-
1
-
-
80051624332
-
Acoustic modeling using deep belief networks
-
(in press)
-
A.-r. Mohamed, G. E. Dahl, and G. E. Hinton, “Acoustic modeling using deep belief networks,” IEEE Transactions on Audio, Speech, and Language Processing, 2011 (in press).
-
(2011)
IEEE Transactions on Audio, Speech, and Language Processing
-
-
Mohamed, A.-r.1
Dahl, G. E.2
Hinton, G. E.3
-
2
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–54, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G. E.1
Osindero, S.2
Teh, Y.-W.3
-
3
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio, “Why does unsupervised pre-training help deep learning?” The Journal of Machine Learning Research, vol. 11, pp. 625–660, 2010.
-
(2010)
The Journal of Machine Learning Research
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
4
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science, vol. 313, no. 5786, pp. 504–7, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G. E.1
Salakhutdinov, R. R.2
-
5
-
-
69549124128
-
Deep belief net learning in a long-range vision system for autonomous off-road driving
-
R. Hadsell, A. Erkan, P. Sermanet, M. Scoffier, and U. Muller, “Deep belief net learning in a long-range vision system for autonomous off-road driving,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2008, pp. 628–633.
-
(2008)
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp. 628-633
-
-
Hadsell, R.1
Erkan, A.2
Sermanet, P.3
Scoffier, M.4
Muller, U.5
-
7
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training of deep networks,” in Advances in Neural Information Processing Systems (NIPS) 19, 2007, pp. 153–160.
-
(2007)
Advances in Neural Information Processing Systems (NIPS)
, vol.19
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
8
-
-
59449087310
-
Exploring strategies for training deep neural networks
-
H. Larochelle, Y. Bengio, J. Louradour, and P. Lambin, “Exploring strategies for training deep neural networks,” The Journal of Machine Learning Research, vol. 10, pp. 1–40, 2009.
-
(2009)
The Journal of Machine Learning Research
, vol.10
, pp. 1-40
-
-
Larochelle, H.1
Bengio, Y.2
Louradour, J.3
Lambin, P.4
-
9
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing robust features with denoising autoencoders,” in Proceedings of the 25th International Conference on Machine learning (ICML), 2008, pp. 1096–1103.
-
(2008)
Proceedings of the 25th International Conference on Machine learning (ICML)
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
10
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
11
-
-
70049083257
-
Fast inference in sparse coding algorithms with applications to object recognition
-
Courant Institute, New York University, Tech. Rep., CBLL-TR-2008-12-01
-
K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “Fast inference in sparse coding algorithms with applications to object recognition,” Computational and Biological Learning Lab, Courant Institute, New York University, Tech. Rep., 2008, CBLL-TR-2008-12-01.
-
(2008)
Computational and Biological Learning Lab
-
-
Kavukcuoglu, K.1
Ranzato, M.2
LeCun, Y.3
-
12
-
-
77953183471
-
What is the best multi-stage architecture for object recognition?
-
K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun, “What is the best multi-stage architecture for object recognition?” in Proceedings of the 12th International Conference on Computer Vision (ICCV), 2009, pp. 2146–2153.
-
(2009)
Proceedings of the 12th International Conference on Computer Vision (ICCV)
, pp. 2146-2153
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M. A.3
LeCun, Y.4
-
13
-
-
0003548585
-
-
Linguistic Data Consortium, Philadelphia
-
J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, N. L. Dahlgren, and V. Zue, TIMIT Acoustic-Phonetic Continuous Speech Corpus. Linguistic Data Consortium, Philadelphia, 1993.
-
(1993)
TIMIT Acoustic-Phonetic Continuous Speech Corpus
-
-
Garofolo, J. S.1
Lamel, L. F.2
Fisher, W. M.3
Fiscus, J. G.4
Pallett, D. S.5
Dahlgren, N. L.6
Zue, V.7
-
14
-
-
0030779611
-
Sparse coding with an overcomplete basis set: A strategy employed by v1?
-
B. A. Olshausen and D. Field, “Sparse coding with an overcomplete basis set: A strategy employed by v1?” Vision Research, vol. 37, no. 23, pp. 3311–3325, 1997.
-
(1997)
Vision Research
, vol.37
, Issue.23
, pp. 3311-3325
-
-
Olshausen, B. A.1
Field, D.2
|