메뉴 건너뛰기




Volumn 25, Issue 3-4, 2014, Pages 859-869

Extracting the contribution of independent variables in neural network models: A new approach to handle instability

Author keywords

Black box; Importance ranking; Instability; Neural networks; Variables contribution's methods

Indexed keywords

CUSTOMER SATISFACTION; NETWORK ARCHITECTURE; NEURAL NETWORKS; PLASMA STABILITY;

EID: 84896421866     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-014-1573-5     Document Type: Article
Times cited : (93)

References (55)
  • 1
    • 78649396034 scopus 로고    scopus 로고
    • A neural network (NN) model to predict intersection crashes based upon driver, vehicle and roadway surface characteristics
    • Akin D, Akbaç B (2010) A neural network (NN) model to predict intersection crashes based upon driver, vehicle and roadway surface characteristics. Sci Res Essays 5(19): 2837-2847.
    • (2010) Sci Res Essays , vol.5 , Issue.19 , pp. 2837-2847
    • Akin, D.1    Akbaç, B.2
  • 2
    • 79956363432 scopus 로고    scopus 로고
    • An adaptative neural network algorithm for assessment and improvement of job satisfaction with respect to HSE and ergonomics program: the case of a gas refinery
    • Azadeh A, Rouzbahman M, Saberi M, Fam IM (2011) An adaptative neural network algorithm for assessment and improvement of job satisfaction with respect to HSE and ergonomics program: the case of a gas refinery. J Loss Prev Process Ind 24: 361-370.
    • (2011) J Loss Prev Process Ind , vol.24 , pp. 361-370
    • Azadeh, A.1    Rouzbahman, M.2    Saberi, M.3    Fam, I.M.4
  • 4
    • 52349087908 scopus 로고    scopus 로고
    • Neural network committee-based sensitivity analysis strategy for geotechnical engineering problems
    • Cao M, Qiao P (2008) Neural network committee-based sensitivity analysis strategy for geotechnical engineering problems. Neural Comput Appl 17: 509-519.
    • (2008) Neural Comput Appl , vol.17 , pp. 509-519
    • Cao, M.1    Qiao, P.2
  • 6
    • 84871386793 scopus 로고    scopus 로고
    • Using sensitivity analysis and visualization techniques to open black box data mining models
    • Cortez P, Embrechts MJ (2013) Using sensitivity analysis and visualization techniques to open black box data mining models. Inf Sci 225: 1-17.
    • (2013) Inf Sci , vol.225 , pp. 1-17
    • Cortez, P.1    Embrechts, M.J.2
  • 7
    • 84861183891 scopus 로고    scopus 로고
    • A classification tree approach to identify key factors of transit service quality
    • De Oña J, De Oña R, Calvo FJ (2012) A classification tree approach to identify key factors of transit service quality. Expert Syst Appl 39: 11164-11171.
    • (2012) Expert Syst Appl , vol.39 , pp. 11164-11171
    • De Oña, J.1    De Oña, R.2    Calvo, F.J.3
  • 8
    • 84882600126 scopus 로고    scopus 로고
    • Perceived service quality in bus transit service: a structural equation approach
    • De Oña J, De Oña R, Eboli L, Mazzulla G (2013) Perceived service quality in bus transit service: a structural equation approach. Transp Policy 29: 219-226.
    • (2013) Transp Policy , vol.29 , pp. 219-226
    • De Oña, J.1    De Oña, R.2    Eboli, L.3    Mazzulla, G.4
  • 9
    • 33644889643 scopus 로고    scopus 로고
    • Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks
    • Delen D, Sharda R, Bessonov M (2006) Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks. Accid Anal Prev 38: 434-444.
    • (2006) Accid Anal Prev , vol.38 , pp. 434-444
    • Delen, D.1    Sharda, R.2    Bessonov, M.3
  • 10
    • 77956176173 scopus 로고    scopus 로고
    • Modelling user perception of bus transit quality
    • Dell'Olio L, Ibeas A, Cecín P (2010) Modelling user perception of bus transit quality. Transp Policy 17(6): 388-397.
    • (2010) Transp Policy , vol.17 , Issue.6 , pp. 388-397
    • Dell'Olio, L.1    Ibeas, A.2    Cecín, P.3
  • 11
    • 78349311742 scopus 로고    scopus 로고
    • The quality of service desired by public transport users
    • Dell'Olio L, Ibeas A, Cecín P (2011) The quality of service desired by public transport users. Transp Policy 18(1): 217-227.
    • (2011) Transp Policy , vol.18 , Issue.1 , pp. 217-227
    • Dell'Olio, L.1    Ibeas, A.2    Cecín, P.3
  • 12
    • 0002206019 scopus 로고
    • Use of some sensitivity criteria for choosing networks with good generalization ability
    • Dimopoulos Y, Bourret P, Lek S (1995) Use of some sensitivity criteria for choosing networks with good generalization ability. Neural Process Lett 2: 1-4.
    • (1995) Neural Process Lett , vol.2 , pp. 1-4
    • Dimopoulos, Y.1    Bourret, P.2    Lek, S.3
  • 13
    • 85098747582 scopus 로고    scopus 로고
    • Willingness-to-pay of public transport users for improvement in service quality
    • Eboli L, Mazulla G (2008) Willingness-to-pay of public transport users for improvement in service quality. Eur Transp 38: 107-118.
    • (2008) Eur Transp , vol.38 , pp. 107-118
    • Eboli, L.1    Mazulla, G.2
  • 14
    • 77954268378 scopus 로고    scopus 로고
    • How to capture the passengers' point of view on a transit service through rating and choice opinions
    • Eboli L, Mazulla G (2010) How to capture the passengers' point of view on a transit service through rating and choice opinions. Transp Rev 30: 435-450.
    • (2010) Transp Rev , vol.30 , pp. 435-450
    • Eboli, L.1    Mazulla, G.2
  • 15
    • 84947430650 scopus 로고
    • Determining the significance of input parameters using sensitivity analysis, from natural to artificial neural computation
    • Málaga-Torremolinos, Springer, Spain
    • Engelbrecht AP, Cloete I, Zurada JM (1995) Determining the significance of input parameters using sensitivity analysis, from natural to artificial neural computation. In: proceedings of International Workshop on Artificial Neural Networks. Málaga-Torremolinos, Springer, Spain, pp 382-388.
    • (1995) Proceedings of International Workshop on Artificial Neural Networks , pp. 382-388
    • Engelbrecht, A.P.1    Cloete, I.2    Zurada, J.M.3
  • 16
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi KI (1989) On the approximate realization of continuous mappings by neural networks. Neural Netw 2: 183-192.
    • (1989) Neural Netw , vol.2 , pp. 183-192
    • Funahashi, K.I.1
  • 17
    • 0001867238 scopus 로고
    • Interpreting neural-network connection weights
    • Garson GD (1991) Interpreting neural-network connection weights. Artif Intell Expert 6: 47-51.
    • (1991) Artif Intell Expert , vol.6 , pp. 47-51
    • Garson, G.D.1
  • 18
    • 84902675588 scopus 로고
    • Balancing the bias and variance: network topology and pattern set reduction techniques
    • IWANN95, Torremolinos, España
    • Gedeon, T. D., Wong, P. M. & Harris, D., (1995). Balancing the bias and variance: network topology and pattern set reduction techniques. In: proceedings of International Workshop on Artificial Neural Networks, IWANN95, Torremolinos, España, pp 550-558.
    • (1995) Proceedings of International Workshop on Artificial Neural Networks , pp. 550-558
    • Gedeon, T.D.1    Wong, P.M.2    Harris, D.3
  • 19
    • 0031114560 scopus 로고    scopus 로고
    • Data mining of inputs: analyzing magnitude of functional measures
    • Gedeon TD (1997) Data mining of inputs: analyzing magnitude of functional measures. Int J Neural Syst 8(2): 209-218.
    • (1997) Int J Neural Syst , vol.8 , Issue.2 , pp. 209-218
    • Gedeon, T.D.1
  • 20
    • 0037442845 scopus 로고    scopus 로고
    • Review and comparison of methods to study the contribution of variables in artificial neural network models
    • Gevrey M, Dimopoulos I, Lek S (2003) Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol Model 160: 249-264.
    • (2003) Ecol Model , vol.160 , pp. 249-264
    • Gevrey, M.1    Dimopoulos, I.2    Lek, S.3
  • 21
    • 33646491431 scopus 로고    scopus 로고
    • Two-way interaction of input variables in the sensitivity analysis of neural network models
    • Gevrey M, Dimopoulos I, Lek S (2006) Two-way interaction of input variables in the sensitivity analysis of neural network models. Ecol Model 195: 43-50.
    • (2006) Ecol Model , vol.195 , pp. 43-50
    • Gevrey, M.1    Dimopoulos, I.2    Lek, S.3
  • 22
    • 0029223565 scopus 로고
    • Back-propagation neural networks for modeling complex systems
    • Goh ATC (1995) Back-propagation neural networks for modeling complex systems. Artif Intell Eng 9: 143-151.
    • (1995) Artif Intell Eng , vol.9 , pp. 143-151
    • Goh, A.T.C.1
  • 23
    • 0003593041 scopus 로고    scopus 로고
    • 0-9717321-0-8, Colorado: Campus Publishing Service, Colorado University Bookstore
    • Hagan MT, Demuth HB, Beale MH (1996) Neural network design. Campus Publishing Service, Colorado University Bookstore, Colorado. ISBN 0-9717321-0-8.
    • (1996) Neural Network Design
    • Hagan, M.T.1    Demuth, H.B.2    Beale, M.H.3
  • 24
    • 0348221663 scopus 로고    scopus 로고
    • A neural network for prediction of oil well cement bonding quality
    • IASTED-ACTA Press, Cancun-Mexico
    • He F, Sung AH, Guo B (1997) A neural network for prediction of oil well cement bonding quality. In: proceedings of IASTED international conference on control, IASTED-ACTA Press, Cancun-Mexico, pp 417-420.
    • (1997) Proceedings of IASTED international conference on control , pp. 417-420
    • He, F.1    Sung, A.H.2    Guo, B.3
  • 25
    • 0033623037 scopus 로고    scopus 로고
    • Application of neural networks and sensitivity analysis to improved prediction of trauma survival
    • Hunter A, Kennedy L, Henry J, Ferguson I (2000) Application of neural networks and sensitivity analysis to improved prediction of trauma survival. Comput Methods Progr Biomed 62: 11-19.
    • (2000) Comput Methods Progr Biomed , vol.62 , pp. 11-19
    • Hunter, A.1    Kennedy, L.2    Henry, J.3    Ferguson, I.4
  • 26
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stichcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2: 359-366.
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1    Stichcombe, M.2    White, H.3
  • 27
    • 34247525561 scopus 로고    scopus 로고
    • An approach for determining relative input parameter importance and significance in artificial neural networks
    • Kemp SL, Zaradic P, Hansen F (2007) An approach for determining relative input parameter importance and significance in artificial neural networks. Ecol Model 204: 326-334.
    • (2007) Ecol Model , vol.204 , pp. 326-334
    • Kemp, S.L.1    Zaradic, P.2    Hansen, F.3
  • 28
    • 0034187691 scopus 로고    scopus 로고
    • Data strip mining for the virtual design of pharmaceuticals with neural networks
    • Kewley R, Embrechts M, Breneman C (2000) Data strip mining for the virtual design of pharmaceuticals with neural networks. IEEE Trans Neural Netw 11(3): 668-679.
    • (2000) IEEE Trans Neural Netw , vol.11 , Issue.3 , pp. 668-679
    • Kewley, R.1    Embrechts, M.2    Breneman, C.3
  • 29
    • 0028994908 scopus 로고
    • Improved estimation, using neural networks, of the food consumption of fish populations
    • Lek S, Beland A, Dimopoulos I, Lauga J, Moreau J (1995) Improved estimation, using neural networks, of the food consumption of fish populations. Mar Freshw Res 46(8): 1229-1236.
    • (1995) Mar Freshw Res , vol.46 , Issue.8 , pp. 1229-1236
    • Lek, S.1    Beland, A.2    Dimopoulos, I.3    Lauga, J.4    Moreau, J.5
  • 31
    • 0029661447 scopus 로고    scopus 로고
    • Role of some environmental variables in trout abundance models using neural networks
    • Lek S, Beland A, Baran P, Dimopoulos I, Delacoste M (1996) Role of some environmental variables in trout abundance models using neural networks. Aquat Living Resour 9: 23-29.
    • (1996) Aquat Living Resour , vol.9 , pp. 23-29
    • Lek, S.1    Beland, A.2    Baran, P.3    Dimopoulos, I.4    Delacoste, M.5
  • 32
    • 84941531642 scopus 로고
    • A new approach to fuzzy-neural system modeling
    • Lin Y, Cunningham GA (1995) A new approach to fuzzy-neural system modeling. IEEE Trans Fuzzy Syst 3(2): 190-198.
    • (1995) IEEE Trans Fuzzy Syst , vol.3 , Issue.2 , pp. 190-198
    • Lin, Y.1    Cunningham, G.A.2
  • 35
    • 85099429702 scopus 로고    scopus 로고
    • Prediction of accident severity using artificial neural networks
    • Moghaddam FR, Afandizadeh S, Ziyadi M (2010) Prediction of accident severity using artificial neural networks. Int J Civ Eng 9: 1.
    • (2010) Int J Civ Eng , vol.9 , pp. 1
    • Moghaddam, F.R.1    Afandizadeh, S.2    Ziyadi, M.3
  • 36
    • 60749097662 scopus 로고    scopus 로고
    • The optimization of the geometric cross-section dimensions of raised pedestrian crosswalks: a case of study in Qazvin
    • Mohammadipour AH, Alavi SH (2009) The optimization of the geometric cross-section dimensions of raised pedestrian crosswalks: a case of study in Qazvin. Accid Anal Prev 41: 314-326.
    • (2009) Accid Anal Prev , vol.41 , pp. 314-326
    • Mohammadipour, A.H.1    Alavi, S.H.2
  • 37
    • 0032588286 scopus 로고    scopus 로고
    • An analysis of urban collisions using an artificial intelligence model
    • Mussone L, Ferrari A, Oneta M (1999) An analysis of urban collisions using an artificial intelligence model. Accid Anal Prev 31: 705-718.
    • (1999) Accid Anal Prev , vol.31 , pp. 705-718
    • Mussone, L.1    Ferrari, A.2    Oneta, M.3
  • 38
    • 0037102687 scopus 로고    scopus 로고
    • Illuminating the "black-box": a randomization approach for understanding variable contributions in artificial neural networks
    • Olden JD, Jackson DA (2002) Illuminating the "black-box": a randomization approach for understanding variable contributions in artificial neural networks. Ecol Model 154: 135-150.
    • (2002) Ecol Model , vol.154 , pp. 135-150
    • Olden, J.D.1    Jackson, D.A.2
  • 39
    • 3242721368 scopus 로고    scopus 로고
    • An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
    • Olden JD, Joy MK, Death RG (2004) An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol Model 178: 389-397.
    • (2004) Ecol Model , vol.178 , pp. 389-397
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3
  • 40
    • 0033105068 scopus 로고    scopus 로고
    • An artificial neural network approach to spatial habitat modeling with interspecific interaction
    • Özesmi SL, Özesmi U (1999) An artificial neural network approach to spatial habitat modeling with interspecific interaction. Ecol Model 116: 15-31.
    • (1999) Ecol Model , vol.116 , pp. 15-31
    • Özesmi, S.L.1    Özesmi, U.2
  • 41
    • 79954593174 scopus 로고    scopus 로고
    • Assessing the contribution of variables in feed forward neural network
    • Paliwal M, Kumar UA (2011) Assessing the contribution of variables in feed forward neural network. Appl Soft Comput 11: 3690-3696.
    • (2011) Appl Soft Comput , vol.11 , pp. 3690-3696
    • Paliwal, M.1    Kumar, U.A.2
  • 44
    • 0344961870 scopus 로고    scopus 로고
    • Numeric sensitivity analysis applied to feed forward neural networks
    • Palmer A, Montaño JJ (2003) Numeric sensitivity analysis applied to feed forward neural networks. Neural Comput Appl 12: 119-125.
    • (2003) Neural Comput Appl , vol.12 , pp. 119-125
    • Palmer, A.1    Montaño, J.J.2
  • 47
    • 0022471098 scopus 로고
    • Learning representations by backpropagation errors
    • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by backpropagation errors. Nature 323: 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 48
    • 0033578446 scopus 로고    scopus 로고
    • Developing an empirical model of phytoplankton primary production: a neural networks case study
    • Scardi M, Harding LW (1999) Developing an empirical model of phytoplankton primary production: a neural networks case study. Ecol Model 120(2-3): 213-223.
    • (1999) Ecol Model , vol.120 , Issue.2-3 , pp. 213-223
    • Scardi, M.1    Harding, L.W.2
  • 49
    • 0000671231 scopus 로고    scopus 로고
    • Ranking importance of input parameters of neural networks
    • Sung AH (1998) Ranking importance of input parameters of neural networks. Expert Syst Appl 15: 405-411.
    • (1998) Expert Syst Appl , vol.15 , pp. 405-411
    • Sung, A.H.1
  • 50
    • 40949093593 scopus 로고    scopus 로고
    • Using artificial neural networks to determine the relative contribution of abiotic factors influencing the establishment of insect pest species
    • Watts MJ, Worner SP (2008) Using artificial neural networks to determine the relative contribution of abiotic factors influencing the establishment of insect pest species. Ecol Inform 3: 64-74.
    • (2008) Ecol Inform , vol.3 , pp. 64-74
    • Watts, M.J.1    Worner, S.P.2
  • 52
    • 0032268711 scopus 로고    scopus 로고
    • Forecasting and analysis of marketing data using neural networks
    • Yao J, Teng N, Poh HL, Tan CL (1998) Forecasting and analysis of marketing data using neural networks. J Inf Sci Eng 14: 843-862.
    • (1998) J Inf Sci Eng , vol.14 , pp. 843-862
    • Yao, J.1    Teng, N.2    Poh, H.L.3    Tan, C.L.4
  • 53
    • 77952542781 scopus 로고    scopus 로고
    • First and second order sensitivity analysis of MLP
    • Yeh I, Cheng W (2010) First and second order sensitivity analysis of MLP. Neurocomputing 73: 2225-2233.
    • (2010) Neurocomputing , vol.73 , pp. 2225-2233
    • Yeh, I.1    Cheng, W.2
  • 54
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • Zhou ZH, Wu J, Tang W (2002) Ensembling neural networks: many could be better than all. Artif Intell 137(1-2): 239-263.
    • (2002) Artif Intell , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.