고    scopus 로고
    • Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition
    • Jan.
    • J. Lu, K. Plataniotis, and A. Venetsanopoulos, "Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition," Pattern Recognit. Lett., vol. 26, no. 2, pp. 181-191, Jan. 2005.
    • (2005) Pattern Recognit. Lett. , vol.26 , Issue.2 , pp. 181-191
    • Lu, J.1    Plataniotis, K.2    Venetsanopoulos, A.3
  • 11
    • 23244462944 scopus 로고    scopus 로고
    • Some properties of regularized kernel methods
    • Oct.
    • E. D. Vito and A. Caponnetto, "Some properties of regularized kernel methods," J. Mach. Learn. Res., vol. 5, pp. 1363-1390, Oct. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1363-1390
    • Vito, E.D.1    Caponnetto, A.2
  • 13
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • DOI 10.1126/science.1127647
    • G. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, Jul. 2006. (Pubitemid 44148451)
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 14
    • 55749105263 scopus 로고    scopus 로고
    • Deep, narrow sigmoid belief networks are universal approximators
    • Nov.
    • I. Sutskever and G. E. Hinton, "Deep, narrow sigmoid belief networks are universal approximators," Neural Comput., vol. 20, no. 11, pp. 2629-2636, Nov. 2008.
    • (2008) Neural Comput. , vol.20 , Issue.11 , pp. 2629-2636
    • Sutskever, I.1    Hinton, G.E.2
  • 15
    • 77955997114 scopus 로고    scopus 로고
    • Deep belief networks are compact universal approximators
    • Aug.
    • N. Le Roux and Y. Bengio, "Deep belief networks are compact universal approximators," Neural Comput., vol. 22, no. 8, pp. 2192-2207, Aug. 2010.
    • (2010) Neural Comput. , vol.22 , Issue.8 , pp. 2192-2207
    • Le Roux, N.1    Bengio, Y.2
  • 17
    • 33749237332 scopus 로고    scopus 로고
    • Local Fisher discriminant analysis for supervised dimensionality reduction
    • M. Sugiyama, "Local Fisher discriminant analysis for supervised dimensionality reduction," in Proc. 23rd Int. Conf. Mach. Learn., 2006, pp. 905-912.
    • (2006) Proc. 23rd Int. Conf. Mach. Learn. , pp. 905-912
    • Sugiyama, M.1
  • 18
    • 0032786569 scopus 로고    scopus 로고
    • Improving support vector machine classifiers by modifying kernel functions
    • DOI 10.1016/S0893-6080(99)00032-5, PII S0893608099000325
    • S. Amari and S. Wu, "Improving support vector machine classifiers by modifying kernel functions," Neural Netw., vol. 12, no. 6, pp. 783-789, Jul. 1999. (Pubitemid 29359218)
    • (1999) Neural Networks , vol.12 , Issue.6 , pp. 783-789
    • Amari, S.1    Wu, S.2
  • 19
    • 78049412906 scopus 로고    scopus 로고
    • Learning a parametric embedding by preserving local structure
    • L. V. D. Maaten, "Learning a parametric embedding by preserving local structure," in Proc. 12th Int. Conf. Artif. Intell. Stat., 2009, pp. 384-391.
    • (2009) Proc. 12th Int. Conf. Artif. Intell. Stat. , pp. 384-391
    • Maaten, L.V.D.1
  • 20
    • 70049096835 scopus 로고    scopus 로고
    • Learning a nonlinear embedding by preserving class neighbourhood structure
    • R. Salakhutdinov and G. Hinton, "Learning a nonlinear embedding by preserving class neighbourhood structure," in Proc. Artif. Intell. Stat., 2007, pp. 1-8.
    • (2007) Proc. Artif. Intell. Stat. , pp. 1-8
    • Salakhutdinov, R.1    Hinton, G.2
  • 22
    • 85162037149 scopus 로고    scopus 로고
    • Using deep belief nets to learn covariance kernels for Gaussian processes
    • R. Salakhutdinov and G. Hinton, "Using deep belief nets to learn covariance kernels for Gaussian processes," in Proc. Adv. Neural Inf. Process. Syst., 2007, pp. 1-8.
    • (2007) Proc. Adv. Neural Inf. Process. Syst. , pp. 1-8
    • Salakhutdinov, R.1    Hinton, G.2
  • 23
    • 79959487511 scopus 로고    scopus 로고
    • Discriminative feature extraction with deep neural networks
    • Barcelona, Spain, Jul.
    • A. Stuhlsatz, J. Lippel, and T. Zielke, "Discriminative feature extraction with deep neural networks," in Proc. Int. Joint Conf. Neural Netw., Barcelona, Spain, Jul. 2010, pp. 18-23.
    • (2010) Proc. Int. Joint Conf. Neural Netw. , pp. 18-23
    • Stuhlsatz, A.1    Lippel, J.2    Zielke, T.3
  • 25
    • 77949522811 scopus 로고    scopus 로고
    • Why does unsupervised pretraining help deep learning?
    • Feb.
    • D. Erhan, A. Courville, and P. Vincent, "Why does unsupervised pretraining help deep learning?" J. Mach. Learn. Res., vol. 11, pp. 625-660, Feb. 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 625-660
    • Erhan, D.1    Courville, A.2    Vincent, P.3
  • 26
    • 0032209063 scopus 로고    scopus 로고
    • A nonlinear discriminant algorithm for feature extraction and data classification
    • PII S1045922798070131
    • C. S. Cruz and J. R. Dorronsoro, "A nonlinear discriminant algorithm for feature extraction and data classification," IEEE Trans. Neural Netw., vol. 9, no. 6, pp. 1370-1376, Nov. 1998. (Pubitemid 128742415)
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.6 , pp. 1370-1376
    • Cruz, C.S.1    Dorronsoro, J.R.2
  • 28
    • 38849204864 scopus 로고    scopus 로고
    • Optimizing the data-dependent kernel under a unified kernel optimization framework
    • DOI 10.1016/j.patcog.2007.10.006, PII S0031320307004475
    • B. Chen, H. Liu, and Z. Bao, "Optimizing the data-dependent kernel under a unified kernel optimization framework," Pattern Recognit., vol. 41, no. 6, pp. 2107-2119, Jun. 2008. (Pubitemid 351191973)
    • (2008) Pattern Recognition , vol.41 , Issue.6 , pp. 2107-2119
    • Chen, B.1    Liu, H.2    Bao, Z.3
  • 30
    • 0004171986 scopus 로고    scopus 로고
    • Centre Vis. Comput., Univ. Autònoma Barcelona, Barcelona, Spain, Tech. Rep. 24, Jun.
    • A. Martinez and R. Benavente, "The AR face database," Centre Vis. Comput., Univ. Autònoma Barcelona, Barcelona, Spain, Tech. Rep. 24, Jun. 1998.
    • (1998) The AR Face Database
    • Martinez, A.1    Benavente, R.2
  • 31
  • 32
    • 33947492041 scopus 로고    scopus 로고
    • Globally maximizing, locally minimizing: Unsupervised discriminant projection with applications to face and palm biometrics
    • DOI 10.1109/TPAMI.2007.1008, Special issue on Biometrics: Progress and Directions
    • J. Yang, D. Zhang, and B. Niu, "Globally maximizing, locally minimizing: Unsupervised discriminant projection with applications to face and palm biometrics," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 4, pp. 650-664, Apr. 2007. (Pubitemid 46464405)
    • (2007) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.29 , Issue.4 , pp. 650-664
    • Yang, J.1    Zhang, D.2    Yang, J.-Y.3    Niu, B.4
  • 33
    • 38849204864 scopus 로고    scopus 로고
    • Optimizing the data-dependent kernel under a unified kernel optimization framework
    • DOI 10.1016/j.patcog.2007.10.006, PII S0031320307004475
    • B. Chen, H. Liu, and Z. Bao, "Optimizing the data-dependent kernel under a unified kernel optimization framework," Pattern Recognit., vol. 41, no. 6, pp. 2107-2119, Jun. 2008. (Pubitemid 351191973)
    • (2008) Pattern Recognition , vol.41 , Issue.6 , pp. 2107-2119
    • Chen, B.1    Liu, H.2    Bao, Z.3
  • 34
    • 15344339935 scopus 로고    scopus 로고
    • Optimizing the kernel in the empirical feature space
    • DOI 10.1109/TNN.2004.841784
    • H. Xiong, M. N. S. Swamy, and M. O. Ahmad, "Optimizing the kernel in the empirical feature space," IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 460-474, Mar. 2005. (Pubitemid 40390828)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.2 , pp. 460-474
    • Xiong, H.1    Swamy, M.N.S.2    Ahmad, M.O.3
  • 35
    • 33749246584 scopus 로고    scopus 로고
    • Optimal kernel selection in kernel Fisher discriminant analysis
    • S.-J. Kim, A. Magnani, and S. Boyd, "Optimal kernel selection in kernel Fisher discriminant analysis," in Proc. 23rd Int. Conf. Mach. Learn., 2006, pp. 465-472.
    • (2006) Proc. 23rd Int. Conf. Mach. Learn. , pp. 465-472
    • Kim, S.-J.1    Magnani, A.2    Boyd, S.3
  • 36
    • 44649123652 scopus 로고    scopus 로고
    • Multi-class discriminant kernel learning via convex programming
    • Apr.
    • J. Ye and J. Chen, "Multi-class discriminant kernel learning via convex programming," J. Mach. Learn. Res., vol. 9, pp. 719-758, Apr. 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 719-758
    • Ye, J.1    Chen, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.