-
1
-
-
84863414654
-
Mutations and polymorphisms in TP53 gene-an overview on the role in colorectal cancer
-
Naccarati A, Polakova V, Pardini B, Vodickova L, Hemminki K, Kumar R, Vodicka P. Mutations and polymorphisms in TP53 gene-an overview on the role in colorectal cancer. Mutagenesis. 2012; 27:211-218.
-
(2012)
Mutagenesis.
, vol.27
, pp. 211-218
-
-
Naccarati, A.1
Polakova, V.2
Pardini, B.3
Vodickova, L.4
Hemminki, K.5
Kumar, R.6
Vodicka, P.7
-
2
-
-
84896098750
-
Mutant p53 in cancer: new functions and therapeutic opportunities
-
Muller PA, Vousden KH. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer cell. 2014; 25:304-317.
-
(2014)
Cancer cell.
, vol.25
, pp. 304-317
-
-
Muller, P.A.1
Vousden, K.H.2
-
3
-
-
53049108040
-
Targeting the MDM2-p53 interaction for cancer therapy
-
Shangary S, Wang S. Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res. 2008; 14:5318-5324.
-
(2008)
Clin Cancer Res.
, vol.14
, pp. 5318-5324
-
-
Shangary, S.1
Wang, S.2
-
4
-
-
43049163953
-
Acetylation is indispensable for p53 activation
-
Tang Y, Zhao W, Chen Y, Zhao Y, Gu W. Acetylation is indispensable for p53 activation. Cell. 2008; 133:612-626.
-
(2008)
Cell.
, vol.133
, pp. 612-626
-
-
Tang, Y.1
Zhao, W.2
Chen, Y.3
Zhao, Y.4
Gu, W.5
-
5
-
-
0037184969
-
Acetylation of p53 inhibits its ubiquitination by Mdm2
-
Li M, Luo J, Brooks CL, Gu W. Acetylation of p53 inhibits its ubiquitination by Mdm2. J Biol Chem. 2002; 277:50607-50611.
-
(2002)
J Biol Chem.
, vol.277
, pp. 50607-50611
-
-
Li, M.1
Luo, J.2
Brooks, C.L.3
Gu, W.4
-
6
-
-
0037112901
-
MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation
-
Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E, Yao TP. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J. 2002; 21:6236-6245.
-
(2002)
EMBO J.
, vol.21
, pp. 6236-6245
-
-
Ito, A.1
Kawaguchi, Y.2
Lai, C.H.3
Kovacs, J.J.4
Higashimoto, Y.5
Appella, E.6
Yao, T.P.7
-
7
-
-
84876459162
-
Modulation of p53 C-terminal acetylation by mdm2, p14ARF, and cytoplasmic SirT2
-
van Leeuwen IM, Higgins M, Campbell J, McCarthy AR, Sachweh MC, Navarro AM, Lain S. Modulation of p53 C-terminal acetylation by mdm2, p14ARF, and cytoplasmic SirT2. Mol Cancer Ther. 2013; 12:471-480.
-
(2013)
Mol Cancer Ther.
, vol.12
, pp. 471-480
-
-
van Leeuwen, I.M.1
Higgins, M.2
Campbell, J.3
McCarthy, A.R.4
Sachweh, M.C.5
Navarro, A.M.6
Lain, S.7
-
8
-
-
84876795104
-
Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer-overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression
-
Muller BM, Jana L, Kasajima A, Lehmann A, Prinzler J, Budczies J, Winzer KJ, Dietel M, Weichert W, Denkert C. Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer-overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC Cancer. 2013; 13:215.
-
(2013)
BMC Cancer.
, vol.13
, pp. 215
-
-
Muller, B.M.1
Jana, L.2
Kasajima, A.3
Lehmann, A.4
Prinzler, J.5
Budczies, J.6
Winzer, K.J.7
Dietel, M.8
Weichert, W.9
Denkert, C.10
-
9
-
-
84929443198
-
High levels of SIRT1 expression enhance tumorigenesis and associate with a poor prognosis of colorectal carcinoma patients
-
Chen X, Sun K, Jiao S, Cai N, Zhao X, Zou H, Xie Y, Wang Z, Zhong M, Wei L. High levels of SIRT1 expression enhance tumorigenesis and associate with a poor prognosis of colorectal carcinoma patients. Sci Rep. 2014; 4:7481.
-
(2014)
Sci Rep.
, vol.4
, pp. 7481
-
-
Chen, X.1
Sun, K.2
Jiao, S.3
Cai, N.4
Zhao, X.5
Zou, H.6
Xie, Y.7
Wang, Z.8
Zhong, M.9
Wei, L.10
-
10
-
-
84899501190
-
Amplification of Mdmx and overexpression of MDM2 contribute to mammary carcinogenesis by substituting for p53 mutations
-
Yu Q, Li Y, Mu K, Li Z, Meng Q, Wu X, Wang Y, Li L. Amplification of Mdmx and overexpression of MDM2 contribute to mammary carcinogenesis by substituting for p53 mutations. Diagn Pathol. 2014; 9:71.
-
(2014)
Diagn Pathol.
, vol.9
, pp. 71
-
-
Yu, Q.1
Li, Y.2
Mu, K.3
Li, Z.4
Meng, Q.5
Wu, X.6
Wang, Y.7
Li, L.8
-
11
-
-
84894490851
-
A novel sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-small cell lung cancer
-
Hoffmann G, Breitenbucher F, Schuler M, Ehrenhofer-Murray AE. A novel sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-small cell lung cancer. J Biol Chem. 2014; 289:5208-5216.
-
(2014)
J Biol Chem.
, vol.289
, pp. 5208-5216
-
-
Hoffmann, G.1
Breitenbucher, F.2
Schuler, M.3
Ehrenhofer-Murray, A.E.4
-
12
-
-
77950835404
-
SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2
-
Peck B, Chen CY, Ho KK, Di Fruscia P, Myatt SS, Coombes RC, Fuchter MJ, Hsiao CD, Lam EW. SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol Cancer Ther. 2010; 9:844-855.
-
(2010)
Mol Cancer Ther.
, vol.9
, pp. 844-855
-
-
Peck, B.1
Chen, C.Y.2
Ho, K.K.3
Di Fruscia, P.4
Myatt, S.S.5
Coombes, R.C.6
Fuchter, M.J.7
Hsiao, C.D.8
Lam, E.W.9
-
13
-
-
84865037340
-
Sirtinol, a class III HDAC inhibitor, induces apoptotic and autophagic cell death in MCF-7 human breast cancer cells
-
Wang J, Kim TH, Ahn MY, Lee J, Jung JH, Choi WS, Lee BM, Yoon KS, Yoon S, Kim HS. Sirtinol, a class III HDAC inhibitor, induces apoptotic and autophagic cell death in MCF-7 human breast cancer cells. Int J Oncol. 2012; 41:1101-1109.
-
(2012)
Int J Oncol.
, vol.41
, pp. 1101-1109
-
-
Wang, J.1
Kim, T.H.2
Ahn, M.Y.3
Lee, J.4
Jung, J.H.5
Choi, W.S.6
Lee, B.M.7
Yoon, K.S.8
Yoon, S.9
Kim, H.S.10
-
14
-
-
0037334306
-
A new science-business paradigm in anticancer drug development
-
Blagosklonny MV. A new science-business paradigm in anticancer drug development. Trends Biotechnol. 2003; 21:103-106.
-
(2003)
Trends Biotechnol.
, vol.21
, pp. 103-106
-
-
Blagosklonny, M.V.1
-
15
-
-
84934343399
-
Targeting pancreatitis blocks tumor-initiating stem cells and pancreatic cancer progression
-
Mohammed A, Janakiram NB, Madka V, Brewer M, Ritchie RL, Lightfoot S, Kumar G, Sadeghi M, Patlolla JM, Yamada HY, Cruz-Monserrate Z, May R, Houchen CW, Steele VE, Rao CV. Targeting pancreatitis blocks tumor-initiating stem cells and pancreatic cancer progression. Oncotarget. 2015.
-
(2015)
Oncotarget
-
-
Mohammed, A.1
Janakiram, N.B.2
Madka, V.3
Brewer, M.4
Ritchie, R.L.5
Lightfoot, S.6
Kumar, G.7
Sadeghi, M.8
Patlolla, J.M.9
Yamada, H.Y.10
Cruz-Monserrate, Z.11
May, R.12
Houchen, C.W.13
Steele, V.E.14
Rao, C.V.15
-
16
-
-
84879711057
-
Deciphering the signaling networks underlying simvastatin-induced apoptosis in human cancer cells: evidence for non-canonical activation of RhoA and Rac1 GTPases
-
Zhu Y, Casey PJ, Kumar AP, Pervaiz S. Deciphering the signaling networks underlying simvastatin-induced apoptosis in human cancer cells: evidence for non-canonical activation of RhoA and Rac1 GTPases. Cell death & disease. 2013; 4:e568.
-
(2013)
Cell death & disease.
, vol.4
-
-
Zhu, Y.1
Casey, P.J.2
Kumar, A.P.3
Pervaiz, S.4
-
17
-
-
84926661898
-
Synergistic simvastatin and metformin combination chemotherapy for osseous metastatic castration-resistant prostate cancer
-
Babcook MA, Shukla S, Fu P, Vazquez EJ, Puchowicz MA, Molter JP, Oak CZ, MacLennan GT, Flask CA, Lindner DJ, Parker Y, Daneshgari F, Gupta S. Synergistic simvastatin and metformin combination chemotherapy for osseous metastatic castration-resistant prostate cancer. Mol Cancer Ther. 2014; 13:2288-2302.
-
(2014)
Mol Cancer Ther.
, vol.13
, pp. 2288-2302
-
-
Babcook, M.A.1
Shukla, S.2
Fu, P.3
Vazquez, E.J.4
Puchowicz, M.A.5
Molter, J.P.6
Oak, C.Z.7
MacLennan, G.T.8
Flask, C.A.9
Lindner, D.J.10
Parker, Y.11
Daneshgari, F.12
Gupta, S.13
-
18
-
-
84861380745
-
Phospholipase PLAG7, associated with aggressive prostate cancer, promotes prostate cancer cell migration and invasion and is inhibited by statins
-
Vainio P, Lehtinen L, Mirtti T, Hilvo M, Seppanen-Laakso T, Virtanen J, Sankila A, Nordling S, Lundin J, Rannikko A, Oresic M, Kallioniemi O, Iljin K. Phospholipase PLAG7, associated with aggressive prostate cancer, promotes prostate cancer cell migration and invasion and is inhibited by statins. Oncotarget. 2011; 2:1176-1190.
-
(2011)
Oncotarget.
, vol.2
, pp. 1176-1190
-
-
Vainio, P.1
Lehtinen, L.2
Mirtti, T.3
Hilvo, M.4
Seppanen-Laakso, T.5
Virtanen, J.6
Sankila, A.7
Nordling, S.8
Lundin, J.9
Rannikko, A.10
Oresic, M.11
Kallioniemi, O.12
Iljin, K.13
-
19
-
-
70350236538
-
Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission
-
Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 2009; 69:7507-7511.
-
(2009)
Cancer Res.
, vol.69
, pp. 7507-7511
-
-
Hirsch, H.A.1
Iliopoulos, D.2
Tsichlis, P.N.3
Struhl, K.4
-
20
-
-
79954460690
-
The anti-diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells
-
Vazquez-Martin A, Oliveras-Ferraros C, Del Barco S, Martin-Castillo B, Menendez JA. The anti-diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells. Breast Cancer Res Treat. 2011; 126:355-364.
-
(2011)
Breast Cancer Res Treat.
, vol.126
, pp. 355-364
-
-
Vazquez-Martin, A.1
Oliveras-Ferraros, C.2
Del Barco, S.3
Martin-Castillo, B.4
Menendez, J.A.5
-
21
-
-
84857975015
-
Metformin: multi-faceted protection against cancer
-
Del Barco S, Vazquez-Martin A, Cufi S, Oliveras-Ferraros C, Bosch-Barrera J, Joven J, Martin-Castillo B, Menendez JA. Metformin: multi-faceted protection against cancer. Oncotarget. 2011; 2:896-917.
-
(2011)
Oncotarget.
, vol.2
, pp. 896-917
-
-
Del Barco, S.1
Vazquez-Martin, A.2
Cufi, S.3
Oliveras-Ferraros, C.4
Bosch-Barrera, J.5
Joven, J.6
Martin-Castillo, B.7
Menendez, J.A.8
-
22
-
-
84917706446
-
Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current
-
Gritti M, Wurth R, Angelini M, Barbieri F, Peretti M, Pizzi E, Pattarozzi A, Carra E, Sirito R, Daga A, Curmi PM, Mazzanti M, Florio T. Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current. Oncotarget. 2014; 5:11252-11268.
-
(2014)
Oncotarget.
, vol.5
, pp. 11252-11268
-
-
Gritti, M.1
Wurth, R.2
Angelini, M.3
Barbieri, F.4
Peretti, M.5
Pizzi, E.6
Pattarozzi, A.7
Carra, E.8
Sirito, R.9
Daga, A.10
Curmi, P.M.11
Mazzanti, M.12
Florio, T.13
-
23
-
-
80455158366
-
Gene expression-based chemical genomics identifies potential therapeutic drugs in hepatocellular carcinoma
-
Chen MH, Yang WL, Lin KT, Liu CH, Liu YW, Huang KW, Chang PM, Lai JM, Hsu CN, Chao KM, Kao CY, Huang CY. Gene expression-based chemical genomics identifies potential therapeutic drugs in hepatocellular carcinoma. PloS one. 2011; 6:e27186.
-
(2011)
PloS one.
, vol.6
-
-
Chen, M.H.1
Yang, W.L.2
Lin, K.T.3
Liu, C.H.4
Liu, Y.W.5
Huang, K.W.6
Chang, P.M.7
Lai, J.M.8
Hsu, C.N.9
Chao, K.M.10
Kao, C.Y.11
Huang, C.Y.12
-
24
-
-
33749335282
-
The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease
-
Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006; 313:1929-1935.
-
(2006)
Science.
, vol.313
, pp. 1929-1935
-
-
Lamb, J.1
Crawford, E.D.2
Peck, D.3
Modell, J.W.4
Blat, I.C.5
Wrobel, M.J.6
Lerner, J.7
Brunet, J.P.8
Subramanian, A.9
Ross, K.N.10
Reich, M.11
Hieronymus, H.12
Wei, G.13
Armstrong, S.A.14
Haggarty, S.J.15
Clemons, P.A.16
-
25
-
-
77953567243
-
Chlorpromazine activates p21Waf1/Cip1 gene transcription via early growth response-1 (Egr-1) in C6 glioma cells
-
Shin SY, Kim CG, Kim SH, Kim YS, Lim Y, Lee YH. Chlorpromazine activates p21Waf1/Cip1 gene transcription via early growth response-1 (Egr-1) in C6 glioma cells. Exp Mol Med. 2010; 42:395-405.
-
(2010)
Exp Mol Med.
, vol.42
, pp. 395-405
-
-
Shin, S.Y.1
Kim, C.G.2
Kim, S.H.3
Kim, Y.S.4
Lim, Y.5
Lee, Y.H.6
-
26
-
-
84887014432
-
The antipsychotic agent chlorpromazine induces autophagic cell death by inhibiting the Akt/mTOR pathway in human U-87MG glioma cells
-
Shin SY, Lee KS, Choi YK, Lim HJ, Lee HG, Lim Y, Lee YH. The antipsychotic agent chlorpromazine induces autophagic cell death by inhibiting the Akt/mTOR pathway in human U-87MG glioma cells. Carcinogenesis. 2013; 34:2080-2089.
-
(2013)
Carcinogenesis.
, vol.34
, pp. 2080-2089
-
-
Shin, S.Y.1
Lee, K.S.2
Choi, Y.K.3
Lim, H.J.4
Lee, H.G.5
Lim, Y.6
Lee, Y.H.7
-
27
-
-
4444240191
-
The functional interactions between the p5 and MAPK signaling pathways
-
Wu GS. The functional interactions between the p5 and MAPK signaling pathways. Cancer biology & therapy. 2004; 3:156-161.
-
(2004)
Cancer biology & therapy.
, vol.3
, pp. 156-161
-
-
Wu, G.S.1
-
28
-
-
81155134638
-
SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis
-
Li D, Marchenko ND, Moll UM. SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis. Cell Death Differ. 2011; 18:1904-1913.
-
(2011)
Cell Death Differ.
, vol.18
, pp. 1904-1913
-
-
Li, D.1
Marchenko, N.D.2
Moll, U.M.3
-
29
-
-
84864531616
-
Inauhzin and Nutlin3 synergistically activate p53 and suppress tumor growth
-
Zhang Y, Zhang Q, Zeng SX, Mayo LD, Lu H. Inauhzin and Nutlin3 synergistically activate p53 and suppress tumor growth. Cancer biology & therapy. 2012; 13:915-924.
-
(2012)
Cancer biology & therapy.
, vol.13
, pp. 915-924
-
-
Zhang, Y.1
Zhang, Q.2
Zeng, S.X.3
Mayo, L.D.4
Lu, H.5
-
30
-
-
77956526861
-
Histone deacetylase inhibitors valproic acid and depsipeptide sensitize retinoblastoma cells to radiotherapy by increasing H2AX phosphorylation and p53 acetylation-phosphorylation
-
Kawano T, Akiyama M, Agawa-Ohta M, Mikami-Terao Y, Iwase S, Yanagisawa T, Ida H, Agata N, Yamada H. Histone deacetylase inhibitors valproic acid and depsipeptide sensitize retinoblastoma cells to radiotherapy by increasing H2AX phosphorylation and p53 acetylation-phosphorylation. Int J Oncol. 2010; 37:787-795.
-
(2010)
Int J Oncol.
, vol.37
, pp. 787-795
-
-
Kawano, T.1
Akiyama, M.2
Agawa-Ohta, M.3
Mikami-Terao, Y.4
Iwase, S.5
Yanagisawa, T.6
Ida, H.7
Agata, N.8
Yamada, H.9
-
31
-
-
70349326002
-
The antipsychotic drug chlorpromazine enhances the cytotoxic effect of tamoxifen in tamoxifen-sensitive and tamoxifen-resistant human breast cancer cells
-
Yde CW, Clausen MP, Bennetzen MV, Lykkesfeldt AE, Mouritsen OG, Guerra B. The antipsychotic drug chlorpromazine enhances the cytotoxic effect of tamoxifen in tamoxifen-sensitive and tamoxifen-resistant human breast cancer cells. Anticancer Drugs. 2009; 20:723-735.
-
(2009)
Anticancer Drugs.
, vol.20
, pp. 723-735
-
-
Yde, C.W.1
Clausen, M.P.2
Bennetzen, M.V.3
Lykkesfeldt, A.E.4
Mouritsen, O.G.5
Guerra, B.6
-
32
-
-
84884764745
-
High SIRT1 expression is a negative prognosticator in pancreatic ductal adenocarcinoma
-
Stenzinger A, Endris V, Klauschen F, Sinn B, Lorenz K, Warth A, Goeppert B, Ehemann V, Muckenhuber A, Kamphues C, Bahra M, Neuhaus P, Weichert W. High SIRT1 expression is a negative prognosticator in pancreatic ductal adenocarcinoma. BMC Cancer. 2013; 13:450.
-
(2013)
BMC Cancer.
, vol.13
, pp. 450
-
-
Stenzinger, A.1
Endris, V.2
Klauschen, F.3
Sinn, B.4
Lorenz, K.5
Warth, A.6
Goeppert, B.7
Ehemann, V.8
Muckenhuber, A.9
Kamphues, C.10
Bahra, M.11
Neuhaus, P.12
Weichert, W.13
-
33
-
-
63649125404
-
Role of sirtuin histone deacetylase SIRT1 in prostate cancer. A target for prostate cancer management via its inhibition?
-
Jung-Hynes B, Nihal M, Zhong W, Ahmad N. Role of sirtuin histone deacetylase SIRT1 in prostate cancer. A target for prostate cancer management via its inhibition? J Biol Chem. 2009; 284:3823-3832.
-
(2009)
J Biol Chem.
, vol.284
, pp. 3823-3832
-
-
Jung-Hynes, B.1
Nihal, M.2
Zhong, W.3
Ahmad, N.4
-
34
-
-
80155126751
-
SIRT1 is essential for oncogenic signaling by estrogen/estrogen receptor alpha in breast cancer
-
Elangovan S, Ramachandran S, Venkatesan N, Ananth S, Gnana-Prakasam JP, Martin PM, Browning DD, Schoenlein PV, Prasad PD, Ganapathy V, Thangaraju M. SIRT1 is essential for oncogenic signaling by estrogen/estrogen receptor alpha in breast cancer. Cancer Res. 2011; 71:6654-6664.
-
(2011)
Cancer Res.
, vol.71
, pp. 6654-6664
-
-
Elangovan, S.1
Ramachandran, S.2
Venkatesan, N.3
Ananth, S.4
Gnana-Prakasam, J.P.5
Martin, P.M.6
Browning, D.D.7
Schoenlein, P.V.8
Prasad, P.D.9
Ganapathy, V.10
Thangaraju, M.11
-
35
-
-
84876501728
-
Antitumor effect of SIRT1 inhibition in human HCC tumor models in vitro and in vivo
-
Portmann S, Fahrner R, Lechleiter A, Keogh A, Overney S, Laemmle A, Mikami K, Montani M, Tschan MP, Candinas D, Stroka D. Antitumor effect of SIRT1 inhibition in human HCC tumor models in vitro and in vivo. Mol Cancer Ther. 2013; 12:499-508.
-
(2013)
Mol Cancer Ther.
, vol.12
, pp. 499-508
-
-
Portmann, S.1
Fahrner, R.2
Lechleiter, A.3
Keogh, A.4
Overney, S.5
Laemmle, A.6
Mikami, K.7
Montani, M.8
Tschan, M.P.9
Candinas, D.10
Stroka, D.11
-
36
-
-
33748200050
-
Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage
-
Wang C, Chen L, Hou X, Li Z, Kabra N, Ma Y, Nemoto S, Finkel T, Gu W, Cress WD, Chen J. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol. 2006; 8:1025-1031.
-
(2006)
Nat Cell Biol.
, vol.8
, pp. 1025-1031
-
-
Wang, C.1
Chen, L.2
Hou, X.3
Li, Z.4
Kabra, N.5
Ma, Y.6
Nemoto, S.7
Finkel, T.8
Gu, W.9
Cress, W.D.10
Chen, J.11
-
37
-
-
12144290563
-
Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
-
Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004; 303:2011-2015.
-
(2004)
Science.
, vol.303
, pp. 2011-2015
-
-
Brunet, A.1
Sweeney, L.B.2
Sturgill, J.F.3
Chua, K.F.4
Greer, P.L.5
Lin, Y.6
Tran, H.7
Ross, S.E.8
Mostoslavsky, R.9
Cohen, H.Y.10
Hu, L.S.11
Cheng, H.L.12
Jedrychowski, M.P.13
Gygi, S.P.14
Sinclair, D.A.15
Alt, F.W.16
-
38
-
-
84859381463
-
A small molecule Inauhzin inhibits SIRT1 activity and suppresses tumour growth through activation of p53
-
Zhang Q, Zeng SX, Zhang Y, Ding D, Ye Q, Meroueh SO, Lu H. A small molecule Inauhzin inhibits SIRT1 activity and suppresses tumour growth through activation of p53. EMBO Mol Med. 2012; 4:298-312.
-
(2012)
EMBO Mol Med.
, vol.4
, pp. 298-312
-
-
Zhang, Q.1
Zeng, S.X.2
Zhang, Y.3
Ding, D.4
Ye, Q.5
Meroueh, S.O.6
Lu, H.7
-
39
-
-
42949114938
-
Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator
-
Lain S, Hollick JJ, Campbell J, Staples OD, Higgins M, Aoubala M, McCarthy A, Appleyard V, Murray KE, Baker L, Thompson A, Mathers J, Holland SJ, Stark MJ, Pass G, Woods J, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer cell. 2008; 13:454-463.
-
(2008)
Cancer cell.
, vol.13
, pp. 454-463
-
-
Lain, S.1
Hollick, J.J.2
Campbell, J.3
Staples, O.D.4
Higgins, M.5
Aoubala, M.6
McCarthy, A.7
Appleyard, V.8
Murray, K.E.9
Baker, L.10
Thompson, A.11
Mathers, J.12
Holland, S.J.13
Stark, M.J.14
Pass, G.15
Woods, J.16
-
40
-
-
84877031607
-
Inauhzin sensitizes p53-dependent cytotoxicity and tumor suppression of chemotherapeutic agents
-
Zhang Y, Zhang Q, Zeng SX, Hao Q, Lu H. Inauhzin sensitizes p53-dependent cytotoxicity and tumor suppression of chemotherapeutic agents. Neoplasia. 2013; 15:523-534.
-
(2013)
Neoplasia.
, vol.15
, pp. 523-534
-
-
Zhang, Y.1
Zhang, Q.2
Zeng, S.X.3
Hao, Q.4
Lu, H.5
-
41
-
-
84863011183
-
Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib
-
Li L, Wang L, Wang Z, Ho Y, McDonald T, Holyoake TL, Chen W, Bhatia R. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer cell. 2012; 21:266-281.
-
(2012)
Cancer cell.
, vol.21
, pp. 266-281
-
-
Li, L.1
Wang, L.2
Wang, Z.3
Ho, Y.4
McDonald, T.5
Holyoake, T.L.6
Chen, W.7
Bhatia, R.8
-
42
-
-
84904176537
-
Inhibition of SIRT1 signaling sensitizes the antitumor activity of silybin against human lung adenocarcinoma cells in vitro and in vivo
-
Liang Z, Yang Y, Wang H, Yi W, Yan X, Yan J, Li Y, Feng Y, Yu S, Yang J, Jin Z, Duan W, Chen W. Inhibition of SIRT1 signaling sensitizes the antitumor activity of silybin against human lung adenocarcinoma cells in vitro and in vivo. Mol Cancer Ther. 2014; 13:1860-1872.
-
(2014)
Mol Cancer Ther.
, vol.13
, pp. 1860-1872
-
-
Liang, Z.1
Yang, Y.2
Wang, H.3
Yi, W.4
Yan, X.5
Yan, J.6
Li, Y.7
Feng, Y.8
Yu, S.9
Yang, J.10
Jin, Z.11
Duan, W.12
Chen, W.13
-
43
-
-
66449099052
-
p53 acetylation is crucial for its transcription-independent proapoptotic functions
-
Yamaguchi H, Woods NT, Piluso LG, Lee HH, Chen J, Bhalla KN, Monteiro A, Liu X, Hung MC, Wang HG. p53 acetylation is crucial for its transcription-independent proapoptotic functions. J Biol Chem. 2009; 284:11171-11183.
-
(2009)
J Biol Chem.
, vol.284
, pp. 11171-11183
-
-
Yamaguchi, H.1
Woods, N.T.2
Piluso, L.G.3
Lee, H.H.4
Chen, J.5
Bhalla, K.N.6
Monteiro, A.7
Liu, X.8
Hung, M.C.9
Wang, H.G.10
-
44
-
-
35748962613
-
SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress
-
Yang Y, Fu W, Chen J, Olashaw N, Zhang X, Nicosia SV, Bhalla K, Bai W. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol. 2007; 9:1253-1262.
-
(2007)
Nat Cell Biol.
, vol.9
, pp. 1253-1262
-
-
Yang, Y.1
Fu, W.2
Chen, J.3
Olashaw, N.4
Zhang, X.5
Nicosia, S.V.6
Bhalla, K.7
Bai, W.8
-
45
-
-
58149202185
-
Phosphorylation regulates SIRT1 function
-
Sasaki T, Maier B, Koclega KD, Chruszcz M, Gluba W, Stukenberg PT, Minor W, Scrable H. Phosphorylation regulates SIRT1 function. PloS one. 2008; 3:e4020.
-
(2008)
PloS one.
, vol.3
-
-
Sasaki, T.1
Maier, B.2
Koclega, K.D.3
Chruszcz, M.4
Gluba, W.5
Stukenberg, P.T.6
Minor, W.7
Scrable, H.8
-
46
-
-
84865793242
-
AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells
-
Lee CW, Wong LL, Tse EY, Liu HF, Leong VY, Lee JM, Hardie DG, Ng IO, Ching YP. AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Cancer Res. 2012; 72:4394-4404.
-
(2012)
Cancer Res.
, vol.72
, pp. 4394-4404
-
-
Lee, C.W.1
Wong, L.L.2
Tse, E.Y.3
Liu, H.F.4
Leong, V.Y.5
Lee, J.M.6
Hardie, D.G.7
Ng, I.O.8
Ching, Y.P.9
-
47
-
-
84908153882
-
SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation
-
Lau AW, Liu P, Inuzuka H, Gao D. SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation. Am J Cancer Res. 2014; 4:245-255.
-
(2014)
Am J Cancer Res.
, vol.4
, pp. 245-255
-
-
Lau, A.W.1
Liu, P.2
Inuzuka, H.3
Gao, D.4
-
48
-
-
79959355078
-
Sirtuin 1 (SIRT1) protein degradation in response to persistent c-Jun N-terminal kinase 1 (JNK1) activation contributes to hepatic steatosis in obesity
-
Gao Z, Zhang J, Kheterpal I, Kennedy N, Davis RJ, Ye J. Sirtuin 1 (SIRT1) protein degradation in response to persistent c-Jun N-terminal kinase 1 (JNK1) activation contributes to hepatic steatosis in obesity. J Biol Chem. 2011; 286:22227-22234.
-
(2011)
J Biol Chem.
, vol.286
, pp. 22227-22234
-
-
Gao, Z.1
Zhang, J.2
Kheterpal, I.3
Kennedy, N.4
Davis, R.J.5
Ye, J.6
-
49
-
-
77949539030
-
JNK1 phosphorylates SIRT1 and promotes its enzymatic activity
-
Nasrin N, Kaushik VK, Fortier E, Wall D, Pearson KJ, de Cabo R, Bordone L. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PloS one. 2009; 4:e8414.
-
(2009)
PloS one.
, vol.4
-
-
Nasrin, N.1
Kaushik, V.K.2
Fortier, E.3
Wall, D.4
Pearson, K.J.5
de Cabo, R.6
Bordone, L.7
-
50
-
-
84869225084
-
Epithelial cell adhesion molecule regulates tumor initiation and tumorigenesis via activating reprogramming factors and epithelial-mesenchymal transition gene expression in colon cancer
-
Lin CW, Liao MY, Lin WW, Wang YP, Lu TY, Wu HC. Epithelial cell adhesion molecule regulates tumor initiation and tumorigenesis via activating reprogramming factors and epithelial-mesenchymal transition gene expression in colon cancer. J Biol Chem. 2012; 287:39449-39459.
-
(2012)
J Biol Chem.
, vol.287
, pp. 39449-39459
-
-
Lin, C.W.1
Liao, M.Y.2
Lin, W.W.3
Wang, Y.P.4
Lu, T.Y.5
Wu, H.C.6
-
51
-
-
73349088103
-
Metastasis-Associated Gene Expression Changes Predict Poor Outcomes in Patients with Dukes Stage, B, and C Colorectal Cancer
-
Jorissen RN, Gibbs P, Christie M, Prakash S, Lipton L, Desai J, Kerr D, Aaltonen LA, Arango D, Kruhoffer M, Orntoft TF, Andersen CL, Gruidl M, Kamath VP, Eschrich S, Yeatman TJ, et al. Metastasis-Associated Gene Expression Changes Predict Poor Outcomes in Patients with Dukes Stage, B, and C Colorectal Cancer. Clin Cancer Res. 2009; 15:7642-7651.
-
(2009)
Clin Cancer Res.
, vol.15
, pp. 7642-7651
-
-
Jorissen, R.N.1
Gibbs, P.2
Christie, M.3
Prakash, S.4
Lipton, L.5
Desai, J.6
Kerr, D.7
Aaltonen, L.A.8
Arango, D.9
Kruhoffer, M.10
Orntoft, T.F.11
Andersen, C.L.12
Gruidl, M.13
Kamath, V.P.14
Eschrich, S.15
Yeatman, T.J.16
-
52
-
-
77249143960
-
Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer
-
Smith JJ, Deane NG, Wu F, Merchant NB, Zhang B, Jiang A, Lu P, Johnson JC, Schmidt C, Bailey CE, Eschrich S, Kis C, Levy S, Washington MK, Heslin MJ, Coffey RJ, et al. Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology. 2010; 138:958-968.
-
(2010)
Gastroenterology.
, vol.138
, pp. 958-968
-
-
Smith, J.J.1
Deane, N.G.2
Wu, F.3
Merchant, N.B.4
Zhang, B.5
Jiang, A.6
Lu, P.7
Johnson, J.C.8
Schmidt, C.9
Bailey, C.E.10
Eschrich, S.11
Kis, C.12
Levy, S.13
Washington, M.K.14
Heslin, M.J.15
Coffey, R.J.16
|