메뉴 건너뛰기




Volumn 182, Issue 2, 2005, Pages 149-158

Unbiased sensitivity analysis and pruning techniques in neural networks for surface ozone modelling

Author keywords

Forecasting; Neural networks; Non linear models; Sensitivity analysis; Tropospheric ozone

Indexed keywords

PRUNING TECHNIQUES; SURFACE OZONE MODELING;

EID: 11444255160     PISSN: 03043800     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ecolmodel.2004.07.015     Document Type: Article
Times cited : (70)

References (48)
  • 1
    • 0017862932 scopus 로고
    • Association of oxidant episodes with warm stagnating anticyclones
    • A.P. Alsthuller Association of oxidant episodes with warm stagnating anticyclones J. Air Pollut. Control Assoc. 28 1978 152 155
    • (1978) J. Air Pollut. Control Assoc. , vol.28 , pp. 152-155
    • Alsthuller, A.P.1
  • 3
    • 0037107821 scopus 로고    scopus 로고
    • Effective 1-day ahead prediction of hourly surface ozone concentrations in eastern Spain using linear models and neural networks
    • E. Balaguer, G. Camps, J.L. Carrasco, E. Soria, and S. del Valle Effective 1-day ahead prediction of hourly surface ozone concentrations in eastern Spain using linear models and neural networks Ecol. Modell. 156 2002 27 41
    • (2002) Ecol. Modell. , vol.156 , pp. 27-41
    • Balaguer, E.1    Camps, G.2    Carrasco, J.L.3    Soria, E.4    Del Valle, S.5
  • 4
    • 0004990788 scopus 로고    scopus 로고
    • Mathematical programming for data mining: Formulations and challenges
    • P.S. Bradley, U.M. Fayyad, and O.L. Mangasarian Mathematical programming for data mining: formulations and challenges Informs J. Comput. 3 11 1998 217 238
    • (1998) Informs J. Comput. , vol.3 , Issue.11 , pp. 217-238
    • Bradley, P.S.1    Fayyad, U.M.2    Mangasarian, O.L.3
  • 6
    • 0022206864 scopus 로고
    • Photochemical ozone pollution
    • I. Colbeck Photochemical ozone pollution Weather 40 1985 241 245
    • (1985) Weather , vol.40 , pp. 241-245
    • Colbeck, I.1
  • 7
    • 0031172117 scopus 로고    scopus 로고
    • Comparing neural networks and regression models for ozone forecasting
    • A.C. Comrie Comparing neural networks and regression models for ozone forecasting J. Air Waste Manag. Assoc. 47 1997 653 663
    • (1997) J. Air Waste Manag. Assoc. , vol.47 , pp. 653-663
    • Comrie, A.C.1
  • 9
    • 0033962994 scopus 로고    scopus 로고
    • Statistical surface ozone models: An improved methodology to account for non-linear behaviour
    • M.W. Gardner, and S.R. Dorling Statistical surface ozone models: an improved methodology to account for non-linear behaviour Atmospheric Environ. 34 1999 21 34
    • (1999) Atmospheric Environ. , vol.34 , pp. 21-34
    • Gardner, M.W.1    Dorling, S.R.2
  • 10
    • 0037442845 scopus 로고    scopus 로고
    • Review and comparison of methods to study the contribution of variables in artificial neural network models
    • M. Gevrey, L. Dimopoulos, and S. Lek Review and comparison of methods to study the contribution of variables in artificial neural network models Ecol. Modell. 160 2003 249 264
    • (2003) Ecol. Modell. , vol.160 , pp. 249-264
    • Gevrey, M.1    Dimopoulos, L.2    Lek, S.3
  • 11
    • 5644289218 scopus 로고
    • Using modular neural networks to monitor accident conditions in nuclear power plants, SPIE
    • Z. Guo, and R.E. Uhrig Using modular neural networks to monitor accident conditions in nuclear power plants, SPIE In: Applications of Artificial Neural Networks III. 1709 1992 pp. 505-516
    • (1992) In: Applications of Artificial Neural Networks III. , vol.1709
    • Guo, Z.1    Uhrig, R.E.2
  • 12
    • 0032768619 scopus 로고    scopus 로고
    • A comparision of modeling nonlinear systems with artificial neural networks and partial least squares
    • L. Hadjiiski, P. Geladi, and P. Hopke A comparision of modeling nonlinear systems with artificial neural networks and partial least squares Chemom. Intell. Lab. Syst. 49 1999 91 103
    • (1999) Chemom. Intell. Lab. Syst. , vol.49 , pp. 91-103
    • Hadjiiski, L.1    Geladi, P.2    Hopke, P.3
  • 13
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning: Optimal brain surgeon
    • Hanson, S.J., Cowan, J.D., Giles, C.L. (Eds.)
    • Hassibi, B., Stork, D.G., 1993. Second order derivatives for network pruning: optimal brain surgeon. In: Hanson, S.J., Cowan, J.D., Giles, C.L. (Eds.), Advances in Neural Information Processing Systems, vol. 5, pp. 164-171.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 164-171
    • Hassibi, B.1    Stork, D.G.2
  • 16
    • 0003178963 scopus 로고
    • Distribution feeder loss analysis by using an artificial neural network
    • C.T. Hsu, Y.M. Tzeng, C.S. Chen, and M.Y. Cho Distribution feeder loss analysis by using an artificial neural network Electric Power Syst. Res. 34 1995 85 90
    • (1995) Electric Power Syst. Res. , vol.34 , pp. 85-90
    • Hsu, C.T.1    Tzeng, Y.M.2    Chen, C.S.3    Cho, M.Y.4
  • 17
    • 0029881467 scopus 로고    scopus 로고
    • The effects of ambient ozone on lung function in children: A reanalysis of six summer camp studies
    • P.L. Kinney, G.D. Thurston, and M. Raizenne The effects of ambient ozone on lung function in children: a reanalysis of six summer camp studies Environ. Health Perspect. 104 1996 170 174
    • (1996) Environ. Health Perspect. , vol.104 , pp. 170-174
    • Kinney, P.L.1    Thurston, G.D.2    Raizenne, M.3
  • 18
    • 0034739912 scopus 로고    scopus 로고
    • Neural networks and periodic components used in air quality forecasting
    • M. Kolehmainen, H. Martikainen, and J. Ruuskanen Neural networks and periodic components used in air quality forecasting Atmospheric Environ. 35 2001 815 825
    • (2001) Atmospheric Environ. , vol.35 , pp. 815-825
    • Kolehmainen, M.1    Martikainen, H.2    Ruuskanen, J.3
  • 19
    • 0027337508 scopus 로고
    • Use of tobacco cultivars as biological indicators of ambient ozone pollution: An analysis of exposure-response ralationships
    • S.V. Krupa, W.J. Manning, and M. Nosal Use of tobacco cultivars as biological indicators of ambient ozone pollution: An analysis of exposure-response ralationships Environ. Pollut. 81 1993 137 146
    • (1993) Environ. Pollut. , vol.81 , pp. 137-146
    • Krupa, S.V.1    Manning, W.J.2    Nosal, M.3
  • 20
    • 0028184623 scopus 로고
    • Ambient ozone and crop loss: Establishing a cause-effect relationship
    • S.V. Krupa, M. Nosal, and A.H. Legge Ambient ozone and crop loss: establishing a cause-effect relationship Environ. Pollut. 83 1994 269 276
    • (1994) Environ. Pollut. , vol.83 , pp. 269-276
    • Krupa, S.V.1    Nosal, M.2    Legge, A.H.3
  • 21
    • 0025869978 scopus 로고
    • An air quality data analysis system for interrelating effects, standards, and needed source reductions. Part II: A log-normal model relating human lung function decrease to ozone exposure
    • R.I. Larsen, W.F. McDonell, and D.H. Hortsman An air quality data analysis system for interrelating effects, standards, and needed source reductions. Part II: A log-normal model relating human lung function decrease to ozone exposure J. Waste Manag. Assoc. 41 4 1991 455 459
    • (1991) J. Waste Manag. Assoc. , vol.41 , Issue.4 , pp. 455-459
    • Larsen, R.I.1    McDonell, W.F.2    Hortsman, D.H.3
  • 23
    • 0001324493 scopus 로고
    • Qambient ozone and adverse crop response: An evaluation of North American and European data as they relate to exposure indices and critical levels
    • A.H. Legge, L. Grünhage, M. Nosal, H.J. Jägger, and S.V. Krupa Qambient ozone and adverse crop response: an evaluation of North American and European data as they relate to exposure indices and critical levels J. Appl. Bot. 69 1995 192 205
    • (1995) J. Appl. Bot. , vol.69 , pp. 192-205
    • Legge, A.H.1    Grünhage, L.2    Nosal, M.3    Jägger, H.J.4    Krupa, S.V.5
  • 24
    • 0030428001 scopus 로고    scopus 로고
    • Application of neural networks to modelling non-linear relationship in ecology
    • S. Lek, M. Delacoste, P. Baran, I. Dimopoulus, J. Lauga, and S. Aulagnier Application of neural networks to modelling non-linear relationship in ecology Ecol. Modell. 90 1 1996 39 52
    • (1996) Ecol. Modell. , vol.90 , Issue.1 , pp. 39-52
    • Lek, S.1    Delacoste, M.2    Baran, P.3    Dimopoulus, I.4    Lauga, J.5    Aulagnier, S.6
  • 25
  • 27
    • 0016491465 scopus 로고
    • Linear stochastic models for forecasting daily maxima and hourly concentrations of air pollutants
    • G.M. McCollister, and K.R. Wilson Linear stochastic models for forecasting daily maxima and hourly concentrations of air pollutants Atmospheric Environ. 9 1975 417 423
    • (1975) Atmospheric Environ. , vol.9 , pp. 417-423
    • McCollister, G.M.1    Wilson, K.R.2
  • 28
    • 0032170668 scopus 로고    scopus 로고
    • The application of neural techniques to the modelling of time series of atmospheric pollution data
    • G. Nunnari, A.F.M. Nucifiora, and C. Radineri The application of neural techniques to the modelling of time series of atmospheric pollution data Ecol. Modell. 111 1998 187 205
    • (1998) Ecol. Modell. , vol.111 , pp. 187-205
    • Nunnari, G.1    Nucifiora, A.F.M.2    Radineri, C.3
  • 29
    • 0037102687 scopus 로고    scopus 로고
    • Illuminating the "black-box": A randomisation approach for understanding variable contributions in artificial neural networks
    • D.O. Olden, and D.A. Jackson Illuminating the "black-box": a randomisation approach for understanding variable contributions in artificial neural networks Ecol. Modell. 154 2002 135 150
    • (2002) Ecol. Modell. , vol.154 , pp. 135-150
    • Olden, D.O.1    Jackson, D.A.2
  • 31
    • 0000903874 scopus 로고    scopus 로고
    • Soft computing for feature analysis
    • N.R. Pal Soft computing for feature analysis Fuzzy Sets Syst. 103 1999 201 221
    • (1999) Fuzzy Sets Syst. , vol.103 , pp. 201-221
    • Pal, N.R.1
  • 32
    • 0031591149 scopus 로고    scopus 로고
    • Prediction of functional characteristics of ecosystems: A comparison of artificial neural networks and regression models
    • J.M. Paruelo, and F. Tomasel Prediction of functional characteristics of ecosystems: a comparison of artificial neural networks and regression models Ecol. Modell. 98 2-3 1997 173 186
    • (1997) Ecol. Modell. , vol.98 , Issue.23 , pp. 173-186
    • Paruelo, J.M.1    Tomasel, F.2
  • 33
    • 0025247377 scopus 로고
    • Evaluation and comparison of statistical forecast models for daily maximum concentrations
    • S.M. Roberson, and D.G. Steyn Evaluation and comparison of statistical forecast models for daily maximum concentrations Atmospheric Environ. 24B 1990 303 312
    • (1990) Atmospheric Environ. , vol.24 , pp. 303-312
    • Roberson, S.M.1    Steyn, D.G.2
  • 35
    • 0004302864 scopus 로고    scopus 로고
    • SAS Institute Inc., Cary, NC, USA.
    • Sarle, W.S., 2000. How to measure importance of inputs? SAS Institute Inc., Cary, NC, USA. Available at ftp://ftp.sas.com/pub/neural/importance.html.
    • (2000) How to Measure Importance of Inputs?
    • Sarle, W.S.1
  • 38
    • 0032586576 scopus 로고    scopus 로고
    • Ozone indices based on simple meteorological parametres: Potencial and limitations of regression and neural network models
    • G. Soja, and A.M. Soja Ozone indices based on simple meteorological parametres: potencial and limitations of regression and neural network models Atmospheric Environ. 33 1999 4229 4307
    • (1999) Atmospheric Environ. , vol.33 , pp. 4229-4307
    • Soja, G.1    Soja, A.M.2
  • 39
    • 0026003003 scopus 로고
    • Effects of single and multiday ozone exposures on respiratory function in active normal children
    • D.M. Spekton, G.D. Thurston, J. Mao, D. He, C. Hayes, and M. Lippman Effects of single and multiday ozone exposures on respiratory function in active normal children Environ. Res. 55 1991 107 122
    • (1991) Environ. Res. , vol.55 , pp. 107-122
    • Spekton, D.M.1    Thurston, G.D.2    Mao, J.3    He, D.4    Hayes, C.5    Lippman, M.6
  • 40
    • 0001929925 scopus 로고    scopus 로고
    • Analysing air pollution meteorology
    • G. Spellman Analysing air pollution meteorology Weather 53 1998 34 42
    • (1998) Weather , vol.53 , pp. 34-42
    • Spellman, G.1
  • 41
    • 0033120626 scopus 로고    scopus 로고
    • An application of artificial neural networks to the prediction of surface ozone concentrations in the United Kingdom
    • G. Spellman An application of artificial neural networks to the prediction of surface ozone concentrations in the United Kingdom Appl. Geography 19 2 1999 123 136
    • (1999) Appl. Geography , vol.19 , Issue.2 , pp. 123-136
    • Spellman, G.1
  • 42
    • 0001747056 scopus 로고    scopus 로고
    • Ozone formation, destruction and exposure in Europe and the United Estates
    • Sandermann, H., Wellburn, A.R., Heath, R.L. (Eds.)
    • Stockwell, W.R., kramm, G., Scheel, H.E., Mohnen, V.A., Seiler, W., 1997. Ozone formation, destruction and exposure in Europe and the United Estates. In: Sandermann, H., Wellburn, A.R., Heath, R.L. (Eds.), Forest Decline and Ozone, pp. 1-38.
    • (1997) Forest Decline and Ozone , pp. 1-38
    • Stockwell, W.R.1    Kramm, G.2    Scheel, H.E.3    Mohnen, V.A.4    Seiler, W.5
  • 44
    • 0003629738 scopus 로고    scopus 로고
    • EPA 600/8-84/020cF. U.S. Environmental Protection Agency, North Caroline.
    • U.S. Environmental Protection Agency, 1996. Air quality criteria for ozone and related photochemical oxidants. EPA 600/8-84/020cF. U.S. Environmental Protection Agency, North Caroline.
    • (1996) Air Quality Criteria for Ozone and Related Photochemical Oxidants
  • 45
  • 46
    • 0019707668 scopus 로고
    • On the validation of models
    • C.J. Wilmott On the validation of models Phys. Geography 2 1981 184 194
    • (1981) Phys. Geography , vol.2 , pp. 184-194
    • Wilmott, C.J.1
  • 47
    • 0028802515 scopus 로고
    • A comparison of neural networks, non-linear biased regression and a genetic algorithm for dynamic model identification
    • B.M. Wise, B.R. Holt, N.B. Gallagher, and S. Lee A comparison of neural networks, non-linear biased regression and a genetic algorithm for dynamic model identification Chemom. Intell. Lab. Syst. 30 1 1995 81 89
    • (1995) Chemom. Intell. Lab. Syst. , vol.30 , Issue.1 , pp. 81-89
    • Wise, B.M.1    Holt, B.R.2    Gallagher, N.B.3    Lee, S.4
  • 48
    • 0028570720 scopus 로고
    • Sensitivity análisis for minimization of input data dimension for feedforward neural network
    • IEE Press, London
    • Zurada, J.M., Malinowski, A., Cloete, I., 1994. Sensitivity análisis for minimization of input data dimension for feedforward neural network. In: ISCAS'94 IEEE International Symposium on Circuits and Systems, vol. 6, IEE Press, London, pp. 447-450.
    • (1994) ISCAS'94 IEEE International Symposium on Circuits and Systems , vol.6 , pp. 447-450
    • Zurada, J.M.1    Malinowski, A.2    Cloete, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.