메뉴 건너뛰기




Volumn 241, Issue 6, 2015, Pages 793-801

The identification of relationships between selected honey parameters by extracting the contribution of independent variables in a neural network model

Author keywords

Honey; Impedance; MLP neural network; Sensitivity analysis; Variables contribution s methods

Indexed keywords

COMPLEX NETWORKS; ELECTRIC IMPEDANCE; FOOD PRODUCTS; GLUCOSE; QUALITY CONTROL; SENSITIVITY ANALYSIS;

EID: 84942816457     PISSN: 14382377     EISSN: 14382385     Source Type: Journal    
DOI: 10.1007/s00217-015-2504-0     Document Type: Article
Times cited : (12)

References (52)
  • 1
    • 79960836525 scopus 로고    scopus 로고
    • Dielectric properties of honey adulterated with sucrose syrup
    • COI: 1:CAS:528:DC%2BC3MXptlyju7o%3D
    • Guo W, Liu Y, Zhu X, Wang S (2011) Dielectric properties of honey adulterated with sucrose syrup. J Food Eng 107:1–7
    • (2011) J Food Eng , vol.107 , pp. 1-7
    • Guo, W.1    Liu, Y.2    Zhu, X.3    Wang, S.4
  • 2
    • 21144436979 scopus 로고    scopus 로고
    • Characterisation of moroccan unifloral honeys using multivariate analysis
    • COI: 1:CAS:528:DC%2BD3sXpslChsbw%3D
    • Terrab A, Gonzalez AG, Diez MJ, Heredia FJ (2003) Characterisation of moroccan unifloral honeys using multivariate analysis. Eur Food Res Technol 218:88–95
    • (2003) Eur Food Res Technol , vol.218 , pp. 88-95
    • Terrab, A.1    Gonzalez, A.G.2    Diez, M.J.3    Heredia, F.J.4
  • 3
    • 79951782055 scopus 로고    scopus 로고
    • Floral markers in honey of various botanical and geographic origins: a review
    • COI: 1:CAS:528:DC%2BC3cXhsVOjur%2FM
    • Kaskoniene V, Venskutonis PR (2010) Floral markers in honey of various botanical and geographic origins: a review. Compr Rev Food Sci Food Saf 9:620–634
    • (2010) Compr Rev Food Sci Food Saf , vol.9 , pp. 620-634
    • Kaskoniene, V.1    Venskutonis, P.R.2
  • 4
    • 0031008065 scopus 로고    scopus 로고
    • Sugar profiles of spanish unifloral honeys
    • COI: 1:CAS:528:DyaK2sXjs1eqs7w%3D
    • Mateo R, BoschReig F (1997) Sugar profiles of spanish unifloral honeys. Food Chem 60:33–41
    • (1997) Food Chem , vol.60 , pp. 33-41
    • Mateo, R.1    BoschReig, F.2
  • 5
    • 84874937437 scopus 로고    scopus 로고
    • Characterization of Hatay honeys according to their multi-element analysis using icp-oes combined with chemometrics
    • COI: 1:CAS:528:DC%2BC3sXlsFSnsbs%3D
    • Yucel Y, Sultanoglu P (2013) Characterization of Hatay honeys according to their multi-element analysis using icp-oes combined with chemometrics. Food Chem 140:231–237
    • (2013) Food Chem , vol.140 , pp. 231-237
    • Yucel, Y.1    Sultanoglu, P.2
  • 6
    • 84881189367 scopus 로고    scopus 로고
    • Impedance spectroscopy for rapid determination of honey floral origin
    • COI: 1:CAS:528:DC%2BC3sXht12gtb%2FI
    • Scandurra G, Tripodi G, Verzera A (2013) Impedance spectroscopy for rapid determination of honey floral origin. J Food Eng 119:738–743
    • (2013) J Food Eng , vol.119 , pp. 738-743
    • Scandurra, G.1    Tripodi, G.2    Verzera, A.3
  • 7
    • 84899793655 scopus 로고    scopus 로고
    • A low-frequency sensor for determination of honey electrical properties in varying temperature conditions
    • Paszkowski B, Wilczek A, Szyplowska A, Nakonieczna A, Skierucha W (2014) A low-frequency sensor for determination of honey electrical properties in varying temperature conditions. J Food Eng 138:17–22
    • (2014) J Food Eng , vol.138 , pp. 17-22
    • Paszkowski, B.1    Wilczek, A.2    Szyplowska, A.3    Nakonieczna, A.4    Skierucha, W.5
  • 8
    • 84900037298 scopus 로고    scopus 로고
    • Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys
    • COI: 1:CAS:528:DC%2BC3sXitVWjsL%2FO
    • Juan-Borras M, Domenech E, Hellebrandova M, Escriche I (2014) Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys. Food Res Int 60:86–94
    • (2014) Food Res Int , vol.60 , pp. 86-94
    • Juan-Borras, M.1    Domenech, E.2    Hellebrandova, M.3    Escriche, I.4
  • 9
    • 84893779768 scopus 로고    scopus 로고
    • An efficient improved photovoltaic irrigation system with artificial neural network based modeling of soil moisture distribution: a case study in turkey
    • Dursun M, Ozden S (2014) An efficient improved photovoltaic irrigation system with artificial neural network based modeling of soil moisture distribution: a case study in turkey. Comput Electron Agric 102:120–126
    • (2014) Comput Electron Agric , vol.102 , pp. 120-126
    • Dursun, M.1    Ozden, S.2
  • 10
    • 84877706476 scopus 로고    scopus 로고
    • Modeling the dioxin emission of a municipal solid waste incinerator using neural networks
    • COI: 1:CAS:528:DC%2BC3sXlsVGrtLo%3D
    • Bunsan S, Chen W-Y, Chen H-W, Chuang YH, Grisdanurak N (2013) Modeling the dioxin emission of a municipal solid waste incinerator using neural networks. Chemosphere 92:258–264
    • (2013) Chemosphere , vol.92 , pp. 258-264
    • Bunsan, S.1    Chen, W.-Y.2    Chen, H.-W.3    Chuang, Y.H.4    Grisdanurak, N.5
  • 11
    • 84916943790 scopus 로고    scopus 로고
    • Hot air drying characteristics of mango ginger: prediction of drying kinetics by mathematical modeling and artificial neural network
    • COI: 1:CAS:528:DC%2BC2cXitVCgtLfE
    • Murthy TPK, Manohar B (2014) Hot air drying characteristics of mango ginger: prediction of drying kinetics by mathematical modeling and artificial neural network. J Food Sci Technol 51:3712–3721
    • (2014) J Food Sci Technol , vol.51 , pp. 3712-3721
    • Murthy, T.P.K.1    Manohar, B.2
  • 12
    • 84860420141 scopus 로고    scopus 로고
    • Eggshell crack detection based on computer vision and acoustic response by means of back-propagation artificial neural network
    • L-q Pan, Zhan G, Tu K, Tu S, Liu P (2011) Eggshell crack detection based on computer vision and acoustic response by means of back-propagation artificial neural network. Eur Food Res Technol 233:457–463
    • (2011) Eur Food Res Technol , vol.233 , pp. 457-463
    • L-q, P.1    Zhan, G.2    Tu, K.3    Tu, S.4    Liu, P.5
  • 13
    • 84906763968 scopus 로고    scopus 로고
    • The identification of the relationship between chemical and electrical parameters of honeys using artificial neural networks
    • Pentoś K, Łuczycka D, Wróbel R (2014) The identification of the relationship between chemical and electrical parameters of honeys using artificial neural networks. Comput Biol Med 53:244–249
    • (2014) Comput Biol Med , vol.53 , pp. 244-249
    • Pentoś, K.1    Łuczycka, D.2    Wróbel, R.3
  • 14
    • 84897029541 scopus 로고    scopus 로고
    • Honey characterization using computer vision system and artificial neural networks
    • COI: 1:CAS:528:DC%2BC2cXmslartrs%3D
    • Shafiee S, Minaei S, Moghaddam-Charkari N, Barzegar M (2014) Honey characterization using computer vision system and artificial neural networks. Food Chem 159:143–150
    • (2014) Food Chem , vol.159 , pp. 143-150
    • Shafiee, S.1    Minaei, S.2    Moghaddam-Charkari, N.3    Barzegar, M.4
  • 15
    • 84872125421 scopus 로고    scopus 로고
    • An artificial neural network approach to the estimation of stem water potential from frequency domain reflectometry soil moisture measurements and meteorological data
    • Marti P, Gasque M, Gonzalez-Altozano P (2013) An artificial neural network approach to the estimation of stem water potential from frequency domain reflectometry soil moisture measurements and meteorological data. Comput Electron Agric 91:75–86
    • (2013) Comput Electron Agric , vol.91 , pp. 75-86
    • Marti, P.1    Gasque, M.2    Gonzalez-Altozano, P.3
  • 16
    • 84884384458 scopus 로고    scopus 로고
    • Comparison of partial least squares and artificial neural network for the prediction of antioxidant activity in extract of pegaga (centella) varieties from h-1 nuclear magnetic resonance spectroscopy
    • COI: 1:CAS:528:DC%2BC3sXhs1Oqt7fK
    • Maulidiani Abas F, Khatib A, Shitan M, Shaari K, Lajis NH (2013) Comparison of partial least squares and artificial neural network for the prediction of antioxidant activity in extract of pegaga (centella) varieties from h-1 nuclear magnetic resonance spectroscopy. Food Res Int 54:852–860
    • (2013) Food Res Int , vol.54 , pp. 852-860
    • Maulidiani, A.F.1    Khatib, A.2    Shitan, M.3    Shaari, K.4    Lajis, N.H.5
  • 17
    • 84877596876 scopus 로고    scopus 로고
    • Artificial neural network modeling and optimization of ultrahigh pressure extraction of green tea polyphenols
    • COI: 1:CAS:528:DC%2BC3sXpsVCiurc%3D
    • Xi J, Xue Y, Xu Y, Shen Y (2013) Artificial neural network modeling and optimization of ultrahigh pressure extraction of green tea polyphenols. Food Chem 141:320–326
    • (2013) Food Chem , vol.141 , pp. 320-326
    • Xi, J.1    Xue, Y.2    Xu, Y.3    Shen, Y.4
  • 19
    • 84907706127 scopus 로고    scopus 로고
    • Artificial neural networks to identify naturally existing disease severity status
    • Waidyarathne KP, Samarasinghe S (2014) Artificial neural networks to identify naturally existing disease severity status. Neural Comput Appl 25:1031–1041
    • (2014) Neural Comput Appl , vol.25 , pp. 1031-1041
    • Waidyarathne, K.P.1    Samarasinghe, S.2
  • 21
    • 59049100083 scopus 로고    scopus 로고
    • Traceability of honey origin based on volatiles pattern processing by artificial neural networks
    • COI: 1:CAS:528:DC%2BD1MXhs1Cls78%3D
    • Cajka T, Hajslova J, Pudil F, Riddellova K (2009) Traceability of honey origin based on volatiles pattern processing by artificial neural networks. J Chromatogr A 1216:1458–1462
    • (2009) J Chromatogr A , vol.1216 , pp. 1458-1462
    • Cajka, T.1    Hajslova, J.2    Pudil, F.3    Riddellova, K.4
  • 22
    • 84919386098 scopus 로고    scopus 로고
    • Neural networks applied to discriminate botanical origin of honeys
    • COI: 1:CAS:528:DC%2BC2cXhvF2lsbbN
    • Anjos O, Iglesias C, Peres F, Martínez J, García Á, Taboada J (2015) Neural networks applied to discriminate botanical origin of honeys. Food Chem 175:128–136
    • (2015) Food Chem , vol.175 , pp. 128-136
    • Anjos, O.1    Iglesias, C.2    Peres, F.3    Martínez, J.4    García, Á.5    Taboada, J.6
  • 24
    • 84904734059 scopus 로고    scopus 로고
    • Pruning methods to mlp neural networks considering proportional apparent error rate for classification problems with unbalanced data
    • Silvestre MR, Ling LL (2014) Pruning methods to mlp neural networks considering proportional apparent error rate for classification problems with unbalanced data. Meas 56:88–94
    • (2014) Meas , vol.56 , pp. 88-94
    • Silvestre, M.R.1    Ling, L.L.2
  • 25
    • 84856076556 scopus 로고    scopus 로고
    • Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes
    • Nourani V, Fard MS (2012) Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Adv Eng Softw 47:127–146
    • (2012) Adv Eng Softw , vol.47 , pp. 127-146
    • Nourani, V.1    Fard, M.S.2
  • 26
    • 84896421866 scopus 로고    scopus 로고
    • Extracting the contribution of independent variables in neural network models: a new approach to handle instability
    • de Ona J, Garrido C (2014) Extracting the contribution of independent variables in neural network models: a new approach to handle instability. Neural Comput Appl 25:859–869
    • (2014) Neural Comput Appl , vol.25 , pp. 859-869
    • de Ona, J.1    Garrido, C.2
  • 27
    • 79954593174 scopus 로고    scopus 로고
    • Assessing the contribution of variables in feed forward neural network
    • Paliwal M, Kumar UA (2011) Assessing the contribution of variables in feed forward neural network. Appl Soft Comput 11:3690–3696
    • (2011) Appl Soft Comput , vol.11 , pp. 3690-3696
    • Paliwal, M.1    Kumar, U.A.2
  • 28
    • 67249115185 scopus 로고    scopus 로고
    • Combined use of HMF and furosine to assess fresh honey quality
    • COI: 1:CAS:528:DC%2BD1MXmvVagsro%3D
    • Morales V, Luz Sanz M, Martín-Álvarez PJ, Corzo N (2009) Combined use of HMF and furosine to assess fresh honey quality. J Sci Food Agric 89(8):1332–1338
    • (2009) J Sci Food Agric , vol.89 , Issue.8 , pp. 1332-1338
    • Morales, V.1    Luz Sanz, M.2    Martín-Álvarez, P.J.3    Corzo, N.4
  • 29
    • 84923308822 scopus 로고    scopus 로고
    • An investigation of Turkish honeys: their physico-chemical properties, antioxidant capacities and phenolic profiles
    • COI: 1:CAS:528:DC%2BC2MXislektrs%3D
    • Can Z, Yildiz O, Sahin H, Akyuz Turumtay E, Silici S, Kolayli S (2015) An investigation of Turkish honeys: their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem 180:133–141
    • (2015) Food Chem , vol.180 , pp. 133-141
    • Can, Z.1    Yildiz, O.2    Sahin, H.3    Akyuz Turumtay, E.4    Silici, S.5    Kolayli, S.6
  • 30
    • 3242658350 scopus 로고    scopus 로고
    • Characterisation of Spanish thyme honeys by their physicochemical characteristics and mineral contents
    • COI: 1:CAS:528:DC%2BD2cXlvFarsbw%3D
    • Terrab A, Recamales AF, Hernanz D, Heredia FJ (2004) Characterisation of Spanish thyme honeys by their physicochemical characteristics and mineral contents. Food Chem 88:537–542
    • (2004) Food Chem , vol.88 , pp. 537-542
    • Terrab, A.1    Recamales, A.F.2    Hernanz, D.3    Heredia, F.J.4
  • 32
    • 34548484614 scopus 로고    scopus 로고
    • Honey diastase activity modified by heating
    • COI: 1:CAS:528:DC%2BD2sXhtVerurrE
    • Tosi E, Martinet R, Ortega M, Lucero H, Ré E (2008) Honey diastase activity modified by heating. Food Chem 106(3):883–887
    • (2008) Food Chem , vol.106 , Issue.3 , pp. 883-887
    • Tosi, E.1    Martinet, R.2    Ortega, M.3    Lucero, H.4    Ré, E.5
  • 33
    • 84856048700 scopus 로고    scopus 로고
    • Quality parameters and antioxidant and antibacterial properties of some Mexican honeys
    • Rodríguez BA, Mendoza S, Iturriga MH, Castaño-Tostado E (2012) Quality parameters and antioxidant and antibacterial properties of some Mexican honeys. J Food Sci 77(1):C121–C127
    • (2012) J Food Sci , vol.77 , Issue.1 , pp. C121-C127
    • Rodríguez, B.A.1    Mendoza, S.2    Iturriga, M.H.3    Castaño-Tostado, E.4
  • 34
    • 84873581917 scopus 로고    scopus 로고
    • Quality characterization of artisanal and retail Turkish blossom honeys: determination of physicochemical, microbiological, bioactive properties and aroma profile
    • Tornuka F, Karamanb S, Ozturk I, Toker OS, Tastemur B, Sagdic O, Doganb M, Kayacier A (2013) Quality characterization of artisanal and retail Turkish blossom honeys: determination of physicochemical, microbiological, bioactive properties and aroma profile. Ind Crops Prod 46:124–131
    • (2013) Ind Crops Prod , vol.46 , pp. 124-131
    • Tornuka, F.1    Karamanb, S.2    Ozturk, I.3    Toker, O.S.4    Tastemur, B.5    Sagdic, O.6    Doganb, M.7    Kayacier, A.8
  • 35
    • 0000572561 scopus 로고
    • International commission for bee Botany of IUBS. Methods of melissopalynology
    • Louveaux J, Maurizio A, Vorwohl G (1978) International commission for bee Botany of IUBS. Methods of melissopalynology. Bee World 59:139–157
    • (1978) Bee World , vol.59 , pp. 139-157
    • Louveaux, J.1    Maurizio, A.2    Vorwohl, G.3
  • 37
    • 79960868614 scopus 로고    scopus 로고
    • Characteristics of Polish unifloral honeys. III Heather honey (Calluna vulgaris L.)
    • Waś E, Rybak-Chmielewska H, Szczęsna T, Kachaniuk K, Teper D (2011) Characteristics of Polish unifloral honeys. III Heather honey (Calluna vulgaris L.). J Apic Sci 55(1):129–137
    • (2011) J Apic Sci , vol.55 , Issue.1 , pp. 129-137
    • Waś, E.1    Rybak-Chmielewska, H.2    Szczęsna, T.3    Kachaniuk, K.4    Teper, D.5
  • 38
    • 70349134709 scopus 로고    scopus 로고
    • Determination of saccharides in multifloral honey by means of HPLC
    • Rybak-Chmielewska H, Szczęsna T (2003) Determination of saccharides in multifloral honey by means of HPLC. J Apic Sci 47(2):93–101
    • (2003) J Apic Sci , vol.47 , Issue.2 , pp. 93-101
    • Rybak-Chmielewska, H.1    Szczęsna, T.2
  • 39
    • 77956599609 scopus 로고    scopus 로고
    • Determination of hydroxymethylfurfural (HMF) in honey by HPLC
    • Szczęsna T, Rybak-Chmielewska H (1999) Determination of hydroxymethylfurfural (HMF) in honey by HPLC. Pszczeln Zesz Nauk 43(1):219–227
    • (1999) Pszczeln Zesz Nauk , vol.43 , Issue.1 , pp. 219-227
    • Szczęsna, T.1    Rybak-Chmielewska, H.2
  • 40
    • 0035937015 scopus 로고    scopus 로고
    • Prediction of retention times for anions in linear gradient elution ion chromatography with hydroxide eluents using artificial neural networks
    • COI: 1:CAS:528:DC%2BD3MXntl2jtw%3D%3D
    • Madden JE, Avdalovic N, Haddad PR, Havel J (2001) Prediction of retention times for anions in linear gradient elution ion chromatography with hydroxide eluents using artificial neural networks. J Chromatogr 910:173–179
    • (2001) J Chromatogr , vol.910 , pp. 173-179
    • Madden, J.E.1    Avdalovic, N.2    Haddad, P.R.3    Havel, J.4
  • 41
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron): a review of applications in the atmospheric sciences
    • COI: 1:CAS:528:DyaK1cXks1Crs7c%3D
    • Gardner MW, Dorling SR (1998) Artificial neural networks (the multilayer perceptron): a review of applications in the atmospheric sciences. Atmos Environ 32:2627–2636
    • (1998) Atmos Environ , vol.32 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 42
    • 0034213103 scopus 로고    scopus 로고
    • Basic concepts of artificial neural network (ann) modeling and its application in pharmaceutical research
    • COI: 1:CAS:528:DC%2BD3cXisFGqsrY%3D
    • Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of artificial neural network (ann) modeling and its application in pharmaceutical research. J Pharm Biomed Anal 22:717–727
    • (2000) J Pharm Biomed Anal , vol.22 , pp. 717-727
    • Agatonovic-Kustrin, S.1    Beresford, R.2
  • 43
    • 84942819203 scopus 로고    scopus 로고
    • http://documentation.statsoft.com/
  • 44
    • 79958003282 scopus 로고    scopus 로고
    • A neural network based modelling and sensitivity analysis of damage ratio coefficient
    • Hadzima-Nyarko M, Nyarko EK, Moric D (2011) A neural network based modelling and sensitivity analysis of damage ratio coefficient. Expert Syst Appl 38:13405–13413
    • (2011) Expert Syst Appl , vol.38 , pp. 13405-13413
    • Hadzima-Nyarko, M.1    Nyarko, E.K.2    Moric, D.3
  • 46
    • 0002206019 scopus 로고
    • Use of some sensitivity criteria for choosing networks with good generalization ability
    • Dimopoulos Y, Bourret P, Lek S (1995) Use of some sensitivity criteria for choosing networks with good generalization ability. Neural Process Lett 2:1–4
    • (1995) Neural Process Lett , vol.2 , pp. 1-4
    • Dimopoulos, Y.1    Bourret, P.2    Lek, S.3
  • 47
    • 84876591555 scopus 로고    scopus 로고
    • Sensitivity analysis of the artificial neural network outputs in friction stir lap joining of aluminum to brass
    • Shojaeefard MH, Akbari M, Tahani M, Farhani F (2013) Sensitivity analysis of the artificial neural network outputs in friction stir lap joining of aluminum to brass. Adv Mater Sci Eng 2013:1–7
    • (2013) Adv Mater Sci Eng , vol.2013 , pp. 1-7
    • Shojaeefard, M.H.1    Akbari, M.2    Tahani, M.3    Farhani, F.4
  • 48
    • 0001867238 scopus 로고
    • Interpreting neural-network connection weights
    • Garson GD (1991) Interpreting neural-network connection weights. AI Expert 6:46–51
    • (1991) AI Expert , vol.6 , pp. 46-51
    • Garson, G.D.1
  • 49
    • 0037442845 scopus 로고    scopus 로고
    • Review and comparison of methods to study the contribution of variables in artificial neural network models
    • Gevrey M, Dimopoulos L, Lek S (2003) Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol Model 160:249–264
    • (2003) Ecol Model , vol.160 , pp. 249-264
    • Gevrey, M.1    Dimopoulos, L.2    Lek, S.3
  • 50
    • 79959651275 scopus 로고    scopus 로고
    • On reliability of neural network sensitivity analysis applied for sensor array optimization
    • COI: 1:CAS:528:DC%2BC3MXnvF2itbc%3D
    • Szecowka PM, Szczurek A, Licznerski BW (2011) On reliability of neural network sensitivity analysis applied for sensor array optimization. Sens Actuators B 157:298–303
    • (2011) Sens Actuators B , vol.157 , pp. 298-303
    • Szecowka, P.M.1    Szczurek, A.2    Licznerski, B.W.3
  • 51
    • 50249117724 scopus 로고    scopus 로고
    • Limitations of sensitivity analysis neural networks in cases with dependent inputs. In: IEEE international conference on computational cybernetics
    • Mazurowski MA, Szecówka PM (2006) Limitations of sensitivity analysis neural networks in cases with dependent inputs. In: IEEE international conference on computational cybernetics, pp 1–5
    • (2006) pp 1–5
    • Mazurowski, M.A.1    Szecówka, P.M.2
  • 52
    • 74149088534 scopus 로고    scopus 로고
    • Selecting variables for habitat suitability of asellus (crustacea, isopoda) by applying input variable contribution methods to artificial neural network models
    • Mouton AM, Dedecker AP, Lek S, Goethals PLM (2010) Selecting variables for habitat suitability of asellus (crustacea, isopoda) by applying input variable contribution methods to artificial neural network models. Environ Model Assess 15:65–79
    • (2010) Environ Model Assess , vol.15 , pp. 65-79
    • Mouton, A.M.1    Dedecker, A.P.2    Lek, S.3    Goethals, P.L.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.